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Abstract 
The t-distribution has a “fat tail” feature, which is more suitable than the 
normal probability density function to describe the distribution characteris-
tics of return on assets. The difficulty of using t-distribution to price Euro-
pean options is that a fat tail can lead to a deviation in one integral required 
for option pricing. We use a distribution called logarithmic truncated t- 
distribution to price European options. A risk neutral valuation method was 
used to obtain a European option pricing model with logarithmic truncated 
t-distribution. 
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1. Introduction 

An option is a contract that gives its owner the right to purchase (call option) or 
sell (put option) a fixed number of assets of a specific common stock at a fixed 
price (exercise price) on or before a specified date (expiration date) (see Vazquez 
[1]). Options that can only be exercised on the expiration date are called Euro-
pean options, while American options can be exercised at any time before the 
expiration date. Option pricing is one of the key issues in financial engineering 
research. It is not only used for investment decision-making, but also for the en-
tire chain of enterprise operations, such as production pricing, marketing, ma-
terial and accessory supply, after-sales service, and even for macroeconomic re-
search (see Song [2]). 

The European option pricing model is the basis for pricing other financial de-
rivatives. Therefore, providing a reasonable pricing method for European op-
tions is of great significance. Davis et al. [3] considered the pricing of European 
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options when the underlying asset needs to be charged transaction fees during 
the trading process. They proved that the value function of this problem is a 
unique viscous solution of a fully nonlinear quasi-variational inequality under 
different boundary conditions. Wu [4] provided a fuzzy pattern of Black-Scholes 
formula and the corresponding put-call parity relationship when the related in-
put parameters are fuzzy values. Based on the model proposed by them, financial 
analysts can be allowed to select any European option price for later usage with 
an acceptable confidence level of belief. The fuzzy price of European options was 
also proposed in this study of Wu [5] using the fuzzy set theory concept of “Res-
olution Identity”. Under these assumptions, the European option price will be-
come a fuzzy number. When a continuous-time Markov chain with a limited 
number of “economic states” modulates the dynamics of the short rate and vola-
tility of the underlying price process, Mamon et al. [6] offered closed-form solu-
tions for European option values. Fang et al. [7] provided a novel European op-
tion pricing method (called COS method) based on the Fourier-cosine series. By 
utilizing the equivalent martingale measure transformation method, Lin et al. [8] 
considered the pricing issue for European options for two underlying assets with 
delays Numerical analysis showed that there is a greater chance of a price dif-
ference between delayed options and Black Scholes options as the delay leng-
thens. He et al. [9] proposed a new random volatility model. By assuming that 
the long-term average of volatility in the Heston model is random, a closed pricing 
formula for European options was derived. Empirical research showed that the 
current model can generally obtain more accurate option prices than the Heston 
model. Kil and Kim [10] used the scale version of the double-mean-reverting 
model and got the closed-form formula for European option pricing. Nzokem 
[11] studied a novel approach for pricing European option, and he obtained the 
corresponding pricing model based on the stochastic volatility method. The 
above literature did not investigate which distribution of underlying securities’ 
returns is most realistic. 

In order to price options more accurately, we must construct a reasonable 
underlying asset price model. Black et al. [12] assumed that the asset price fol-
lows the standard Geometric Brownian motion model and obtained a partial 
differential equation, called B-S equation, to describe the option price function. 
By solving the partial differential equation, they obtained an analytical solution 
for the option pricing model. Later empirical research showed that return on as-
sets has the characteristics of “peak and fat tail”, and the standard Geometric 
Brownian motion model of asset price return is inconsistent with the actual 
characteristics of market prices (see Mandelbrot [13], Cassidy et al. [14], Fam 
[15], Zhu and Zhang [16]). To explain the fat tail, Lim et al. [17] studied the 
pricing of currency options using a generalized student distribution. The ge-
neralized t-distribution they adopt is a function of a distribution multiplied by a 
function of the form. Cassidy et al. [14] believed that stock returns fit the 
t-distribution, and then used the t-distribution to price European options. 
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Although the student distribution has the feature of “fat tail” and is more 
suitable for asset returns than the normal distribution, the difficulty of pricing 
options with t-distribution is that fat tail will lead to a deviation in an integral 
required for option pricing. In this paper, we consider a new distribution, called 
logarithmic truncated t-distribution, to describe stock returns, and use risk neu-
tral valuation method (see Hull [18]) to provide a stochastic model for stock 
prices, and then price European options, and then obtain a European call option 
pricing model based on logarithmic truncated t-distribution. Finally, we use the 
put-call parity relationship to find the price of European put option. 

2. Stock Prices Model 

As we all known, there are a close correlation between the value of European op-
tion and the underlying stock prices. A reasonable stock prices model is helpful 
to estimate the option value more precisely. A new probability distribution needs 
to be defined in order to create the stock price model. 

Definition 2.1. A continuous random variable follows a truncated t-distribution, 
if it has a probability density function as follows:  
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( ), , ,f x n α β  is called the probability density function of X with n degrees of 
freedom.  

For simplification, we can rewrite the above probability density function (2.1) 
as follows:  
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Definition 2.2. If X follows a truncated t-distribution, then eXY =  is called 
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be a logarithmic truncated t-distributed.  
We denote the strike prices by the symbol K, and the expiration data by T. The 

stock price at the time t is denoted by tS . Let ( ) ( ), , , , , , d
x

v x n f t n tα β α β
−∞

= ∫  
be the distribution function of X with n degrees of freedom. We suppose the 
stock price satisfies  
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where u is the compound rate of stock return, σ  is the volatility of stock return 
and , ,nα β  can be obtained by historical data. 

tW  is defined as a random variable, with the probability density function 
( ), , ,f x n α β .  

 ( )ln .T
t

t
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S

σ
 
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               (2.3) 

From Equation (2.3), the stock price at time T can be written as  

 ( )e .tu T t T tW
T tS S σ− + −=                     (2.4) 

3. European Option Pricing Model 

Risk neutral valuation approach can be used to price European call option. In a 
risk neutral world, the returns of all assets equal the interest rate r. In the risk 
neutral world, the stock price can be drove by Equation (3.5), which is similar to 
Equation (2.4).  

 ( )e ,u T t T tW
T tS S σ− + −=                     (3.5) 

where u  is the compound rate of stock return in the risk neutral world, and 

TS  is the modified stock price at the time T. The expected value of TS  in the 
risk neutral world is given as follows:  
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The above equation can be simplified to the following form  
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In the risk neutral world, the following equation is established.  

 ( ) ( )e .r T t
T tE S S −∗ =                         (3.7) 

Comparing Equation (3.6) with Equation (3.7), we have  
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From Equation (3.8), we get  
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Let tC  be the option value at the time t. The cost of an European call option, 
calculated at the time of expiration T, is ( )t TC E S K

+ = −  
 . According to the 

risk-neutral valuation approach, tC  can be written as  
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From Equation (3.9), we have  
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      (3.10) 

Considering the inequality 0TS K− > , and using the model given by Equation 
(3.5), we obtain  

 ( )e 0u T t T tW
tS Kσ− + − − >                   (3.11) 

Solve the inequality (3.11), so that 
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(3.10) can be rewritten as  
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If 2d x> , from Equation (3.12), the option value at time t is zero, i.e., 0tC = . 
In fact, when 2d x> , we get the inequality ( )2ex T t u T t

tK S σ − + −> . That is to say, 
K exceeds ( )2ex T t u T tσ − + −  times tS . Since the value of the European call option 
is approximated zero as K is large enough, 0tC =  accords with the actual fi-
nancial meaning. 

3.1. The Case of d xβ < < 2  

By Equation (2) and Equation (12), we get the European call option value at the 
time t, which can be calculated by using the following equation:  
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Simplifying the above formula, we have  
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3.2. The Case of dα β≤ ≤  

If dα β≤ ≤ , substituting Equation (2.2) into Equation (3.12), we have  
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3.3. The Case of x d α< <1  

If 1x d α< < , the first integral of the Equation (3.12) can be calculated by using 
the following method 
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Then the first integral of Equation (3.12) becomes  
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Then we get  
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3.4. The Case of d x< 1  

When 1d x< , the first integral of Equation (3.12) can be simplified as follows:  
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When 1d x< , the second integral of Equation (3.12) equals the integral of the 
probability density function ( ), , ,f x n α β  from −∞  to +∞ . That is  
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d

f x n x f x n xα β α β
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= =∫ ∫  

Since the two integrals above can be solved, the option value at the time t can 
be calculated by using the following formula:  

 ( )( ) ( ) ( )
1 3 3e e .u r T t r T t

t tC S A A A K− − − −= + + −            (3.18) 

3.5. Pricing for European Call and Put Options 

When the parameters , , , , ,n r T tα β  and the volatility of stock prices σ  are 
given, the integrals A1, A2, A3, B1, B2, C1, C2, C3, D1, D2 and D3 are easy to be cal-
culated. The expiration date T, the present moment t and the interest rate r al-
ways are predictable, and the values of the parameters n, , ,α β σ  can be obtain 
by using data mining technology. 

According to Equations (3.13) (3.14) (3.17) and (3.18), the value of the Euro-
pean call option at the time t can be given as follows:  
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We use put-call parity relation to find the price of the European put option 
with the same parameters as earlier. The put-call parity relation can be written as  

 ( )e .r T t
t t tP C S K− −= − +                       (3.20) 

Substitute Equation (3.19) into Equation (3.20), we obtain the value of the Eu-
ropean put option at the time t, namely  
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
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
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
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 + + − ≤

 

4. Conclusions 

Previous empirical tests have shown that returns do not follow a Gaussian dis-
tribution. Through data fitting, it can be found that its true distribution has a fat 
tail feature. In this paper, we assumed that stock returns follow a logarithmic 
truncated t-distribution and proposed a stock price model. By discussing the 
parameters, we got the mathematical model of the value of European call option. 
Finally, we used the put-call parity relationship to find the value of European put 
option. 

However, we only studied the European option when the underlying stock 
returns follow a logarithmic truncated t-distribution. Many issues have not been 
resolved yet. Implied volatility parameters may change, interest rates may fluc-
tuate, and option sensitivity may exhibit unexpected behavior. These risks may 
not be the “cost” of maintaining positions, but they can affect pricing and play 
an important role in option trading. In addition, it is also worth studying how to 
price other financial derivatives such as American options and exotic options 
under the assumption of logarithmic truncated t-distribution. 
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