
Journal of Applied Mathematics and Physics, 2023, 11, 1448-1458 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.115094  May 31, 2023 1448 Journal of Applied Mathematics and Physics 
 

 
 
 

L(h, k)-Labeling of Circulant Graphs 

Sarbari Mitra, Soumya Bhoumik 

Department of Mathematics, Fort Hays State University, Hays, KS, USA 

 
 
 

Abstract 
An ( , )L h k -labeling of a graph G is an assignment of non-negative integers 
to the vertices such that if two vertices u and v are adjacent then they receive 
labels that differ by at least h, and when u and v are not adjacent but there is a 
two-hop path between them, then they receive labels that differ by at least k. 
The span λ  of such a labeling is the difference between the largest and the 
smallest vertex labels assigned. Let ( )k

h Gλ  denote the least λ  such that G 
admits an ( , )L h k -labeling using labels from {0,1, , }λ . A Cayley graph of 
group is called circulant graph of order n, if the group is isomorphic to n . 
In this paper, initially we investigate the ( , )L h k -labeling for circulant graphs 
with “large” connection sets, and then we extend our observation and find the 
span of ( , )L h k -labeling for any circulants of order n. 
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1. Introduction 
1.1. Background 

In the past few decades, rigorous works have been carried out in the area of 
( , )L h k -Labeling. There is a note to the reader that while defining the ( , )L h k

-Labeling, some authors prefer to use 2 length path, instead of using the concept 
of distance 2 (although in this paper we have use the concept of dist). The reason 
behind this is the situation when h k< . In this case, the vertices of any triangle 
in the graph must be colored by three colors at least max{ , }h k  apart from each 
other. Note that it works fine whenever h k≥ . Griggs and Yeh considered the 
special case 2h =  and 1k = , and proposed the conjecture [1] 1 2

2 ( )Gλ ≤ ∆ , 
where 2∆ ≥  is the maximum degree of the graph G, which has been verified 
for various families of graphs [2] [3] [4] [5] over the past decade. It was estab-
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lished that finding the exact value of the 1
2λ  is NP-hard even for families of 

simpler graphs like planar graphs, bipartite graphs and chordal graphs [1] [6]. 
Obviously no one expects ( , )L h k -Labeling problems ( 1h k> ≥ ) is any easier 
than (2,1)L . 

In terms of bounds of the span for ( , )L h k -labeling, ( 1)k
h h kλ ≥ + ∆ +  [7]. 

The structure of the graphs with ( 1)k
h h kλ = + ∆ +  for 1∆ ≥  is studied in [7], 

and they are called k
hλ -minimal graph. Also another interesting fact for r-regular 

graph G is that it can be easily observed that ( ) (2 2)k
h G h r kλ ≥ + −  if h rk≥ , 

and ( ) ( 2)k
h G h r kλ ≥ + −  otherwise. In 2008 Havet, Reed and Sereni [8] proved 

Griggs and Yeh’s conjecture for sufficiently large values of ∆  ( 6910∆ ≥ ) for 
any h and k. They also provided the upper bound of 1( )h Gλ  to be 2 ( )c hδ +  
for any ∆ , where ( )c h  is a constant, depending on the parameter h. For a de-
tailed survey on ( , )L h k -Labeling readers may be read [6]. 

In this paper, we have considered the Cayley graphs of Cyclic groups. (2,1)L  
labeling of Cayley graphs were investigated by Zhao [9] [10] on abelian groups, 
by Bahls [11] on more general groups. Recently Li et al. [12] investigated the 

(2,1)L  labeling of cubic Cayley graphs on dihedral groups. We observed that 
compared to other families of graphs, ( , )L h k -labeling of Cayley graphs has not 
been explored at all. To start with, we first narrow down our focus into circu-
lants, since it would surely give us a flavor of the general situation for all Cayley 
graphs. Connected circulants with smallest connection set are nothing but cycles, 
bounds of ( ,1)L h -labeling for which are already been established [13]. It is 
comparatively more challenging to find the bounds when there are more edges. 
Hence we emphasize on circulants with large connection sets. We obtained the 
bounds for the spans of the (2,1)L  [14] and (3,1)L  [15] labeling of circulants 
previously and we wish to further extend our observation. In this paper, we aim 
to examine the upper bounds for the span of ( , )L h k  labeling of circulants and 
hence extend our work to propose to bounds for ( , )L h k  labeling of the Cayley 
graphs in general, in future. 

1.2. Preliminaries 

In this section, we shall discuss basic definitions from the graph labeling as well 
as the Cayley Graphs. 

Definition 1.1. ( , )L h k -labeling of a simple connected and undirected graph 
( ( ), ( ))V EΓ = Γ Γ  is an assignment : ( ) {0}f V +Γ → ∪  such that for any pair 

of vertices , ( )x y V∈ Γ  

, if ( )
( ) ( )

, if ( , ) 2
h xy E

f x f y
k d x y

∈ Γ
− ≥  =  

Definition 1.2. Let n  be a cyclic group and nS ⊂   such that {0} S∉ . 
Define a graph ( , )n SΓ = Γ   by ( ) nV Γ =   and ( ) {( , ) : }E u v v u SΓ = − ∈ . 
Such a graph is a circulant graph of order n with connection set S. Note that 

1 { : }S S s s S−= = − ∈  for circulant graphs. 
We start our work with “large” connection sets, and finally generalize the re-
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sults for any connection set, S. Note that 1S n≤ − , since {0} S∉  (no loops). 
Also when 1S n= − , then Γ  becomes a complete graph ( nK ), one can easily 
verify that ( ) ( 1)k

h nK h nλ = − . 
The rest of paper is structured as follows. Section (2) consists of the main re-

sults in the form of theorems and supporting lemmas describing the upper 
bounds of the span for the circulants with the connection sets with cardinalities 

2, 3n n− −  and 4n −  respectively. In Section (3) we provide the algorithms for 
assignment of vertex labels to generalized cases followed by providing the lower 
bounds as well. 

2. Main Results 

First we define the notations that we will be using throughout this paper. For the 
vertices ( )i V∈ Γ  and ( ) \a V S∈ Γ  (without loss of generality we will assume 
that /2 \na S∈ ), let gcd( , )d n a= . Also let  % i i d= , and we can rewrite it 
as ( / 2)i i iq d r= +  (when d is even), where ,i iq r ∈ , for each ni∈ . It can 
be observed that {0,1}iq ∈ , and {0,1, , / 2 1}ir d∈ − . For any ( ) \a V S∈ Γ , 
let ip  and p′  are the smallest non-negative integers for which  

| ( ( ))i ia np i+ −   and | ( / 2 / 2)a np n a d′ + − −  respectively. Note that p′  is 
constant for fixed a, and n. 

Theorem 2.1. If 2S n= −  then ( ) ( ) / 2k
h n h k hλ Γ ≤ + − . 

Proof. We begin this proof with the observation that n needs to be even. Since 
{0} S∉ , 2S n= −  is only possible when / 2n S∉ . Now we introduce the 
function : ( )f V G →  . 

( ) , if {0,1, , 1}
2( )

( )( / 2) , if { , 1, , 1}
2 2

nh k i i
f i

n nh k i n k i n

 + ∈ −= 
 + − + ∈ + −






 
Our claim is ( , )f L h k≅ , i.e. ( ) ( )f i f j h− ≥  if j i S− ∈  and  

( ) ( )f i f j k− ≥  if dist( , ) 2i j = . Let us first consider that , {0,1, , 1}
2
ni j∈ − , 

then ( ) ( ) ( )( )f i f j h k i j h− = + − > , for i j≠  which clearly satisfies the re-

quirement. Similarly the assumption , { , 1, , 1}
2 2
n ni j n∈ + −  also meets the 

requirement. 

Now it remains to consider the case when {0,1, , 1}
2
ni∈ − , and  

{ , 1, , 1}
2 2
n nj n∈ + −  or vice-versa. Without loss of generality we can assume 

the former one. In that case ( ) ( ) ( )( / 2 )f i f j h k n i j k− = + + − − . As, it can be 

easily verified that f is injective, ( )( / 2 )h k n i j k+ + − −  is greater than k, only 
if / 2j i n− = , that is, dist( , ) 2i j = . Otherwise, for any other choice of ,i j  it 
is obvious that ( ) ( )f i f j h− ≥ . Moreover, as it can be easily observed that 

max ( ) ( )( / 2 1)
ni f i h k n k∈ = + − + , we get that ( ) ( ) / 2k

h n h k hλ Γ ≤ + − .  
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Next we will consider 3S n= − , which is possible only if {0, , }a n a S− ∉ , 
where a is any non-negative integer. For this specified connection set, we define 
the vertex labeling function f below, and prove that f provides a ( , )L h k -labeling 
in Theorem (2.2), and Theorem (2.3). But first we need to consider the following 
lemma [14], which is very useful to proceed further in this paper. 

Lemma 2.1. There exists a non-negative integer /ip a d<  such that 
| ( ( ))i ia np i+ −   for any ni∈ . 
Now we propose the function that will assign the ( ,1)L h -labeling to the 

Cir( , )n SΓ = , where 3S n= − . For the sake of simplicity, for any ( )i V∈ Γ  

we consider 
( )i i

i
np i

C
a

+ −
=



. Note that ( / 1)iC n d≤ − . 

( ) ( ( 1 ) ), if 3
( ) 2 2

( 2 ) , if 3

i i
i i

i i

C b s ns kb h e ek n d
f i d

C k h k n d

− + + + − − + ≠= 
 + + =



  

where 
, if 2

2 , if 2
h h k

s
k h k

≥
=  <

, 
0, if is even
1, if is odd

i
i

i

C
b

C


= 


, and 

1, if / is even
0, if / is odd

n d
e

n d


= 


. 

First we will consider the case 3n d= . It can be easily observed that f is injec-
tive. Now ( ) ( ) ( 2 )ij ijf i f j kC h k− = + +  , where ij i jC C C= − , and  

ij i j= −   . Note that, as ( / 1) 2ijC n d≤ − =  if 0ij = , then  
( ) ( )f i f j h− < , only when i j a− = , or 2a, which is impossible. Otherwise 

( 0ij ≠ ), without loss of generality we may assume that 0ij > . In this case, 
using Lemma (2.1), ( ) ( ) 2 ( 2 ) ijf i f j k h k h− ≥ − + + ≥ . Thus we have  

( ) ( )f i f j h− ≥  if ( )i j E− ∈ Γ . Finally, it can be easily observed that  
max ( ) ( / 1) ( 2 )( 1) ( 2 )

ni f i n d k h k d h k d h∈ ≤ − + + − = + −  (since d a= , if  
/ 3n d = ). From above discussion we can derive Theorem (2.2). 
Theorem 2.2. If 3S n= − , and 3n d=  then f admits a ( , )L h k -labeling on 

Γ , and ( ) ( 2 )k
h h k d hλ Γ ≤ + − . 

Theorem 2.3. If 3S n= − , and 3n d≠  then f provides a ( , )L h k -labeling 
on Γ . Moreover 

/ 2 ( ) , if is even
( )

( ) / 2 ( 1), if is odd

k
h

nsn h k s d h
d
ns n d h d
d

λ

 + + − −Γ ≤ 
 − + −
  

Proof. In this proof, we skip the part to show that ( ) ( )f i f j k− ≥ , if 
dist( , ) 2i j = , since it is easy to verify. Also without loss of generality we assume 
that ( ) ( )f i f j> . Note that 

( ) ( ) ( ) ( ( / 1 ) )
2 2ij ij ij ij
s sf i f j C b kb h n d e ek− = − + + + − − +        (1) 

First consider the case that 0ij = . Note that if 3ij ijC b− ≥ , the from Equa-
tion (1) immediately implies ( ) ( )f i f j h− > . Now we first notice 0ijb = , if 
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ijC  is even. Thus 0 2ij ijC b≤ − ≤ , only when one of these four possibilities oc-
curs, viz. ( , )ij ijC b  are either (3,1), (2,0), (1, 1)− , or (1,1) . The former two cases 
provides us ( ) ( )f i f j h− ≥ . The latter two cases ( ( )) / 1ij ijC np i j a= − − =  im-
plies i j a− = , which is a contradiction. 

On the other hand if 0ij ≠ , is can be easily deduced that 0ij > . Hence 
from Equation (1), we get 

( ) ( ) ( 1 )
2 ij ij ij
s nf i f j C b e h kb ek

d
− ≥ + − − − + + +            (2) 

Now if n/d is even, then 1e = , and ( / 1)ij i jC C C n d= − ≥ − − . But note that 
in this case 1ijb = − . Hence Inequality (2) implies that ( ) ( )f i f j h− ≥ . The 
case n/d is odd, follows similarly. 

Finally it remains to verify the upper bound for ( )k
hλ Γ . Consider n/d is even, 

we get 1e = . Also 0 ( / 1) 1 /ijC n d n d≤ − − = − . But in this case 1ib = . Thus 

max{ ( )} max{ ( ) ( ( 1 ) )}
2 2

( 2) ( 1)( ( 2) )
2 2

n n

i i
i ii i

C b s nf i s kb h e ek
d

s n s nk d h k
d d

∈ ∈

−
= + + + − − +

= − + + − + − +



 

 
Hence it is easy to verify that when n/d is even then  
( ) / 2 ( )k

h sn h k s d hλ Γ ≤ + + − − . On the other hand, it can be easily derived that 

( ) / 2( ) ( 1)k
h s n d h dλ Γ ≤ − + −  when n/d is odd.  

Corollary 2.2. If a is coprime to n then 

( / 2 1) if is even
( )

( 1) / 2 if is odd
k
h

s n k n
s n n

λ
− +

Γ ≤  −  
The above corollary follows immediately from Theorem (2.3), hence we skip 

the proof. Next we consider the case when 4S n= − . First note that in this case 
n must be even, and the connection set S should be such that  

\ {0, , / 2, }n S a n n a= −  for some *
na∈ . Without loss of generality, we as-

sume a is the smallest integer in the set * \n S . It can be easily observed that 
when / 2n d m=  for 2m ≥ , then / 2n dm a= ∈〈 〉 . As a consequence the ver-
tex labeling, and hence the upper bound of ( )k

hλ Γ  will be same as that of 
3S n= −  case. So in the rest of this section we restrict /n d  to be odd. Let us 

first prove a lemma before we propose the function that assign the labeling to 
Γ . 

Lemma 2.3. If d does not divide n/2 then d must be even. 
Proof. Let us consider the prime power decomposition of 0 1

12 ka aa
nn p p= ⋅  , 

where 0 1a ≥ . Let us also consider 0 1
12 kb bb

nd p p= ⋅  , where i ib a≤  for all 
{0,1, , }i k∈  . But as ( / 2)d n , then it is clear that b has at least a prime fac-

tor that does not divide 0 11
1/ 2 2 ka aa

nn p p−= ⋅  , which is only possible when 

0 0 1 0b a> − ≥ . Hence d is even integer.  

For any ( )i V∈ Γ  let us define ( ) / 2
a

np a n dF
a

′ − + −
= , and  
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(( / )(1 ) )i i i i aC C q n d t F′ = + + − , where 

0
1

i a
i

i a

C F
t

C F
≥

=  <  
We can easily figure out the bounds for iC′ , and aF , such that  

0 2 / 1iC n d′≤ ≤ −  for any ( )i V∈ Γ , and 0 / 2aF n d≤ ≤ − , as  
, / 1ip p a d′ ≤ − . Now the following function will assign ( , )L h k -labeling to the 

graph Γ , which we will show in the following theorem. 

( ) ( ( 1) ), if 3
( ) 2

( ) ( 3 ) , if 3

i i i i

i i i

s nhC b kb r h s k n d
F i d

kC s k q h s k r n d

 ′ − + + + − + ≠= 
 + + + + + =  

We claim that this function assigns the ( , )L h k -labeling to the circulants Γ  

with 4S n= − , as well as provided a bound of the ( )k
hλ Γ . First we prove the 

claim for 3n d=  in Theorem (2.4), and then in Theorem (2.5) we prove the 
same for the case 3n d≠ . For our convenience, we will use the notations 

ij i jC C C= − , ij i jp p p= − , ij i j= −   , ij i jq q q= −  and ij i jr r r= −  when-
ever required. 

Theorem 2.4. If 4S n= −  (i.e., {0, , / 2, }a n n a S− ∉  for any *
/2na∈ ), 

and 3n d=  then F defines a ( , )L h k  labeling on Γ . Moreover,  
( ) ( 3 ) / 2k

h d h s k hλ Γ ≤ + + − . 
Proof. Without loss of generality, we assume that ( ) ( )F i F j≥ . Now,  
( ) ( ) ( ) ( 3 )ij ij ijF i F j kC s k q h s k r− = + + + + + . Based on our assumption we clear-

ly have 0ijr ≥ . If 0ijr > , then we have  
( ) ( ) ( ) ( 3 ) 2 ( ) ( 3 )ij ij ij ijF i F j kC s k q s h k r k s k s h k r h− ≥ + + + + + ≥ − − + + + + > .  

On the other hand if 0ijr = , then either 0ijq = , or 1ijq = . Now if  
( ) ( )f i f j h− <  then 0ijq =  implies that ( ( )) / 1ij ijC np i j a= + − = , or 2, 

which is only possible either i j a− = , or 2a. Finally when 1ijq = , then 
( ) ( )F i F j h− <  implies 1ijC h h+ + < , which is only possible when 2ijC = − . 

Hence we get ( ( ) ) / 2ij ijnp i j a+ − − = − , which simplifies to  
2 2 / 2 / 2ijj i a a a n− = − = − = , which is absurd. 

Finally it is easy to verify that  
( ) ( / 1) ( ) ( 3 )( / 2 1) = ( 3 ) / 2k

h k n d s k h s k d d h s k hλ Γ ≤ − + + + + + − + + − .  
Theorem 2.5. If 4S n= −  (i.e., {0, , / 2, }a n n a S− ∉  for any *

/2na∈ ), 
and / 2 1, 2n d k k= + ≥  then F defines a ( , )L h k  labeling on Γ . Moreover,  

( ) ( ) / 2 ( ) / 2 .k
h s n d d h k hλ Γ ≤ − + + −  
Proof. Lemma 2.3 suggests that d can’t be odd, as / 2d n . In this proof, we 

will show that ( ) ( )F i F j h− ≥  when ( ) ( )ij E G∈ , i.e. j i S− ∈ . Establishing 

the fact that ( ) ( ) 1F i F j− ≥  when dist( ) 2ij =  is very similar, and hence 
omitted here. 

( ) ( ) / 2( ) ( ( / 1) )ij ij ij ijF j F i s C b kb r h s n d k′− = − + + + − +         (3) 

In this proof, without loss of generality, we assume that ( ) ( )F i F j> , which 
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immediately implies that 0ijr ≥ . First we consider that 0ijr > , which gives us, 

( ) ( ) ( ( / 1) ) / 2( )

( ( / 1) ) / 2( ((1 ) / ) )

( / 1) / 2( / 1 / )

( / 2 )( 1)

ij j j j

j j j a j j

j j

j

F i F j r h s n d k s C b kb

h s n d k s C q t n d F b kb

h s n d k s n d n d b kb

h s k b

′− ≥ + − + − − −

≥ + − + − + + − − −

≥ + − + − − + − −

= + − −
 

Note that in this case we have assumed 2 / 1jC n d′ = − , which implies 1jb = , 
thus we get ( ) ( )F i F j h− ≥ . Now we consider the case 0ijr =  simplifies Equa-
tion (3) to 

( ) ( ) / 2( )ij ij ijF j F i h C b b′− = − +  
Now it can be easily observed that in order to have ( ) ( )F i F j h− < , either 

2ij ijC b′ − < , or 2ij ijC b′ − = , and 1ijb = − . Note that the latter case implies 
1ijC′ =  immediately. From the former case, it can be easily deduced that 

0ij ijC b′ − =  (as k kC b′ −  is even for all k), and hence 1ijb =  (as we have already 
assumed that ( ) > ( )F j F i ), hence we have same conclusion that 1ijC′ = . Now 
the following claim proves the rest. 

Claim: 1ijC′ =  only when ci j S− ∈ . 
First we simplify 1ijC′ =  into, 

/ ( (1 ) (1 )) 1ij i i j j ij aC n d q t q t q F+ + − + − =               (4) 

Once again we use our assumption ( ) ( )F i F j>  to conclude that i jq q≥ . 
Now if 0i jq q= = , Equation (4) implies that ( ( )) / 1ij ijC np i j a= + − =   
( 0ij = ), which is only possible when i j a− = . Now if 1i jq q= = , Equation 
(4) simplifies to ( ( )) / / 1ijnp i j a n d+ − + = , which implies  

( / )iji j a a d p n− = − − . This is again possible when either i j a− =  or 
j i n a− = − . 

Finally it remains to consider that case i jq q> . Obviously in this case 1iq = , 
and 0jq = . This gives us (from Equation (4)) 

(1 ) / 1ij i aC t n d F+ + − =                      (5) 

First of all we note that i aC F≥ , because otherwise 1it = , which implies 
( / ) ( / ) 1i a jC F n d n d C− + + − > , a contradiction. Thus i aC F≥  implies 0it = , 
which provides us ( ( ) / 2 / 2) 1 /ij ijnp i j np a n d n d′+ − − − + − + = −  Using the 
fact that in this case / 2d= , and after some simplification, we finally arrive at 

( / ) / 2iji j n p p a d n′− = − − + . Thus the conclusion we can draw here is  
/ 2i j n− = .  

Finally (it remains to verify that) if 3n d≠ , we have, 

( ) ( ) ( ( 1) )}
2

/ 2((2 / 1 1) ( / 2 1)( ( / 1) )
( ) / 2 ( ) / 2

k
h i i i i

s nhC b kb r h s k
d

s n d k d h s n d k
s n d d h k h

λ ′Γ = − + + + − +

≤ − − + + − + − +
= − + + −         

3. Generalization 

In this section we will generalize the result for any circulant, i.e. we provide a 
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way to assign the vertex labeling that satisfies the ( , )L h k  criteria (Algorithm 
(1) and (2)). Later in Theorem (3.1), we investigate the condition on the connec-
tion set S in order to have the exact value of ( )k

hλ Γ . 
Algorithm (1) and Algorithm (2) together provide us the ( , )L h k -labeling for 

circulants with any connection set S, such that  

1 2 1 2 1\ { , , , , , , , , }c
n k k kS S a a a n a n a n a n a−= = − − − −   and immediately we 

can figure out the upper bound for ( )k
hλ Γ  for those circulants. Here we denote 

1 2 1 2gcd( , , , )
ka a a kd a a a=



 . First, Algorithm (1) takes the connection set S as 
input, immediately calculate the non-connection set 1 2{ , , , }c

mS b b b ′=  , and 
then finds the minimal non-connection set 1 2{ , , , } c

mS a a a S′ = ⊆ ; where  
( ) / 2m n S≤ − , and 1 2{ , , , }ma a a  is the smallest set such that  

1 2 1 2gcd( , , , ) gcd( , , , )m ma a a b b b ′=  . Next, Algorithm (2) assigns the ( , )L h k
-labeling to the circulant graph of order n. First of all, note that for any na∈ , 
the circulant graph ( ,{ })nZ aΓ = Γ  is just gcd( , )d n a=  many disconnected 
cycles is of order n/d. Also observe that the groups of integers modulo n; 1a〈 〉  
is a cyclic subgroup of n  with order 

1
/ an d , and 1 2,a a〈 〉  is a subgroup of 

nZ  with order 
1 2

/ a an d . It is easy to verify that 1 1 2,a a a〈 〉 〈 〉 , and hence 

1 1 21 2 1, / /a a aa a a d d〈 〉 〈 〉 = . Similarly for any t m≤ ,  

1 2 1 2 11 2 1 2 1, , , / , , , /
t tt t a a a a a aa a a a a a d d

−−〈 〉 〈 〉 =
 

  . According to Algorithm (2), 
we first label all vertices of 

11 1 1 /{ | }
an di a i Z∈  (mod )n  in this fashion  

{0, , , , 2 , }k s s k s+   (s is defined in Lemma 2.1). Once we are done with labeling 

1/n d  many vertices in this manner, we label 2 1 1( ) ( )f a a f n a h− = − + . We 
continue labeling the remaining vertices 2 1 1a i a+  as  

1 1 1 1{ ( ) , ( ) , ( ) , ( ) 2 , }f n a h k f n a h s f n a h s k f n a h s− + + − + + − + + + − + +  , for 

1 0i ≥ . It can be easily observed that this pattern of labeling can be repeated 

1 21 / a ad d  many times. Hence after labeling 
1 2

/ a an d  in this fashion, we then 
iterate this method for 3 4{ , , , }ma a a . Since according to the Algorithm (2), 
consecutive labels are only being used in difference of 1 2 1, , , ma a a −  or ma , 
any two adjacent vertices have the difference of labeling of at least 2. Hence Al-
gorithm (2) provides a ( , )L h k -labeling to the graph Γ . 
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We now have only one more result to discuss in terms of the exact value of 
( )k

hλ Γ . 
Theorem 3.1 Let 1 2\ { , , , }c

n mS S a a a= =  , and 1 2gcd( , , , )md a a a=  . 
Then if (mod )p q ra a a n+ ≠  for all , , c

p q ra a a S∈ , then 

/ 2 ( ) if / is even
( ) / 2( ) ( 1) if / is odd, and | | is odd

/ 2 / 2( ) if / is odd, and | | is even

k c
h

c

ns d h k s h n d
s n d h d n d S
ns d h k s h n d S

λ
+ + − −

Γ = − + −
 + + − −  

Proof. First we consider the case 1d = . Let f be a function that assigns 
( , )L h k -labeling to the graph Γ . Rearrange the set ( )V Γ  as 0 1 1{ , , , }nx x x − , 

such that 0 1 10 ( ) ( ) ( )nf x f x f x −= ≤ ≤ ≤ . Now let us assume that for some 

3nk −∈ , 1( ) ( )k kf x f x+ − , 2 1( ) ( )k kf x f x+ +− , 2( ) ( )k kf x f x+ − , all are less than 
s, which implies that 1 2 1 2{ , , } c

k k k k k kx x x x x x S+ + + +− − − ∈ . But this leads to a 
contradiction to our assumption. Hence we conclude that 2( ) ( )k kf x f x s+ − ≥ . 
Thus 

1 3

5

0

1

( ) ( )
( ) 2

( ) ( 1) / 2 if is odd
( ) ( 2) / 2 if is even

n n

n

f x f x s
f x s

f x s n n
f x s n n

− −

−

≥ +

≥ +

+ −
≥  + −



 
Hence if n is odd then ( ) ( 1) / 2k

h s nλ Γ ≥ − . On the other hand 1( )f x k≥ , 
because otherwise there exist another * ( )x V∈ Γ , such that  
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* *
0 1 1 0, , cx x x x x x S− − − ∈ , which is a contradiction to our assumption. Hence if 

n is even then 1( ) ( 2) / 2h s n kλ Γ ≥ − + . 
Next we are going to consider the case that 2d ≥ . In this case, first let us de-

fine an orbit ( )V⊆ Γ , so that none of vertices in an orbit is connected to 
every other vertex in that same orbit. Thus if x∈  then there exist y∈  
such that cx y S− ∈ . Also note that if   and *  are two orbits, then any 
vertex in   is connected to all the vertex of * , and therefore  

( ) ( )f x f y h− ≥  if x∈ , and *y∈ . Now when cS  is odd, then it is clear 
that the maximum possible size of an orbit n/d, and there are d many of them. 
Thus if n/d is odd, then 

1 /

/ 1

2 / 1

/

/ 1

0

( ) ( ) / 2( / 1)
( ) / 2( / 1)
( ) 2 / 2( / 1) 2

( ) ( 1) / 2( / 1) ( 2)
( ) ( 1) / 2( / 1) ( 1)
( ) / 2( / 1) ( 1)
/ 2( ) ( 1)

n n n d

n n d

n n d

n d

n d

f x f x s n d
f x h n d h
f x s n d h

f x d s n d d h
f x d s n d d h
f x d s n d d h
s n d h d

− −

− −

− −

−

≥ + −

≥ + − +

≥ + ⋅ − + ⋅

≥ + − ⋅ − + − ⋅

≥ + − ⋅ − + − ⋅

≥ + ⋅ − + − ⋅

≥ − + −



 
On the other hand if cS  is even, then there are d/2 orbits of maximum poss-

ible size 2n/d, since / 2n S∉ . Hence similar to the previous computation, one 
can easily check ( ) / 2 / 2( )k

h ns d h k s hλ Γ ≥ + + − − . Finally when n/d is even, 
then clearly n is even, and d is odd. In this case, / (2 )n d m=  for some m∈ , 
which implies that / 2n md d= ∈〈 〉 . Thus there are d orbits of maximum possi-
ble size n/d. Hence,  

( ) ( / 2( / 2) ) ( 1) / 2 ( )k
h d s n d k d h ns d h k s hλ Γ ≥ − + + − = + + − − .            

4. Conclusion 

In this paper, we have worked on the ( , )L h k -Labeling of the family of circulant 
graphs, which is an obvious generalization of (2,1)L -Labeling. In fact, results in 
[14] can be easily verified from this paper, as a particular case substituting 

2h = , and 1k = . Also in this paper, the obtained ( , )L h k -labeling is tight, as 
long as h k≥ . In the case of h k< , the tightness is no more applicable. For in-
stance, in contrast to the Theorem 2.1, when 1S n= − , 2

1 ( )λ Γ  is also 1n − . 
Thus, the case h k< , can be investigated in future for the same family, or even 
for generalized Cayley Graphs. 
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