
Journal of Applied Mathematics and Physics, 2023, 11, 1459-1470 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.115095  May 31, 2023 1459 Journal of Applied Mathematics and Physics 
 

 
 
 

A Program Study of the Union of Semilattices on 
the Set of Subsets of Grids of Waterloo 
Language 

Mikhail E. Abramyan1,2, Boris F. Melnikov1 

1Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University, Shenzhen, China 
2Algebra and Discrete Mathematics Department, Southern Federal University, Rostov-on-Don, Russian Federation 

 
 
 

Abstract 
The aim is to study the set of subsets of grids of the Waterloo language from 
the point of view of abstract algebra and graph theory. The study was con-
ducted using the library for working with transition graphs of nondetermi-
nistic finite automata NFALib implemented by one of the authors in C#, as 
well as statistical methods for analyzing algorithms. The results are regulari-
ties obtained when considering semilattices on a set of subsets of grids of the 
Waterloo language. It follows from the results obtained that the minimum 
covering automaton equivalent to the Waterloo automaton can be obtained 
by adding one additional to the minimum covering set of grids. 
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1. Introduction and Preliminaries 

It is well known that there exist different complete invariants for describing a 
regular language: not only well-known canonical automata [1] [2] [3] [4], but 
also basis automata [5] [6] [7] and universal automata [8] [9] [10] [11]. When 
constructing basis and universal automata, it is necessary to construct canonical 
automata both for a given regular language and for its mirror language. In the 
process of such construction, we can obtain, among other objects, a special bi-
nary relation # defined on pairs of states of these two canonical automata. This 
relation is also invariant (but incomplete) for the language in question. 
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Of course, at present, the most interesting language for research is the Water-
loo language. The term “Waterloo automaton” is used in most of the articles, 
both in English and in Russian. However, it will be clear from what follows that 
the term “Waterloo language” is better. 

A universal automaton constructed for this language has the following prop-
erty: there exists a non-equivalent automaton among its corresponding covering 
automata [11] [12] [13]. It is still unknown whether a Waterloo language is mi-
nimal, but most likely it is. 

And, of course, it is desirable to define “minimality” mentioned in the pre-
vious paragraph strictly; it can be considered according to different norms. The 
most natural norm is the number of states of an equivalent canonical automa-
ton, but we are more interested in other variants: 
• either the number of states of an equivalent basis automaton—for the Wa-

terloo language this value is 20; 
• or the product of the number of states of two equivalent canonical automata 

(for the given regular language and for the language mirroring the given 
one)—for Waterloo this value is 80. 

Covering automata have already been mentioned above. Of course, for any 
automaton, they form a semilattice by union, but it can be shown that they do 
not, generally speaking, form a semilattice by intersection. More concretely, in-
stead of one intersection semilattice, a union of several such semilattices is 
formed. This paper is devoted to consideration of such a construction for the 
Waterloo language. 

Thus, the topic under consideration is adjacent to the study of the set of all 
possible arcs of a nondeterministic finite automaton defining a given regular 
language; such a study was started by one of the authors of this paper back in the 
late 1990s [14] [15] and was subsequently continued in [10] [11] [13] [16]. 

Thus, as it has already been mentioned, when we study the set of possible arcs 
of an automaton (in other words, the arcs of a COM automaton, the arcs of a 
universal automaton), we obtain a special binary relation # defined on pairs of 
states of these two canonical automata as an auxiliary construction. This relation 
is also invariant (but incomplete) for the language in question. For each such 
binary relation, there exists a whole subclass of the class of regular languages that 
possesses it. Hence, on the set of all regular languages, it is possible to define 
(another) binary relation; it is valid for some two languages if and only if they 
have the same binary relation #. Obviously, the binary relation defined in this 
way (in some of our previous works, [17] [18] [19], it was denoted by R) is an 
equivalence relation on the set of all regular languages. This raises the question 
of the “most typical” language, which is an element of the class of equivalence 
under the relation in question. 

In some previous papers, we have studied in detail regular languages and their 
corresponding canonical automata, which can be considered as such “typical 
elements” of their class, and considered some of their properties [19] [20] [21]. 
Apparently, the most interesting of these properties is the following: using spe-
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cially described transformations, we can obtain from such a “typical” automaton 
any canonical automaton whose language corresponds to the binary relation # 
under consideration. 

Let us repeat that so far we know only one example of a Waterloo-like lan-
guage (i.e. a language for which there exists a covering automaton which is not 
equivalent to it); the article [22] can be considered as a formulation of the prob-
lem of finding other such languages. Let us also note the possible connection of 
Waterloo-like languages with infinite iterations of finite languages [18] [23] [24] 
and others. We also note that many of the problems listed here can be consi-
dered as container packing problems (see [25] and many others); of course, it is 
not expedient to solve them in this way; they require other models similar to 
those considered in this paper. 

Most of the terminology related to nondeterministic finite automata corres-
ponds to [17] (see also references from that paper). Here we add references to 
some terms directly related to automata minimization. The vertex minimization 
algorithm of nondeterministic finite automata considered in [4; Section 6] is 
based on the analysis of the binary relation # [4; Section 3.3] connecting the sets 
of states X and Y of two canonical automata which are constructed on the basis 
of the analyzed nondeterministic finite automaton K (defining some regular 
language L) and a mirror to it. A set of grids [4; Section 3.4] is associated with 
relation #. Each grid is defined by a pair of subsets X0 ⊂ X and Y0 ⊂ Y satisfying 
the following condition: for any states x ∈ X0 and y ∈ Y0, the relation x # y holds, 
and the subsets X0 and Y0 cannot be expanded while keeping the condition. We 
denote such a grid by X0 × Y0. Note that grids can be considered as states of a 
universal automaton. 

A set M of grids is called a covering grid if for any elements x ∈ X and y ∈ Y 
such that x # y, there exists a grid X0 × Y0 of M for which x ∈ X0 and y ∈ Y0. Ob-
viously, the complete set of grids constructed by mapping # is a covering set. 

In [11], we describe an algorithm for constructing from the complete set of 
grids a COM (L) automaton (actually isomorphic to a universal automaton) 
which defines the same regular language L as the original automaton K, and each 
grid corresponds to some state of the COM (L) automaton. Based on a COM (L) 
automaton, we can define a family of covering automata, each of which is ob-
tained by removing some states of a COM (L) automaton, and the remaining 
states correspond to grids which form the covering set. 

The minimization algorithm for the original automaton K consists in choos-
ing a covering grid set M0 of minimal size, for which the correspondent covering 
automaton is equivalent to the automaton K, i.e. defines the same regular lan-
guage. Examples show that not every covering grid set leads to a covering auto-
maton equivalent to the original one. A well-known example is the Waterloo 
automaton first given in [26] and analyzed in detail in [4; Sec. 6]. 

This paper presents the results of an additional study of covering automata 
based on the Waterloo automaton. The study was performed using the library 
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for working with nondeterministic automata NFALib implemented by one of the 
authors in C#, [27] et al. 

3. The Program Study of Automata for Waterloo-Like  
Languages 

Before describing the obtained results, let us describe the objects used and give 
the fragments of the program code that allow us to obtain them. An initial au-
tomaton (a canonical automaton for a regular Waterloo-like language) is defined 
by means of its text description contained in the Waterloo.txt file (the descrip-
tion corresponds to [4; Table 13]), Figure 1. 

This is a deterministic automaton whose canonicalization leads to an auto-
maton of the same kind. The canonical automaton for a mirror automaton, after 
renaming the states, takes the form given in [4; Table 16], Figure 2. 

The States column gives the sets of states before their reassignment; each state 
also corresponds to the set of states of the original mirror automaton obtained as 
a result of its determinization. On the basis of the obtained canonical automata, 
a matrix of the relation # is constructed, the rows of which correspond to the 
states of the canonical automaton w, and the columns to the states of the auto-
maton w2, which is canonical to the mirror automaton. This matrix corresponds 
to [4; Table 17], Figure 3. 

Next, a complete set of 14 grids is defined for the found relation #. After a 
small change in the order of their order, we obtain a set that is completely iden-
tical with the one described in [4; p. 107], Figure 4. 

 

 
Figure 1. A canonical automaton for a regular Waterloo-like language. 

 

 
Figure 2. The canonical automaton for a mirror automaton. 
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On the basis of the obtained complete set of grids, a complete automaton is 
constructed, the representation of which coincides with the one given in [4; Ta-
ble 20], Figure 5. 

The constructed complete automaton is equivalent to the original Waterloo 
automaton, which can be shown by performing its determinization, see Figure 
6. After renaming the states we get an automaton whose representation is the 
same as the original Waterloo automaton, Figure 7. Then the minimal covering 
set of grids is defined. This set contains grids 1, 3, 5, 6, 8, 10, 12 of the full set, see  

 

 
Figure 3. A matrix of the relation #. 

 

 
Figure 4. A complete set of grids. 

 

 
Figure 5. A complete automaton. 
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Figure 8. A covering automaton is constructed based on the minimal covering 
set of grids, Figure 9. After the canonization procedure, the resulting covering 
automaton takes the form shown in Figure 10. By renaming the states, similar to 
what was done for the deterministic representation of the full automaton, we 
obtain an automaton that is not equivalent to the original Waterloo automaton 
(the line with differences is underlined in the automaton representation), Figure 
11. So, the covering automaton based on the minimal covering set of grids is not 
equivalent to the original one. 

 

 
Figure 6. A canonical automaton for a complete automaton. 

 

 
Figure 7. A canonical automaton with renamed states. 

 

 
Figure 8. The minimal covering set of grids. 

 

 
Figure 9. A covering automaton. 
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4. Computation Results for Covering Automata 

In the final part of the article we describe results obtained when analyzing other 
covering automata that can be constructed on the basis of the minimal covering 
grid set complemented with some other grids from the initial complete grid set. 

As will be seen later, it would be reasonable to change a little the order of ad-
ditional grids, moving grid 9 of the complete set of grids (see Figure 4) to the 
beginning of the set of additional grids, Figure 12. 

Each covering automaton will be denoted by a 7-digit binary number in which 
the digit 1 marks the additional grids included in the covering set of grids on 
which it is based. In particular, automaton 1111111 corresponds to the complete 
automaton (see Figure 5) based on the complete set of grids, and automaton 
0000000 corresponds to the covering automaton based on the minimal covering 
set (see Figures 9-11). The order of digits corresponds to the order of additional 
grids from Figure 12. 

Based on the NFALib library tools described above, a set of 128 covering au-
tomata was constructed and their equivalence was investigated. To check the  

 

 
Figure 10. A covering automaton after canonization. 

 

 
Figure 11. A covering automaton after canonization and renaming the states. 

 

 
Figure 12. The set of additional grids. 
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equivalence of two automata we used an algorithm in which 
• initially, the automata are reduced to a canonical form, 
• then, for each state of automata, some hash characteristic is constructed, 
• and, if the hash-characteristics coincide, comparison of transition functions 

for different combinations of new names of the second automaton is per-
formed using the back-tracking algorithm. 

As a result, we obtained four sets of pairwise equivalent automata whose 
properties are shown in Table 1. 

In addition, situations were investigated in which the addition of some addi-
tional grid results in a transition from an automaton that is not equivalent to the 
original Waterloo automaton to an equivalent automaton. In total, there are 80 
transitions, and for each of the 48 non-equivalent automata there are one or two 
such transitions: 
• one transition for automata from set A, 
• two transitions for automata from sets B and C. 

The results can be represented graphically: depict a 7-dimensional hypercube, 
highlighting in light red the vertices that correspond to covering automata which 
are not equivalent to the original Waterloo automaton, and also the edges that 
correspond to the transition from non-equivalent to equivalent automata (Fig-
ure 13). In this Figure, 
• the outer “circle” contains the first half of vertices (0000000 to 0111111) tra-

versed clockwise from the rightmost vertex, 
• and inner “circle” contains the second half of vertices (from 1000000 to 

1111111) traversed in the same order. 
Even more illustrative representation of the sets of automata and transitions 

between them can be obtained if we represent each of the sets A, B, C as a 
4-dimensional hypercube and set D as five 4-dimensional hypercubes, and then 
combine these hypercubes into one 7-dimensional hypercube (Figure 14). 

Figure 14 shows that the vertices of 7-dimensional hypercube are decomposed 
into equivalence classes of 16 elements each, the first 3 binary digits of which coin-
cide. The properties of automata from each of these equivalence classes are the 
same, so to fully illustrate our results it is sufficient to use a three-dimensional  

 
Table 1. Four sets of pairwise equivalent automata. 

Set ID 

Set characteristics 

Numbers of automata  
included in the set 

The total amount of 
automata in the set 

Are automata equivalent 
to the original Waterloo 

automaton? 

A 0000000 - 0001111 16 no 

B 0010000 - 0011111 16 no 

C 0100000 - 0101111 16 no 

D 0110000 - 1111111 80 yes 

https://doi.org/10.4236/jamp.2023.115095


M. E. Abramyan, B. F. Melnikov 
 

 

DOI: 10.4236/jamp.2023.115095 1467 Journal of Applied Mathematics and Physics 
 

 
Figure 13. A set of 128 covering automata (first representation). 

 

 
Figure 14. A set of 128 covering automata (second representation). 

 
“factor cube”, in which vertices are determined by the first three binary digits or, 
which is the same, by the presence or absence of grids 9, 2 and 4 in the corres-
ponding covering automaton (Figure 15). 

It follows from these results that a minimal covering automaton equivalent to 
the Waterloo automaton can be obtained by adding an additional grid 9 to the 
minimal covering grid set, i.e. by passing from automaton 0000000 to automaton 
1,000,000. 

Additional calculations show that, besides the minimal covering automaton 
1,000,000, it is possible to obtain 4 more minimal covering automata equivalent 
to the original Waterloo automaton (of 11 different covering automata with 8 
states), but to obtain each of them one or two grids from the minimal covering  
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Figure 15. A set of 128 covering automata represented as a factor cube. 

 
set must be replaced by two or, respectively, three grids from the additional set: 
• grid 3 must be replaced by grids 2 and 4, 
• grid 8 must be replaced by grids 7 and 9, 
• grid 10 must be replaced by grids 9 and 11, 
• grids 8 and 10 must be replaced by grids 7, 9, and 11. 
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