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Abstract 
It is commonly accepted that, on social networks, the opinion of the agents 
with a higher connectivity, i.e., a larger number of followers, results in more 
convincing than that of the agents with a lower number of followers. By ki-
netic modeling approach, a kinetic model of opinion formation on social 
networks is derived, in which the distribution function depends on both the 
opinion and the connectivity of the agents. The opinion exchange process is 
governed by a Sznajd type model with three opinions, ±1, 0, and the social 
network is represented statistically with connectivity denoting the number of 
contacts of a given individual. The asymptotic mean opinion of a social net-
work is determined in terms of the initial opinion and the connectivity of the 
agents. 
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1. Opinions on Social Networks 

With the widespread of multimedia and internet in the last several decades, a 
large amount of social media emerge such that people are ubiquitously con-
nected with friends, family or peers, through all kinds of social networks, which 
increasingly shape or influence their opinions and judgments on many topics 
such as consumer products, politics, lifestyles or celebrities, thus the problem of 
modeling how users update opinions on social networks becomes an important 
research topic in Sociodynamics [1], since understanding how users in social 
networks update opinions based on their neighbors’ opinions, as well as the 
emergence of aggregate social trends or global opinion structure from the opi-
nion update of each individual, are important in the context of virtual market-
ing, information dissemination or targeting messages to users in social networks. 
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To investigate opinions on social networks, one needs to prescribe the net-
work mathematically. There are basically two types of models, i.e., graph based 
models and statistically structured models. For graph models of social networks, 
one can see for example [2], in which some collective dynamics of “small-world” 
networks were studied. 

The statistically structured models for social networks are appealing [3], since 
that in some applications, the number of nodes and links of a social network is 
so large that a detailed description by means of classical graphs would be largely 
unfeasible. Later on, various mathematical approaches are developed for theo-
retical investigations of opinion formation and/or wealth distribution on social 
networks, see for example [4] [5] [6] [7] [8], to name just a few, ranging from 
microscopic models, mesoscopic models, to corresponding macroscopic limits. 
Among these models, the mesoscopic kinetic models are important, especially 
for dealing with large scale social networks. 

Next, we notice that the key factor of a network is the connectivity. The con-
nectivity of an agent represents one’s number of contacts/followers. The opinion 
of the agents with a higher connectivity, i.e., a larger number of followers, results 
in more convincing than that of the agents with a lower number of followers [9]. 
Note that agents with high number of contacts/followers are sometimes identi-
fied as influencers. Influencers are not necessarily recognized as leaders, since 
they obey the same mechanism of opinion sharing as any other agents but do 
not operate in a coordinated manner. For opinion dynamics with leaders, we re-
fer to [10] and references therein. 

In the present study, we consider a kinetic model of an opinion model with 
three opinions ±1, 0, allowing indecisive individuals who cannot make a clear 
choice between ±1 in the study, which extends the result in [11] where only bi-
nary opinions, ±1, were considered. Note that the kinetic modeling of the Sznajd 
model with three opinions is studied in [12], but without considering connectiv-
ity of the social network. By the kinetic modeling approach, we will derive the 
asymptotic mean opinion of a social network in terms of the initial opinion and 
the connectivity of the agents. The plan of the paper is that, in the next section, a 
discretized model, say, Sznajd model [13], will be introduced, and two revisita-
tions of Sznajd model provide the interaction rules for the further derivation of 
the Boltzmann-type kinetic equations. In section 3, the kinetic model will be de-
rived. Next, the large time behaviour of the mean opinions of the model is stu-
died in Section 4. Finally, some concluding remarks and research perspectives 
are given in Section 5. 

2. The Sznajd Model 

As one important opinion model in computational sociophysics, we mention the 
important Sznajd model [13], which is considered a “Ising model of opinion 
dynamics”. The dynamics are based on the principle that if two agents share the 
same opinion, they may succeed in convincing their acquaintances of their opi-
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nion (“united we stand, divided we fall”). By using this model, one tries to model 
the interaction of a system of agents distributed on a 1-dimensional string, with 
the opinion variables taking only two extreme opinions ±1 denoting positive or 
negative opinions, mimicking the up/down in the context of Ising model. 

Note that the original Sznajd model was introduced as the binary-opinion 
model, which is very natural for statistical physicists. However, it was later ge-
neralized to accommodate three or larger number of discrete states [14] [15] 
[16] [17], or even a continuous set of opinions [18] [19]. Moreover, the original 
Sznajd model on a string has also been generalized and studied on square lattice, 
randomly diluted square lattice, triangular lattice, as well as on various networks. 
See [20] for more on a review of the Sznajd model. The Sznajd type model for 
opinion exchange will provide the basic interaction rules for the kinetic model-
ing of the opinion dynamics on social networks. 

Motivated by the study of Loy-Raviola-Tosin [11], in this paper, we consider 
the kinetic modeling of a Sznajd type opinion model on social networks, in 
which the distribution function depends on both the opinion and the connectiv-
ity of the agents. Note that unlike classical modeling of opinion formation in a 
multi-agent society [21] [22] [23] [24] [25] where agents are considered indis-
tinguishable, the connectivity of the agents in a social network is intrinsically 
considered in the kinetic modeling in [11]. 

Let { }* **, , 1,0,1t t tW W W ∈ −  be the opinions of three agents in the social net-
work at time t. Assume that the connectivity described by the number of follow-
ers of a given individual changes more slowly than opinion, so it can be taken as 
a constant in time. With the notations used in [26], which are some revisitations 
of the Sznajd model [13], we consider the following two interaction schemes: 

1) The two-against-one model. This model assumes that the third agent takes 
the opinion of the first two agents if the latter have same opinions. Otherwise, no 
interaction occurs. This model can be represented as 

( )

* *

** **

,

,

1 ,

t t t

t t t

t t t t

W W

W W

W W W

+∆

+∆

+∆

=


=
 = −Θ +Θ

                  (2.1) 

where { }*, 1,0,1t tW W ∈ −  are the opinions of the first two agents, 0t∆ >  is the 
time interval in which the interaction may happen, { }0,1Θ∈  is a Bernoulli 
random variable which describes whether the interaction happens or not, with 
the probability 

( ) ( )* *1 ,t tP W W CC tµχΘ = = ∆

 
in which 0µ >  is a constant, ( )χ ⋅  denotes the characteristic function, and 

*,C C  are the connectivities of the first two agents. This formula indicates that 
the interaction takes place only if *

t tW W= , with the probability proportional to 
the connectivities of first two individuals, *,C C , and the time interval t∆ . In 
order to obtain a meaningful probability, the value of probability cannot exceed 
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the extreme value 1, thus there is a constraint on t∆  that 

{ }*

1 ,
max

t
CCµ

∆ ≤  

where the maximum is taken over the connectivities of all agents. 
2) The Ochrombel-type simplification. Instead of assuming that the interac-

tions take place under the condition that two individuals have the same opi-
nions, it is assumed that every agent can affect each of their neighbors’ opinion, 
then the interaction rule becomes 

( )* *

,

1 ,
t t t

t t t t

W W

W W W
+∆

+∆

=


= −Θ +Θ
                   (2.2) 

where the probability for occurrence of interaction, 1Θ = , is given by 

( )1 ,P C tµΘ = ∆  
that is, the probability is proportional to the connectivity of the first individual, 
C, and the time interval t∆ . The constraint for t∆  becomes 

{ }
1 ,

max
t

Cµ
∆ ≤

 
where the maximum is also taken over the connectivities of all agents. 

3. Kinetic Modeling 

We consider a social network with large number of agents, each agent is asso-
ciated with an opinion-connectivity pair of states ( ),w c , { }1,0,1w∈ −  is a 
discrete opinion variable and c +∈  is a continuous non-negative connectivity 
variable: Note that the opinion variable w takes values ±1 denoting convention-
ally two opposite opinions in the same spirit as the original Sznajd model, the 
third opinion 0w =  allowing for indecisive agents who cannot make a clear 
choice between ±1 and prefer therefore to abstain. The connectivity c is assumed 
to be a representative measure of the contacts/followers of a given agent, which 
is considered a continuous variable in accordance with the reference literature 
on the connectivity distribution of social networks. For simplicity, we take the 
statistical distribution of the connectivity of the agents constant in time as in 
[11], which corresponds to the assumption that the connectivity distribution 
possibly evolves over a timescale much slower than that of the opinion changes 
such that it can be considered as an almost stationary background. 

Let ( ), ,f w c t  be the distribution function of the opinion-connectivity pair 
( ),w c  at time 0t ≥ . Due to the discreteness of w, the distribution function f 
can be represented as 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , 1 , 1 , ,f w c t p c t w q c t w r c t wδ δ δ= − + + +      (3.1) 

where ( )0w wδ −  denotes the Dirac delta function centered at 0w w= , and the 
coefficients ( ) ( ) ( ), , , , , 0p c t q c t r c t >  are the percentage of individuals express-
ing opinion 1,0w = ± , respectively. Moreover,  
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( ) ( ) ( ) ( )1, , , , ,p t q t r t L +⋅ ⋅ ⋅ ∈   for all 0t ≥  is assumed, together with the nor-
malisation condition 

{ } ( )
1,0,1

, , d d 1 0,f w c t w c t
+ −

= ∀ ≥∫ ∫  
meaning that there is a constant-in-time number of agents and connections of 
the social network. 

1) The two-against-one model describes multiple interactions, i.e. the interac-
tions among three agents. So we consider multiple-interaction Boltzmann-type 
equation following the derivation process in [11] [27]. Let  

( ) { }, : 1,0,1w cφ φ += − × →   be an arbitrary observable quantity (test func-
tion). Taking the two-against-one model (2.1) as the interaction rule, the Boltz- 
mann-type equation reads 

{ } ( ) ( )

{ } ( ) ( ) ( )( )
( ) ( ) ( )

33

1,0,1

* * ** ** **1,0,1

* * ** ** * ** * **

d , , , d d
d

1 , , , , ,
3

, , , , , , d d d d d d ,

w c f w c t w c
t

B w c w c w c w c

f w c t f w c t f w c t w w w c c c

φ

φ φ

+

+

−

−
= −

×

∫ ∫

∫ ∫




      (3.2) 

with collision kernel 

( ) ( )* * * *, , , .B w c w c w w ccµχ =  
2) The Ochrombel-type simplification. Similarly, the Boltzmann-type equa-

tion with interaction rule corresponding to (2.2) reads [11] 

{ } ( ) ( )

{ } ( ) ( ) ( )( ) ( ) ( )22

1,0,1

* * * * * * *1,0,1

d , , , d d
d

1 , , , , , , d d d d ,
2

w c f w c t w c
t

B c w c w c f w c t f w c t w w c c

φ

φ φ

+

+

−

−
= −

∫ ∫

∫ ∫





 (3.3) 

in which the collision kernel takes 

( ) .B c cµ  

4. Behaviour of the Mean Opinion 

To study the opinion evolution process in the kinetic models (3.2) or (3.3), one 
defines the mean opinion of the system 

( ) { } ( ) ( ) ( )( )1,0,1
, , d d , , d .wm t wf w c t w c p c t q c t c

+ +−
= −∫ ∫ ∫

 



 
Here f is taken with the form (3.1). We will mainly concern the evolution of 

the mean opinion wm  of the system. For later use, we also denote 

( ) { } ( ) ( ) ( )( )
( ) { } ( ) ( ) ( )( )

( ) { } ( ) ( ) ( ) ( )

2

1,0,1

2
1,0,1

1,0,1

, , d d , , d ,

, , d d , , d ,

, , , d , , , .

wc

w c

m t wcf w c t w c cp c t cq c t c

m t w cf w c t w c cp c t cq c t c

g c t f w c t w p c t r c t q c t

+ +

+ +

−

−

−

= −

= +

= + +

∫ ∫ ∫

∫ ∫ ∫

∫

 

 







   (4.1) 

Note that we have assumed the number of followers of an agent changes more 
slowly over time than their opinions, the marginal distribution g is constant in 
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time, that is, ( ) ( ),g c t g c=  for all 0t ≥ , and the mean connectivity cm  is a 
constant 

( ) ( ) ( ) ( )( )d , , , d .cm cg c c c p c t r c t q c t c
+ +

= + +∫ ∫
 



 

4.1. The Two-Against-One Model 

For the two-against-one model, let ( ),w c wφ =  in the Boltzmann-type Equa-
tion (3.2), we have 

2 2 2
2 2 21 3 2 .

3 2 2w wc w wc c cw c w c w c
m m m m m m m m mµ   = + − − + −    
      (4.2) 

in which 

( )

( )

( )

2

2

2

, d ,
2

, d ,
2

, d .

wc w c

wcw c

c w c

m m
cp c t c

m m
cr c t c

cq c t c m m

+

+

+

+
=

−
=

= −

∫

∫

∫







                  (4.3) 

Note that wcm  and 2w c
m  are not constants. To study the behavior of wm , 

we need to obtain the evolution of wcm  and 2w c
m . For this purpose, we take 

( ),w c wcφ =  and ( ) 2,w c w cφ =  in the Boltzmann-type Equation (3.2) to get 

( ) ( )( ) ( ) ( )( )
( )( )

( ) ( )( ) ( ) ( )( )
( )( )

2 2 2

2

2 2

2

2 2

2

, d , d
3

, d ,

, d , d
3

, d .

wc c wc c wc

wc

c cw c w c w c

w c

m m m cp c t c m m cq c t c

m cr c t c

m m m cp c t c m m cq c t c

m cr c t c

µ

µ

+ +

+

+ +

+

= − − +
− 

= − + +
− 

∫ ∫

∫

∫ ∫

∫

 



 







 
The two equations can be simplified with the help of (4.3). Together with 

(4.2), we get 

2 2 2

2 2

2 2 2 2

2 2 2

2 2 2

2 2 2 2

1 3 2 ,
3 2 2

1 3 3 ,
3 2 2

1 1 3 5 .
3 2 2 2 2

w wc w wc c cw c w c w c

wc wc wc c cw c w c

c wc wc c cw c w c w c w c

m m m m m m m m m

m m m m m m m

m m m m m m m m m

µ

µ

µ

   = + − − + −     
    = − + − +     
    = − + − +     







    (4.4) 

Note that this is a closed system of ordinary differential equations with un-
knowns ( )2, ,w wc w c

m m m . To analyze the asymptotic behaviour of the system, we 
denote 

( ) ( ) ( )2

TT T
1 2 3 1 2 3, , , , , , , ,w wc w c

y y y m m m f f f= =Y F

 
with 
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2 2 2
1 2 3 1 2 3 3

2 2 2
2 2 2 3 3

2 2 2 2
3 2 3 2 3 3

1 3 2 ,
3 2 2

1 3 3 ,
3 2 2

1 1 3 5 ,
3 2 2 2 2

c c

c c

c c c

f y y y y y m y m

f y y y m y m

f m y y y y m y m

µ

µ

µ

   = + − − + −     
    = − + − +     
    = − + − +       

then the system (4.4) can be rewritten in the form 

( )d .
dt

=
Y F Y                         (4.5) 

This dynamic system has seven rest points: 

( ) ( ) ( )1 2 31, , , 1, , , 0,0,0 ,c c c cP m m P m m P= = − − =  

and 

( )4 5 6 7
1 1 1 1 1 1 2, , , , , , 0,0, , 0,0, .
2 2 2 2 2 2 3c c c c c cP m m P m m P m P m     = = − − = =     

       

The stability of an equivalent point of a differential system depends on the 
sign of the eigenvalues of the Jacobian matrix. For this, we compute the Jacobian 
matrix of F : 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

f f f
y y y
f f f
y y y
f f f
y y y

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ 

 ∂ ∂ ∂  ∂ ∂ ∂ 

J                     (4.6) 

where 

[ ] [ ]

[ ]

[ ]

2 2 21
2 3 3

1

1 1
3 1 2 2 1 3 1

2 3

2 2 22 2 2
2 3 3 2 3 2

1 2 3

2 23 3 3
2 2 3 2 3

1 2 3

1 3 2 ,
3 2 2

, 3 2 ,
3 3

3 30, 3 , 3 3 ,
3 2 2 3

1 90, , 5
3 3 2 2

c c

c

c c c

c

f y y m y m
y
f fy y y y y y m y
y y
f f fy y m y m y y m y
y y y
f f fm y y y y y m
y y y

µ

µ µ

µ µ

µ µ

∂  = − − + − ∂  
∂ ∂

= − = − +
∂ ∂

∂ ∂ ∂ = = − − + − = − + ∂ ∂ ∂ 
∂ ∂ ∂

= = − = − − +
∂ ∂ ∂

2
3 .c cy m −    

Now we study the Jacobian matrix at each equivalent point , 1, ,7iP i =  . For 
( )T

1 1, ,c cP m m= , one computes 

2

2

2

0 0
3

0 0 .
3

0 0
3

c

c

c

m

m

m

µ

µ

µ

 − 
 
 = − 
 
 − 
 

J
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The characteristic equation is 
3

2 0.
3 cmµλ λ − = − − = 

 
J I

 
The three eigenvalues 

2
1 2 3 3 cmµλ λ λ= = = −

 
are all negative, then the equivalent point ( )1, ,c cm m  is asymptotically stable. 

Similarly, the eigenvalues for ( )T
2 1, ,c cP m m= − −  are 2

1 2 3 3 cmµλ λ λ= = = − , 

the eigenvalues for ( )T
3 0,0,0P =  are 2

1 2 3 3 cmµλ λ λ= = = − , they are asymp-

totically stable. 

For 
T

4
1 1 1, ,
2 2 2c cP m m =  

 
, the three eigenvalues are 

2 2 2
1 2 3, , .

6 6 6c c cm m mµ µ µλ λ λ= − = − =
 

Note that the third eigenvalue 3λ  is positive, then the rest point  
1 1 1, ,
2 2 2c cm m 

 
 

 is not asymptotically stable. The eigenvalues for  

T

5
1 1 1, ,
2 2 2c cP m m = − − 

 
 are 

2 2 2
1 2 3, , .

6 6 6c c cm m mµ µ µλ λ λ= − = − =
 

The eigenvalues for ( )T
6 0,0, cP m=  are 

2 2 2
1 2 3, , .

6 6 6c c cm m mµ µ µλ λ λ= − = − =
 

The eigenvalues for 
T

7
20,0,
3 cP m =  

 
 are 

2 2 2
1 2 3, , .

9 9 9c c cm m mµ µ µλ λ λ= − = =
 

In summary, the three stable equivalent points of (4.4) are 

( ) ( ) ( )1 2 31, , ,  1, ,   and  0,0,0 ,c c c cP m m P m m P= = − − =  
which correspond to three possible asymptotically limits of the mean opinion, 
±1 or 0, respectively. The final asymptotically limit of the mean opinion is deter-
mined by the competition of the connectivity-weighted percentage of agents ex-
pressing the initial opinion 1, −1, 0, that is, which one of the three equivalent points 
will be the asymptotically limit depends on the initial opinion-connectivity distri-
bution located in the attraction domain of each rest point. 

4.2. The Ochrombel-Type Simplification 

For the Ochrombel-type simplification, let ( ),w c wφ =  in the Boltzmann-type 
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Equation (3.3), we get the following equation after some calculations: 

( ).
2w wc c wm m m mµ

= −                     (4.7) 

This equation is coupled to wcm  and cm . Recall that cm  is assumed to be 
constant in time. Taking ( ),w c wcφ =  in (3.3), one gets the equation for wcm  as 

{ } ( ) ( ) ( )22 * * * * * * *1,0,1

1 , , , , d d d d 0,
2wcm c wc w c f w c t f w c t w w c cµ

+ −
= − =∫ ∫

  
which implies that wcm  is also constant in time, i.e. 0

wc wcm m= , where 0
wcm  is 

the initial value of wcm , defined with a given initial opinion-connectivity dis-
tribution ( )0 ,f w c  of the social network. Then (4.7) becomes 

( )0 ,
2w wc c wm m m mµ

= −

 
which is solved with the initial mean opinion 0

wm  that 
0

02 2e 1 e ,c cm t m twc
w w

c

m
m m

m

µ µ
− − 

= + −  
 

               (4.8) 

this asymptomatically converges to the connectivity-weighted mean initial opi-
nion: 

{ } ( )

{ } ( )

0
0

1,0,1

0
1,0,1

, d d
    as .

, d d
wc

w w
c

wcf w c w cm
m m t

m cf w c w c
+

+

−∞

−

→ = →∞
∫ ∫
∫ ∫




       (4.9) 

5. Conclusions and Perspectives 

In this paper, a kinetic model of opinion formation on social networks is de-
rived, in which the distribution function depends on both the opinion and the 
connectivity of the agents. The opinion exchange process is governed by a 
Sznajd type model considering three opinions, ±1, 0, and the social network is 
represented statistically with connectivity denoting the number of contacts of a 
given individual. Two revisitations of the Sznajd model, the two-against-one 
model and its Ochrombel-type simplification, are considered the microscopic 
interaction rules. The large time behaviour of the mean opinions of the model is 
studied by using the macroscopic system of differential equations derived from 
the Boltzmann-type kinetic equations. 

For the case of the two-against-one model, three possible asymptotically limits 
of the mean opinion, ±1 or 0, are derived. The final asymptotically limit of the 
mean opinion is determined by the competition of the connectivity-weighted 
percentage of agents expressing the initial opinion 1, −1, 0. 

For the case of the Ochrombel-type simplification, the mean opinion converges 
asymptomatically to the connectivity-weighted mean initial opinion as in (4.9). 

The results demonstrated the fact in social networks, that the opinion of the 
agents with a higher connectivity, i.e., with a larger number of contacts/followers, 
the so-called influencers, results more convincing than that of the agents with a 
lower number of followers. 
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Further extension of the proposed model may include a kinetic description of 
opinion distribution of agents on evolving network, that is, the case in which the 
connectivity is not constant in time. This may be resolved by combining an opi-
nion update based on interactions between agents, together with a dynamic cre-
ation and removal process of new connections [5]. Since only three opinions are 
considered in the present study, the model may be extended to the case of more 
number of discrete states or even a continuous set of opinions. 
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