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Abstract

In this paper, we have studied several classes of planar piecewise Hamiltonian
systems with three zones separated by two parallel straight lines. Firstly, we
give the maximal number of limit cycles in these classes of systems with a
center in two zones and without equilibrium points in the other zone (or with
a center in one zone and without equilibrium points in the other zones). In
addition, we also give examples to illustrate that it can reach the maximal
number.
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1. Introduction

It is an important problem to study the limit cycles of differential systems, which
is related to Hilbert’s 16th problem [1] on the maximal number of limit cycles
for polynomial differential systems. In 1977, Arnold [2] proposed the weakened
Hilbert’s 16th problem, which is to investigate the maximal number of simple
zeros of the Abelian integral for piecewise differential systems. Recently, piece-
wise smooth systems are widely studied by researchers from different fields and
it has a large number of applications in biology [3] [4] [5], mechanics [6] [7] and
control theory [8] [9] [10].

One of the most important problems is that if a piecewise smooth differential
system exists limit cycles and the maximal number of limit cycles. It is known
that discontinuous piecewise linear differential systems having a straight line as

separation manifold can have three limit cycles, see [11]-[16]. It is still an open
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problem if there are more limit cycles for this class of systems. In 1998, Freire et
al. proved that a continuous planar piecewise linear system whose switching
manifold is a straight line can have at most one limit cycle. In 2015, Llibre et al.
[17] proved that there are at most two limit cycles when a discontinuous piece-
wise linear differential system has a focus, center, or weak saddle with a switch-
ing line. In particular, there are many distinguished results about the differential
piecewise systems separated by two parallel straight lines. In 2020, Fonseca ef al.
[18] show that planar piecewise linear Hamiltonian systems separated by two
parallel straight lines and without equilibrium points in each zone can have at
most one crossing limit cycle. In [19], it proved that the piecewise differential
systems continuous and separated by two parallel straight lines do not have limit
cycles, and the piecewise differential systems discontinuous having two parallel
straight lines with either two centers and one saddle, or two saddles and one
center can have at most one limit cycle.

Motivated by the above research, the main purpose of this paper is to study
how we can get the maximal limit cycles when the switching manifold is two pa-
rallel straight lines, and it has subsystems with a center in two zones and without
equilibrium points in the other zone (or with a center in one zone and without
equilibrium points in the other zones). We can divide plane into the following

three zones:
Ulz{(x,y)eR2|y<—1},
UZ:{(x,y)eR2|—lsygl}, (1)
u? :{(x,y)eR2 | y>1}.

And we have the following main results.

Theorem 1. The following statements hold.

1) A continuous piecewise differential system separated by two parallel
straight lines, which has subsystems with a linear Hamiltonian center in two re-
gions and a subsystem without equilibrium points in the other region has no
limit cycle.

2) A discontinuous piecewise differential system separated by two parallel
straight lines, which has subsystems with a linear Hamiltonian center in two re-
gions and a subsystem without equilibrium points in the other region has at
most one limit cycle.

Theorem 2. The following statements hold.

1) A class of piecewise differential system separated by two parallel straight
lines, which has a subsystem with a linear Hamiltonian center in one region and
subsystems without equilibrium points in the other regions has no limit cycle.

2) A discontinuous piecewise differential system separated by two parallel
straight lines, which has a subsystem with a linear Hamiltonian center in one re-
gion and subsystems without equilibrium points in the other regions has at most
one limit cycle.

Theorem 1 is proved in Section 3 and Theorem 2 is proved in Section 4.
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2. Preliminaries

Firstly, to prove Theorem 1, we introduce the following lemmas proved in [20]
and [18], which provide the normal form of the planar differential system with a
linear Hamiltonian center and without equilibrium points separately.

Lemma 3. An arbitrary planar differential system with a linear Hamiltonian

center can be written as

X=-bx-0y+d,y=ax+by+c, (2)
where b,c,d,a and & are all real constants, and &=b?+®’ with @=0.
The corresponding Hamiltonian function is

Hl(x,y):—%xz—bxy—%yz—cx+dy. (3)

Lemma 4. An arbitrary planar differential system without equilibrium points

can be written as
X=—-Ahx+hy+g, y =—A%hx+ Ahy + f, (4)

where f,g,h and A are all real constants, f#1g and h=0. The corres-

ponding Hamiltonian function is
Hz(x,y):—%/lzhxz+/1hxy—gy2 + fx—gy. (5)
Now, we begin to prove each statement of Theorem 1.

3. Proof of Theorem 1

Considering the symmetry of the system, there are two cases with respect to the
class of equilibrium points on each zone to discuss here. Firstly, we consider the
following planar piecewise system:
X=-bx-oy+d,
{y:aix+biy+ci,
{X =-Ahx+hy+g,
y=-Ahx+Ahy+ 1,

where f,,9,,h,4,b,¢,d;,,8,i=13 are all real constants with & =b’ + @?,
o #0, =13, f,#40, and h #0. The corresponding Hamiltonian func-

(x,y)eU'i=13,
(6)
(x,y)eU?,

tions are
1, 5 .
Hi(x,y):—Ex —bixy—?y —cx+d;y,i=13,

h
2

(7)

1
Hz(x.y):—gﬂfhlxz +Ahxy -2y + fix—g,y.

We are supposed that system (6) has a limit cycle intersecting the two parallel lines
x=-1 and x=1 atexactly four points, denoted as (-1,y,), (-1,v,), (1. y;)
and (1,y,) respectively with y, <y, and Y, >Y,. These points satisfy
H,(-Ly,)-H,(-Ly,)=0,
H,(-Ly,)-H,(Ly,;)=0,
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H,(Ly,)-H,(-Ly,)=0,
Hy(Lys)—H;(Ly,) =0,
which can be written as the expansions
(yl_yz)(z(bl+d1)_51(y1+yZ)):O
—4 1,240 +9,) Y, —2(4h —9y) Yy —h (V5 - y§) 0,
A5 +2(Ah —9,) Y, +2( A+ 0y —h (Vi -y ) =0
(2(by —dy)+ 85 (Vs + ¥a))(Ys = ¥4) =0
Assume that system (6) is continuous, one has
b =A4h,6 =-h,i=13d,=g,,d;=9,
¢ =Ah + f+a, ¢ =27 + f, —a,.
From (9) and (10), we have the following expressions of Y,,Y,,Y,:

2Ah+e) o _Ah-g VA _Ah-g VA
e S

where A=(4h —g,)" + hl(h1Y12 +2(A4h +0,)y, +4 f1) . Since the points
Y,,Ys Y, are all continuous with respect to Y, there is a continuum of period-

(8)

€

Y, =

ic orbits. It implies that if system (6) is continuous, it has no limit cycles.
In the other way, let us now consider the case where system (6) is disconti-

nuous. From (9), we have the relations as follow

_2(b1+d1)_y y _Z(da_bs)_

1 51 2 J3 ™ 53 y4' (12)

Substituting the expressions of Yy, and Y, into the second and third equations

of (9) and introducing the notion L, and L,, one has
L :4( f,65 +(A4h —9,)(ds —b;) & —hy (d, _ba)z)
+257 (A +0) Y, +2(2M (s =b0) 8, = (A0 = 6) & )ya (5

+h1532(y2 _Y4)
=0,

and
L, :4( f,67 +(Ah +9,)(b +d;)d +h (b +d1)2)
~2((Ahy +0,)57 +2hs, (b, +,))y, (14)

+25l2 (ﬂ,lhl - gl)Y4 +hl§12(y22 - yf)
=0.

Let L, =¢7L, —56.L, =0, we obtain

P0 PZ
=042y, 15
Ya R Plyz (15)

where
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Py = 6,6, (8, (Ahy +9,) (b +dy) =, (4h —9,)(d; —by ) )+ 820, (dy = by )* +87h, (b, +d, ),
P, =826, (hy (ds —by) - (4N - 9,)4,), (16)
P, ==56,6% (S, (Ahy +9;)+hy (b +d,)).

If P, =0,ithas h(d;—h,)—(A4h —g,)d =0. Substituting it into L;=0, one

has y, =y, = by ; o which leads to contradictions. Hence, we have P, #0.
1
Then, substituting (15) into (13), we have the following expression of VY,:
2+:b1+d1i\/A_, (17)
B o, 2P,

where

P, = o2 (567 ((~b, + 07 +d, )by +6, (9~ 4 )2 5,54 (b, d)hy+6, (g, + 4)) ).
&= (202 (26, (n (6, - ) (4= 9))8,) (A +0,)+2(573, (hy(d

(A —9,)8,))(-6,5% (8, (Ahy + ;) + by (b, +d, ))) (2h, (s —by) (m 9,);)
~2n5 (80, (0 <m+gl)<b1+d> 5.(Ah - 0,)(d —b>)+62m<d b,
+2h, (b, +0, ) ) (~8,67 (5, (&hy +0,) +hy (B +0,))) —ana2 (626 hy (d ~b)
(A -0,)5)) - (552 (6 (ah,+9,) +h (b, +d,))))(4(75, (n (d -b,)
(h=9,)8,))" (167 + (Aahy = 9,)(dy =by) & =y (65 =B,)° )+ 2(816% (6, (uh, + ) (o
dl)—@(ﬂlhl—gl)(dg—bg))+5fra(d3—bs)2+6§m(bl+d1)2)(5553(h1(d3—bg) (18)
—(Ahy = 9,)35))(2n, (ds —by) 85— (Ahy — 91) 85 )~ 7 (6,85 (S5 (Ahy + g, ) (b, + )
-5, (A~ 0,)(ds —by))+ 57h, (dy by ) + 520 (b + )

whenever P, #0,andif P, =0, there is at most one solution (y,,y,,ys,y,) of
(8).
When P, #0, given

y=2(bl+d1)_ =b1+dl¢£
= 5, Y 2P,

= y2¢! (19)

it exists at most one solution (y,,y,,y;.y,) of (8) with y, <y, and y,>y,.
As a result, we have proved that there is at most one limit cycle system (6) can
have in discontinuous case. Thus we have completed the proof of Theorem 1 for
systems can be written as (6).

To end this part of proof, now we provide an example to illustrate that system
(6) can have exactly one limit cycle when it is discontinuous. The Hamiltonian

functions are given by the following expressions:
H(xy)=y-y*-(x+2y)’,
Hy(xy)=y? +x-y, (20)
Hy(xy)=-y+x*+y* -1,
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and the corresponding piecewise Hamiltonian system can be written as

X=-4x-10y +1,
{Y=2X+4y (xy)eU?
X =2y -1,
{);:_i " (xy)eU?, (21)
X=-2y+1, 3
, U’
{y:ZX, (x,y)e

Since the determinant of the linear part of each subsystem is 4, 0 and 4, it implies
that system (21) is without equilibrium pointsin U? and has a linear Hamiltonian
center in U' and U®. We verify that system (21) only has one limit cycle in-
tersecting the two parallel lines x=-1 and x=1 at exactly four points (-1,y,),
(-1.v,)»> (Ly;) and (1,y,) respectively, where (y,,¥,,¥s Y,)=(-1,2,1,0)
with y, <y, and Yy, >Y,. Furthermore, we can also verify that this solution
satisfies Equation (9). The limit cycle we obtain is given in Figure 1.

We now proceed to prove the second half of Theorem 1. According to the
conditions of Theorem 1, we consider the other class of planar piecewise systems

as follow:

-10 -8 -6 -4 -2 0 2

Figure 1. The limit cycle of discontinuous piecewise Hamiltonian system (21) having
subsystems with a linear center in U' and U°®, and a subsystem without equilibrium
pointsin U?.
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(=—bx—5y+d . .
{X X0y +d, (x,y)eU',i=12,

y=oXx+by+c,
(22)

{X=—ﬂlhl><+hly+gly (xy)eU?

==Ahx+ Ay +f,
where f,,9,,h,4,b,¢,d;,¢,8,i=12 are all real constants with & =b’ + @?,
o #0, i=12, f,#40, and h #0. The corresponding Hamiltonian func-
tions are:
H, (%, y):—lx2 —bixy—ﬁy2 —cx+d;y,i=12,
2 2
1 h, (23)
Hi (xy) = =S 40"+ by ==y + fix - guy.

If the corresponding piecewise differential system has a limit cycle intersecting

the two parallel lines x=-1 and x=1 at exactly four points respectively, de-

noted as (-1,y;), (-1.y,), (L,y;) and (1,y,) with y; <y, and y;>V,,
then the Hamiltonian functions must satisfy the following relations:
Hi(-Ly,)-H,(-Ly,)=0,

H,(-1 1y,)=

2 (=1y,)=H, (L ys) (24)
Hz( ) 2(—l,y1)=0,

H; (L

5)—H,y(Ly,)=0,
which can be written as the expansions:

(V= ¥2)(2(b, +dy) -5, (yl+y2)):0

4c, +2(b, +d,) Y, +2(b, —d, ) y; = 5, (

3

¥ —¥3)=0,
4¢, +2(b, —d,)y, +2(b, +d,) y1+5( Yi - ¥; )=0,
(2040 = 91) =P (Y + ¥a))(¥s — ¥a) =0

Assume that system (22) is a continuous piecewise system, which means the

(25)

subsystems in U’ and U? are coincide in the line x=-1, and the subsystems
in U? and U® are coincide in the line x =1. Therefore it has
b, =b =Ah,d, =d; =9,,6, =6, =-h,

: (26)
G=C+a,—a=-Ah-a+f,

From (25) and (26), under the precondition that Yy, <Yy,, then we get the ex-

pressions of Y,,Y,,Y, as follow:

2(A4h +9,) Ah-G A A - % + VA (27)

h PR TR T T

where A=(21l'll—gl)2+hl(hly12+2(ﬂihl+gl)yl—4(/112h1 +a2—fl)). Since the

points Y,,Y,, Y, areall continuous with respect to Y, There is a continuum of

Y=m— 7

periodic orbits. It implies that if system (22) is continuous, it has no limit cycles.
So Theorem 1 is proved when (22) is continuous.

Now, assume that system (22) is discontinuous. From (25), we can get
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g2 20td) o _20h-e) (28)

1 h

Substituting the expressions of Yy, and Y, into the second and third equations

of (25) and introducing the notion L, and L,, then one has
L =4(c,h +, (Ah —0,)" +(Ah —,)(b,~d, )1
+20 (b, + )y, ~2(2(A0 - 0)Sh - (0~ )W)y, )
~h?s,(v3 - v2)
=0,

and

L, =4(c,67 =, (B + )"+ 6, (b + ) (b, +0,))

—~26,(6,(b, +d,) =25, (b, +d,))y, (30)
+ 2512 (bz _dz)y4 _51252 (Y22 - yf)
=0.
Let L,=¢L, —h’L, =0, we obtain
Rh. P
=— —_— s 31
Yo=p g V2 (1)

where
I:)o = 512 (ﬂihl - gl)(5z (ﬂ'lhl - gl)+ hl(bz _dz))
+hZ (b +d,)(6, (b, +dy)+ 6, (b, +d,)),
P1 = 51252h1(j’1h1 - gl)'
P, =5, (6, (b, +d,) -5, (b +d,)).

If B =0,ithas A4h —g,=0. Substituting it into L, =0, one has

(32)

Y=Y, = by ; d, which leads to contradictions. Hence, we have P, #0. Then,
1
substituting (31) into (29), we have the following expression of VY,:
_bd VA (33)
5 2R

where
Py =02 (5102 (-by 7+, )+ 6, (61— 4h))

— 6,53 ((bl +dl)hl+§l(gl+j'lhl))2)'

N = (2(b, +d,)WESISN (g, + A 250 ((b, +0,)6 (b, +d,)7))
—4( 610N (~ 0y + A )+ 105, (b + ) 57 ) (4515, (<9, + Ay )
(o2 + (b, —dy )y (<0, + Ay ) + 8, (~ 0 + 4’
~ 267ty (~g, + A (=((b, ~ 0 )0 )+ 25,0, (<9, + 4y ))
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+((by+ ;)07 (b, +d,) 3, + (b +4,) 5, )

+512 (_gl +ﬂ1h1)((b2 _dz)hl +52 (_gl +2’1hl))

+51h12 ((bz + dz )51 _(bl + d1)52 ) )’2)51452hl2 (_gl +Aih1)2 (34)

+h28, (b, +d, )b} ((b, +d,) 8, + (b +d,) 65,

+62 (~0, + 2y ) (b, ~d, ), (-, + 2y ) W0, (b, +,)61) ),
whenever P, #0,andif P, =0, there is at most one solution (y,,y,,ys,y,) of

(24).
When P, #0, given
2(by+d)  b+d,_JA

yli =T " Ya =

5, T Top

yZ;' (35)

there exists at most one solution (yl, Y>,YsYs) of (24) with y, <y, and
Y5 > Y, . As a result, we have proved that there is at most one limit cycle system
(22) can have when it is discontinuous. Then we give an example to illustrate
that there can exist one limit cycle when system (22) is discontinuous.
The Hamiltonian functions are given by the following expressions:
H,(xy)=y-x" -y,
H,(x,y)=—x+y-x* -y, (36)
Hy(x,y)=-y*=x+y,

and the corresponding piecewise Hamiltonian system can be written as

X==-2y+1, 1

) U 1
{Y=2m (x.y)e
X=-2y+1, )

, us, 37
%=N+L (xy)e (37)
{Xy:,Zyﬂ' (x,y)eU®.

Since the determinant of the linear part of each subsystem is 4, 4 and 0, it means
that system (37) is without equilibrium points in U ¥ and has a linear Hamilto-
nian center in U' and U?. We verify that system (37) only has one limit cycle
intersecting the two parallel lines x=-1 and x=1 at exactly four points
(-Lv;)> (-Ly,)> (Ly;) and (1y,) respectively, where the solution

(Y1 Y2, Y21 ¥a)=(-1,2,1,0) with y, <y, and y;>Yy,. The limit cycle is shown
in Figure 2. This ends the proof.

4. Proof of Theorem 2

Considering the symmetry of the system, similar to the way of proving Theorem
1, there are two cases with respect to the class of equilibrium points on each zone
to discuss here. Firstly, we consider the following planar piecewise system:

{)‘( =-Ahx+hy+g,

X, u'i=13,
y:_/’i’lzhix-'—ﬂ’lhiy-‘r fi, ( Y)e
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(x,y)eU?, (38)

X=-b,x-38,y+d,,
y=a,X+b,y+c,,

where b,,c,,d,,,,0,, f,,0,,h,4,i=13 are all real constants with h =0,
f,#A0;, i=13 and &,=b+w,, ®,#0. The corresponding Hamiltonian
functions are
Hi(x,y)= —lﬂfhix2 Jrﬂv,hixy—ﬁy2 +fx-g,y,i=13
2 2
1 0. (39)
Hz(x,y):—Ex2 —bzxy—?zy2 —C,X+d,y.

Assume that system (38) has a limit cycle intersecting the two parallel lines
x=-1 and x=1 at exactly four points, denoted as (-1y,), (-1Y,), (Ly,)
and (Ly,) respectively with y, <y, and Y, >Y,.Then we have

Hl(_]" yl)_ H1(_1x yZ) = 0,

Hz(_ll yz)_ Hz(lv y3)=0, (40)
Hz(lv Y4)_ Hz(_ll Y1):Ov
H3(1, ys)_Hs(L Y4):0-

y

3_] T T T T T T T T T T T T T T T |_
2+ — i

1+ _

0 X
1L |
_2k| P R RS S R L]

-3 -2 -1 0 1 2

Figure 2. The limit cycle of discontinuous piecewise Hamiltonian system (37) having
subsystems with a linear center in U' and U?, and a subsystem without equilibrium

pointsin U?.
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that is
( Vo) (M vy + ¥z ) +2(h +9,)) =0
L (Y2 +Ys) =8, (Y3 — 3 ) +4c, +2d, (y, - ¥5) =0,
(y4+yl)+5( y1)+4cz—2d2( Y, —¥)=0,
(h3(y3 +Y,) = 2(Ah, — g3))(y3 ~Y,)=0
Assume that system (38) is continuous, we get
b,=4h,8,=-h,d,=0,,i=13,
=+ +a,, ¢ =-h+ f,—a,
From (41) and (42), we have the following expressions of Y,,Y,,Y,:

2 4 d,—b A d,-b A
(A4h gl)—yl,y3=#i£:y4=#¢£' (43)
hy 5, % % %

where A=(h, —dz)2 +6, (é‘zyl2 -2(b, +d,)y, —4C2). Since the points Y,,Ys,Y,

are all continuous with respect to Y, there is a continuum of periodic orbits. It

(41)

Y, =—

implies that if system (38) is continuous, then it has no limit cycles.
Additionally, let us consider the case that system (38) is discontinuous. From

(41), the following relations are derived:

2 +0 2 -g

y1=——(ﬂ1hl 1)—yz,y3=—u3ha 3)—y4. (44)
hy hy

Substituting the expressions of y, and Y, into the second and third equations

of (41) and introducing the notion L, and L,, we can obtain that

2
L= 4h3 (bz - dz)(/lah3 - 93)"‘ 4C2h32 +40, (/ish3 - 93)

+2hZ (b, +d, )y, —2h (b,h, —d,h, + 26, (h, - 9;)) v,

~ &N (3 -v2)
=0,

(45)

and
L, =—4h (b, +d,)(4h +9,) +4c,h’ — 45, (A4h + 91)2
+2hZ (b, —d, )y, —2h (b, +d, ) +2(A4h +6,)6,) Y, (46)
—&n7 (3 -vi)
=0.
Let L, =h’L, —hiL, =0, we obtain

R.B
= — —_— s 47
Y4 P + P Y, (47)
where
Po:h1h3( bz_d Ashs 93)+h(b +d )(ﬁ'lhl"'gl))
2 2

+52( (ﬂsh3 3 +h3 (ﬂihl-i_gl) )’ (48)

hlz ( S, (Ahy —93) +hy (b, —d ))

hhi (hy (b, +d;)+6, (Ah +9,)).
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If B =0,ithas &,(A4h,—g,)+hy(b,—d,)=0. Substituting it into L;=0, one
Ah +0,

has y, =y, =——+—=, which leads to contradictions. Hence, we have B, #0.
1 2 h1 1

Then, substituting (47) into (45), we have the following expression of Y,:

2+ T

+ h o 2m (49)

where
P, =&, ((hlh32 (h1(b2 +d, )+, (4h + 91)))2
—(hth (8, (Ahy — g5 ) +hy (b, - d, )))z )

A’:(2h§(m2h3(52(/13h3—g3 )+, (b, =, )))’ (b, +d,)

—2(1?hy (8, (Aoh — 65)+ hy (b, —d, ))) (mhg (hy (b, +d,)
+ 8, (A +9,)))h (s (b, —d, ) + 26, (4 — g,)
+2(hlh( (b, ~d, )(h gs>+h (b, +d,)(4h +3,))

+0, (1 (Zhy = ;)" +15 (4 + )" ) (hé (hy (b, +d)
+0,(,+.))) 8,08 ) - 46,02 (¢ (b (b, +,)+5, (4, + )
_(hl2h3(52(/13 -9;)+hy(b,—d,) )(( ,—0s)

+hy (b, =, )))" (4h, (b, —d, ) (Auhy — g )+ 4ch? +452(/13h3—gs)2)
—2(?hy (8, (Ahy = g3) + hy (b, — d, )) ) (s (b, o)
+28, (A, = 95)) (o (hy (b, =, )(Aahy = 9) + hy (b, + 0, ) (A, + )

5,12 (s = 95"+ 2 (A + 0,7 ) )+ 8,02 (e (ny (b, — ) (e, — 0,)

by (0, ) (A )+ 0 (1 (- 0u) 15 (a0 ) |

whenever P,#0,andif P, =0, there is at most one solution (y,,y,,ys,y,) of
(40).
When P, #0, given
2(Ah+9) AR

== . = = y 51
Yo h, Yau h 2P =Yor (51)

there exists at most one solution (y,,y,,Ys,y,) of (40) with y, <y, and
Y5 >Y, . Thus, we have shown that there can be at most one limit cycle when
system (38) is discontinuous.

To finish this part of proof, now we provide an example to show that system
(38) can have exactly one limit cycle when it is discontinuous. The Hamiltonian

functions are given by the following expressions:

H, (x,y)=2y* -2x-2y,
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H,(x,y)=x-y+x*+y* -1,

(52)
Hy(x y)=y*+x-V,
and the corresponding piecewise Hamiltonian system can be written as
X=4y-2,
{ . y (x,y)eU?,
y=2
X=2y-1, )
x,y)eus, 53
{y:-zx—l, (y)e %)
X=2y-1,
{ . Y (x,y)eU?,
y=-1

Since the determinant of the linear part of each subsystem is 0, 4 and 0, it implies
that system (53) is without equilibrium points in U' and U® and has a linear
Hamiltonian center in U?. We verify that system (53) has only one limit cycle in-
tersecting the two parallel lines x=-1 and x=1 at exactly four points (—1,y,),
(-Ly,)> (Ly,) and (1y,) respectively, where (y,,y,,y;Y,)=(-1210)
with y, <y, and Y, >Y,.In addition, we can check that this solution satisfies

Equation (41). And the limit cycle we obtain is given in Figure 3.

y
3f| ' ' ' ' ]
2L L ’
i’ :
0:— 1
-1+ L, ]
2| |

-4 -3 -2 -1 0 1 2

Figure 3. The limit cycle of discontinuous piecewise Hamiltonian system (53) having a
subsystem with a linear center in U?, and subsystems without equilibrium points in U’
and U°.
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Now start to prove the latter part of Theorem 2. Under the conditions of

Theorem 2, we consider the following planar piecewise system

X=—-Ahx+hy+g, )

IZI |y gl (X,y)eU',i=1,2,
y=-Ahx+Ahy+f, (54)
Xx=-hb,x-0o d,,

{. XY TG (x,y)eU?,
Y=o X+by+c,,

where b,,C;,d;,05,6, 1,0, 0, 4,i=12 areall real constants with h, =0,
f.#40;, i=12 and &,=b’+@?, @, #0. The corresponding Hamiltonian

functions are:
H; (%, y)z—%/ifhix2 Jrﬁ,,hixy—%y2 +fx-gy,i=12,

1 0. (55)
H, (X, y):—Ex2 —b3xy—?3y2 —CX+d,y.

If system (54) has a limit cycle intersecting the two parallel lines x=-1 and
x=1 at exactly four points respectively, denoted as (-1,y;), (-1y,), (1Y)
and (Ly,) with y,<y, and y,>Y,, then the Hamiltonian functions must

satisfy the following relations:
Hy(=1y)-H (-1 Y,)=0,
Hz(_la Y2)_ Hz(la Y3):0’
Hz(lv y4)_ Hz(_lv yl) =0,
H,(Ly;)-H;(Ly,)=0,

(56)

which can be written as the expansions:
(Y= ¥2)(2(4h +9,) +h (v, +y,)) =0,
4%, +2(Ah, +9,) Y, +2(ALh, —9,) ys +hy (3 - ¥ ) =
4%, +2(4h, = 0,)Ya +2(4h, + 0,) Y —hy (Vi - ¥ ) =
(2(dy =by) =8 (Y5 +¥a))(¥s ~ ¥a) =O.
Assume that system (54) is continuous, it has
b,=4h,,d;=9,=0,,5, =-h =-h,,
=2, f=1,c,==Ah,—a,+f,

From (57) and (58), under the precondition that Yy, <Y, , we get the expressions
of ¥,,Y,,Y, asfollow:

_ 2(A4h +g,) Cd,-b, VA dy-b A
Yo=Y =t —— Yy = ——F (59)
hl 53 63 53 63
2 2 . .
where A=(4,h,—g,) +h2(h2y1 +2(A4h, +9,) Y, +4f2). Since the points

Y,,Ys Y, are all continuous with respect to Y, there is a continuum of period-

0
(57)
0

(58)

ic orbits. It means that if system (54) is continuous, it has no limit cycles.
Now, assume that system (54) is discontinuous. From (57), one can obtain
that
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__2(ﬂ1hl+91)_ 2(d3_b3)_
V1= —hl Y2: Y3 = 5, Y- (60)

Substituting the expressions of Y, and Y, into the second and third equations

of (57) and introducing the notion L, and L,, then one has

and

L :4(532 fz +53(ﬂ'zh2 —92)(d3 _ba)_hz(d3 _bs)z)

+ 2(12h2 + 92)532)/2 - 253 (53 (lzhz - gz)_2h2 (ds _bs)) y4 (61)
+h,3 (3 - i)
=0,

L, :4(hlz f, _hl(ﬂlhl + gl)(ﬂzhz + 92)""h2 (ﬂ’lhl + 91)2)

+2hlz(/12hz - gz)y4 _2hl(hl(ﬂ’2h2 + gz)_zhz(ﬂihl + gl)) yz (62)
+heh, (v3 - i)
=0.

Let L,=h’L, —&7L, =0, we get

where

R.B
LI RV 63
Ya R Plyz (63)

P, =2 (8,(%h, ~ 9,)(ds =by) ~h, (dy ~b,)°)

+02 (0 + 0,) (Ao + 92) My (A + 9,7 ), -~
R =76 (S (4h, ~g,) ~h, (d; =by)),
P, =65 (h (Ah, +9,) ~hih, (40 +,))-

If B =0,ithas &(4h,—9g,)—h,(d;—b,)=0. Substituting it into L; =0, one

has y, =y, =

, which leads to contradictions. Hence, we have P, #0.

_Ah+g
h

Then, substituting (63) into (61), we obtain the following expression of Y,:

where

yh:_&h+m+1§

h 2R (65)

P, =ho; ((hfé's (53(/12h2 ~g,)—h,(ds—b, )))2
_(532(hlz(42h2 +9,)—hh, (A4h + 91)))2),

A= ((2hl253 (53 (ﬂzhz - gz)_ h, (ds _bs))z (ﬂth + 92)532

—25,h’5, (53 (Ah,—g;)—h, (ds _b3))532 (hlz (ﬁzhz + gz)
- hlhz (ﬂ‘lhl + gl))(63 (/Lzhz - gz)_2h2 (ds _bs)))z
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_4h,5? (hf53 (5, (o, =g, ) by (dy —by))°
55 (hlz (Zh, +9,) =, (4h, + gl))2 )<4hlz§3 (53 (A —9,)
_hz (ds _bs))z (532 fz +53 (ﬂzhz _gz)(d3 _b3)_h2 (ds _b3)2)

=26, (8, (4ah, = 0,) (05 ~b,) ~h, (d; =B, )’
+02(h (40 +,)(Zh, +0,)-h hl+gl)2) 5 (7, - ;)
_hz(ds_bs))(‘%(’lzhz_%)_ z(ds_bs))

~ 070 (6, (2o, - 9 ) (A —by) =, (dy —b,)°) (66)

07 (R (4 +0.)(h, +0,) by (2 -0, ],

whenever P,#0,andif P, =0, thereisat most one solution (y,,y,,y;,y,) of
(56).
When P, #0, given
2(b1 + dl) b1 + d1 \/E

Yis =T_ You = F—=Yors (67)

there exists at most one solution (y,,y,,Ys,y,) of (56) with y, <y, and
Y, > Y, . Therefore, we have proved that there can be at most one limit cycle
when system (54) is discontinuous. In addition, an example of (54) with exactly
one limit cycle is given below.

The Hamiltonian functions are given by the following expressions:

H,(xy)=y" -x-vy,
H, (% y)=y* +x-y, (68)
Hy (X y)=x-y+x*+y?

and the corresponding piecewise Hamiltonian system can be written as

(=2y—1
{X y " (x,y)eUt,

y=1

X=2y-1,
{yz_)ll (x,y)eU?, (69)
x=2y-1,
{Y=—2x—1 (xy)eU?,

Since the determinant of the linear part of each subsystem is 0, 0 and 4, it
means that (69) is without equilibrium points in U® and has a linear Hamilto-
nian center in U' and U?. We verify that system (69) only has one limit cycle
intersecting the two parallel lines x=-1 and x=1 at exactly four points
(-1v1)> (-1y,), (1,y;) and (1,y,) respectively, where the solution
(Y1, Y20 Y3 ¥4)=(-1,2,1,0) with y, <y, and y,>Y,. And the limit cycle is
shown in Figure 4. This ends the proof.
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y
3f ' e | h
2} ]
1 ]
0_- 1%
_1: T
5
-4 -3 -2 -1 0 1 2

Figure 4. The limit cycle of discontinuous piecewise Hamiltonian system (69) having a
subsystem with a linear center in U?®, and subsystems without equilibrium points in U*
and U?.

5. Conclusion

We have studied a class of planar piecewise Hamiltonian systems with a center
in two zones and without equilibrium points in the other zone separated by two
parallel straight lines and the maximal number of limit cycles it can have. Ac-
cording to the type of equilibrium point for each subsystem, we discussed this
problem in two cases. When these systems are continuous, it proved that there
are no limit cycles for each case. In the other hand, when the systems are discon-
tinuous, we show that they can have at most one limit cycle in each case. Subse-
quently, we discussed another class of planar piecewise Hamiltonian systems
with a center in one zone and without equilibrium points in the other zones se-
parated by two parallel straight lines in a similar way. In addition, we give the
examples of the systems with exactly one limit cycle and provide their figures.
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