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Abstract 
Zeno’s paradoxes are a set of philosophical problems that were first intro-
duced by the ancient Greek philosopher Zeno of Elea. Here is the first attempt 
to use asymptotic approach and nonlinear concepts to address the paradoxes. 
Among the paradoxes, two of the most famous ones are Zeno’s Room Walk 
and Zeno’s Achilles. Lie Tsu’s pole halving dichotomy is also discussed in re-
lation to these paradoxes. These paradoxes are first-order nonlinear pheno-
mena, and we expressed them with the concepts of linear and nonlinear va-
riables. In the new nonlinear concepts, variables are classified as either linear 
or nonlinear. Changes in linear variables are simple changes, while changes in 
nonlinear variables are nonlinear changes relative to their asymptotes. Con-
tinuous asymptotic curves are used to describe and derive the equations for 
expressing the relationship between two variables. For example, in Zeno’s 
Room Walk, the equations and curves for a person to walk from the initial 
wall towards the other wall are different from the equations and curves for a 
person to walk from the other wall towards the initial wall. One walk has a 
convex asymptotic curve with a nonlinear equation having two asymptotes, 
while the other walk has a concave asymptotic curve with a nonlinear equa-
tion having a finite starting number and a bottom asymptote. Interestingly, 
they have the same straight-line expression in a proportionality graph. The 
Appendix of this discussion includes an example of a second-order nonlinear 
phenomenon.  
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1. Introduction 

We discuss Zeno’s paradoxes and Lie Tzu’s (列子) Eastern wisdom using the 
nonlinear concepts of Alpha Beta (αβ) math. First, we introduce the basic con-
cepts and the equations for the new nonlinear math followed by applying them 
to explain Zeno’s room walk (dichotomy) and Zeno’s Achilles. In the discussion 
section, we explore many flaws of traditional math teaching and detail the rea-
sons why we need the new nonlinear mathematical concepts to fully explain Ze-
no’s paradoxes and Lie Tzu’s philosophy. 

Zeno’s Room Walk (The Dichotomy) and Zeno’s Achilles are first order non-
linear phenomena. We also include one example on second order nonlinear phe-
nomena using enzyme activity/fructose concentration relationship in the Ap-
pendix [1]. 

1) Basic concepts and equations in the alpha beta (αβ) math 
First, let us introduce three key symbols for this new math: θ for 10, i.e., θ = 

10; ϕ for nonlinear zero or bottom asymptote, and q for 10-based logarithmic, 
i.e., q = log. Suppose we have two variables, an independent variable X and a 
dependent variable Y. The traditional math uses XY = {X and Y} with inclusion 
of X and Y, while the (αβ) math uses αβ = {α (X, Xu, Xb} and β (Y, Yu, Yb)}, 
with inclusion of Xu and Yu as the upper asymptotes of X and Y, and Xb and Yb 
as the bottom asymptote of X and Y. In general, the X and Y may be used as is 
for the linear situation or may need to extend their matrix to include their asymp-
totes for the nonlinear situations. In the (αβ) math, there are two types of zeros: 
linear zeros and nonlinear zeros. Linear zero can be touched, or crossed over by 
the linear numbers, while the nonlinear zero ϕ = (0) can be approached by the 
nonlinear numbers but cannot be touched or crossed over by these nonlinear 
numbers [2] [3] [4].  

When extending the nonlinear numbers for calculations, we need to measure 
the nonlinear variables relative to their asymptotes and call these measurements 
“the nonlinear face values”, such as (Yu − Y), (Y − Yb), and (qYu − qY). Subse-
quently, we measure the nonlinear change of nonlinear variables as the nonli-
near change of nonlinear face values. How to operate the nonlinear change? The 
nonlinear change is a nonlinear logarithmic transformation of the nonlinear face 
value followed by taking a change. By designating “d” as a change, C as an 
integral constant, and K as a proportionality constant, the differential equation 
of αi versus βj is dαi = Kdβj, meaning the change of αi is proportional to the 
change of βj [2] [3] [4]. Their specific differential and integration equations are 
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given in Equations (1) to (3) and Equations (1a) to (3a), where C is the integral 
constant or the position constant, which dictate the position of straight lines in 
the graphs. The Equations (1a) to (3a) are two-parameter equations having pa-
rameters K and C.  

In all cases, the nonlinear number Y has at least one nonlinear zero as its bot-
tom asymptote. For example, there is a bottom asymptote Yb associated with the 
nonlinear number Y in Equation (3). In Equation (2), there are two asymptotes 
Yu and Yb associated with the nonlinear number Y; however, because the Yb are 
mostly nonlinear zero, for convenience we omit it in Equation (2) and simply 
use Y as whole in the equation. 

dY KdX= −                          (1) 

( )( )d q Yu Y KdX− = −                          (2) 

( )( )d q Y Yb KdX− = −                          (3) 

Y KX C= − +                      (1a) 

( )q Yu Y KX qC− = − +                     (2a) 

( )q Y Yb KX qC− = − +                     (3a) 

For simple linear situations, the linear change of X and Y are dX and dY. For 
nonlinear cases, the nonlinear change of nonlinear X and nonlinear Y are 
d(q(nonlinear face value)), where we take the nonlinear logarithmic transforma-
tion of the nonlinear face value followed by taking the change. For a common 
comparison of two variables, we may have the following five comparisons ex-
pressible as the following items: 1) the change of linear Y is proportional to the 
change of linear X, 2) the change of nonlinear Y is proportional to the change of 
linear X, 3) the change of nonlinear Y is proportional to the change of nonlinear 
X, 4) the change of nonlinear Y of a second order of nonlinearity is proportional 
to the linear change of linear X, and 5) the change of nonlinear Y of a second 
order of nonlinearity is proportional to the change of nonlinear X. In this article, 
we discuss only the items (1) and (2) and will mention items (3) to (5) in the 
discussion section and Appendix C.  

2) Simple linear equation and graph in linear cases 
Equations (1) and (1a) describe the general linear-by-linear phenomena, 

where the change of linear Y is proportional to the change of linear X, as shown 
in Figure 1. The three straight lines indicate the change of Y is proportional to 
the change of X (i.e., Equation (1)) and have two parameters K and C in Equa-
tion (1a). The three K (−1.5, −3, and 3) give the directions and slopes of the 
straight lines, and the three C (64, 0, and 30) give the position of the straight 
lines. All three lines can extend continuously forever in two directions and pass 
through the linear zero. 

3) Graphical derivation/description of the nonlinear equations 
One virtue of the Alpha Beta (αβ) math is the application of continuous 

asymptotic curves to describe and derive the equations for expressing the two- 
variable relationship. The characteristic of the continuous asymptotic curves is  
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Figure 1. Linear by linear phenomena. Linear (of Y variable) by linear (of X variable). 
 
the continuous monotonic increase or decrease of the nonlinear numbers with 
the continuous change of the slope of the curves. The continuous monotonic in-
crease or decrease implies the nonlinear numbers are cumulative or demulative 
(opposite to the cumulative). Now, let us use two figures to derive the differen-
tial equations. 

Figure 2 shows the first order asymptotic curve, it is a plot of continuous 
nonlinear numbers Y versus linear X in a linear-linear scale, where the nonlinear 
variables Y start from the origin (Note: see more explanation in discussions sec-
tion) and the curved continuous line is asymptotically approaching the upper 
asymptote, Yu. The curve is an asymptotic convex curve. The nonlinear num-
bers Y here is a cumulative number. When measuring the change of nonlinear 
numbers, we measure the change relative to their asymptote, i.e., we measure the 
(Yu − Y), and call it a nonlinear face value. At point A, the nonlinear face value 
is (Yu − Y1); at point B, the nonlinear face value is (Yu − Y2). The change of X is 
a linear change. By using “d” to represent the change, we simply designate the 
change of X as dX. The change of nonlinear numbers is a nonlinear change, 
where we need to take a nonlinear logarithmic transformation to get q(Yu − Y) 
and designate the change of nonlinear face value as d(q(Yu − Y)). In the graph, 
we see that as the solid double arrow increases (i.e., move from point A to point 
B), the dashed linear double arrow decreases, or vise visor. That is the solid ar-
rows are negatively proportional to the dashed double arrows. In equation form 
we get Equation (2), indicating that the nonlinear change of Y is negatively pro-
portional to the linear change of X, where K is the proportionality constant.  

Figure 3 gives the plotting of continuous nonlinear numbers Y versus linear 
numbers X in a linear-linear scale. The nonlinear numbers Y here are demula-
tive numbers. It starts from the origin at X = 0 (Y = 30) and decreases conti-
nuously toward a bottom asymptote (Yb) as the X increases. The curve is an 
asymptotic concave curve. Its bottom asymptote is a nonlinear zero. The nonli-
near numbers Y can approach the nonlinear zero but will never touch or cross it. 
That is, this nonlinear zero is never a part of the nonlinear numbers Y. In Figure 
3, the nonlinear face value is the nonlinear numbers Y relative to its bottom 
asymptote, i.e., (Y − Yb) (Yb = ϕ), and the change of nonlinear numbers Y is the  
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Figure 2. First order asymptotic curve (with cumulative Y). Cum. X versus cum. Y, linear 
by linear scale. 
 

 

Figure 3. First order asymptotic curve (with demulative Y). Cum. X versus Dem. Y, linear 
by linear scale. 
 
nonlinear change of the nonlinear face value. In this nonlinear change, we need 
to apply a nonlinear logarithmic transformation to get q(Y − Yb) and then de-
signate the change of nonlinear face value as d(q(Y − Yb)). In the graph, we see 
that as the solid double arrow decreases the dashed double arrow increases, or 
vise visor. In equation form we get Equation (3), indicating that the nonlinear 
change of Y is negatively proportional to the linear change of X, where K is the 
proportionality constant.  

4) Zeno’s room walk (or the dichotomy)—linear walk and nonlinear walk 
 

 
 

In the fifth century B.C., pre-Socratic Greek philosopher Zeno of Eleatic (Ze-
no of Elea; Ζήνων ὁ Ἐλεᾱ́της) argued that a person could never cross a room and 
bumps his nose into the opposite wall. Zeno pointed out that to cross the room 
one would first need to cross half the distance of the room. Then, half the re-
maining distance. Then half of that distance. And so forth. But everyone knows, 
one can cross a room and bump one’s nose into the opposite wall. This is often 
called Zeno’s paradox. But is it really a paradox? No, it is only a simple nonlinear 
mathematical argument. A complete argument is that a person can have two 
types of strides: A linear walk and a nonlinear walk. When a person is allowed to 
walk freely across the room without any restriction, they will cross the room and 
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bump their nose into the wall in a single stage. This casual stride is a linear walk 
which can be represented by a single straight line where one starts from one end 
and reaches other end in one stage regardless of the size and number of steps.  

To illustrate the concept more concretely, simply use numerical values and 
graph the results. For example, suppose the wall-to-wall distance in a room is 64 
meters. When a person walks from one wall at 64 meters toward the other wall 
at 0 meters, no matter what the size of the step is, they will reach the other wall 
at 0 meters, as shown in the linear line above. 

A person with a small step takes 480 steps to reach the other wall at 0. Another 
person with a big step takes 80 steps to reach the other wall at 0. A better way to 
express this linear walk is to represent them by a two-dimensional graph, as 
shown in Figure 4, where the distance Y is plotted versus number of steps X. Both 
linear walks can be completed in a single stage to reach 0 and are represented by 
two straight lines with two linear equations.  

Now consider Zeno’s mathematical joke abstracting in a nonlinear fashion: 
that as a person walks across a room, he (or she) walks in stages, each stage be-
ing half the distance remaining to be walked. The counting of stages is 0, 1, 2, 3, 
4… forever. These are linear numbers obeying the accounting rule of universal 
linear numbers by adding 1 in sequence. Imposing “stages” along with imposing 
corresponding “half the distance” is imposing nonlinear restriction and nonli-
near rule. This nonlinear “stride” can no longer be described by a single dimen-
sional straight line but needs to be represented by a two-dimensional graph. The 
nonlinear “stride” is a nonlinear (of distance) by linear (of stages) phenomenon, 
where the nonlinear change in distance is negatively proportional to the linear 
change in the number of stages (the number of steps per stage does not matter). 
In the nonlinear change of nonlinear numbers (the distance), the nonlinear dis-
tance is measured from asymptote, either an upper asymptote or a bottom 
asymptote. 

Now, let us use numerical values for illustration: starting with 64 meters at 
stage 0; halving the distance to the opposite wall for each stage. The first stage is 
32 meters. The second stage is 16 meters, and so on. Plotted in Series 1 in Figure 
5, it is a nonlinear phenomenon showing an asymptotic concave curve. The Y 
numbers, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125… are nonlinear numbers having  
 

 

Figure 4. Linear walk. 
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Figure 5. Nonlinear walk. 
 
continuity, and are associated with bottom asymptote Yb = ϕ (0), which cannot 
be touched or reached; their corresponding X numbers, 0, 1, 2, 3, 4, 5… are li-
near numbers, also having continuity, but its 0 (starting zero) is a reachable li-
near zero. For every X there is a corresponding Y. X is non-terminating and for-
ever continuously increasing, so does the Y which is forever continuously de-
creasing. The change in distance is a nonlinear change measured relative to the 
bottom asymptote Yb, Yb = ϕ. The distance one walks is approaching ϕ, but 
never reaches this nonlinear ϕ. The line in series 1 is demulative (opposite of 
cumulative) of Y versus cumulative of X. 

Series 2 in Figure 5 is a case where the person walks from the wall at 0 meters 
toward the other wall at 64 meters. In this case, the upper asymptote Yu is 64. In 
Figure 5, the line in series 2 is the cumulative numbers of Y versus the cumula-
tive numbers of X. The line is an asymptotic convex curve where the line can 
approach the asymptote Yu, but can never touch it, because the asymptote Yu is 
never a part of the Y. Meanwhile, the curve is supposed to start from the nonli-
near zero ϕ, which is also not touchable by the curve and never be a part of the 
curve. However, this nonlinear zero can (temporally) be represented by a surro-
gate linear zero in a linear graph (see more explanation in discussions section).  

A graph with a plot of cumulative and/or demulative numbers of Y versus 
cumulative numbers X is called a primary graph. For a nonlinear phenomenon 
of higher order of nonlinearity, there may be more types of graphs, including 
primitive graph, primary graph, leading graph, and proportionality graph.  

For comparing nonlinear change of nonlinear numbers with linear change of 
linear numbers, we need to use nonlinear scale for nonlinear numbers and linear 
scale for linear numbers. To do this we use the logarithmic scale as standard 
scale for nonlinear numbers versus the common linear scale as standard scale for 
linear numbers. In series 1 the nonlinear change in distance, denoting as (Y − 
Yb), is negatively proportional to the linear change in stages X. Thus, we first 
plot (Y − Yb) versus X on a Cartesian coordinate graph to show a nonlinear line 
for series 1 followed by converting the y axis from linear into logarithmic scale 
to obtain a plot of (Y − Yb) versus X on a semi-log graph which yields a straight 
line with negative slope, as shown in Figure 6. This is a proportionality graph.  

On the other hand, in Series 2, we can first plot (Yu − Y) versus X on a Carte-
sian graph to show a nonlinear line followed by converting the y axis from linear  
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Figure 6. Proportionality plot. 
 
into logarithmic scale to obtain a plot of (Yu − Y) versus X on a semi-log graph, 
which yields the same straight line as series 1. The straight lines in Figure 6 
represent the change of nonlinear true-value q(Y − Yb) or q(Yu − Y) is nega-
tively proportional to the change of linear true-values X (as shown in Equations 
(2), (2a), (3), and (3a)).  

In Figure 6, the straight-line decreases as X increases. Ideally, the obtained 
straight-line equation on the graph should be written as y = 64θ−0.3x, where y is 
(Y − Yb) or (Yu − Y), C is 64, θ is 10 and K is 0.3. The R2 is coefficient of deter-
mination for trendline. When using Microsoft Excel for drawing trendline, we 
need first to pick exponential option to get the exponential equation as y = 
64e−0.693x, then using a conversion factor of 2.30285 between 10-based logarithm 
and natural logarithm to write a 10-baed equation as y = 64θ−0.3x. At present Ex-
cel has 6 trendline options: exponential, linear, logarithmic, polynomial, power, 
and moving average. Hopefully, someday soon, a software person will modify 
the Excel program by adding a log-linear regression equation option, in addition 
to the exponential equation option, to provide direct plot for the equations (Y − 
Yb) = Cθ−KX and (Yu − Y) = Cθ−KX on the graph. For series 1, at X = 0, Y − Yb = 
Y − 0 = Cθ−KX = C, i.e., C = Y = 64 (Note: we use surrogate 0 in lieu of nonlinear 
zero in calculations); and for Series 2, at X = 0, Yu − Y = Yu − 0 = Cθ−KX = C, i.e., 
C = Yu = 64.  

5) Eastern wisdom of Lie Tzu (列子, Lie Zi, 450-375 BCE)—A dichotomy 
In addition to Zeno’s Western wisdom, there is a similar Eastern wisdom of 

Lie Tzu (列子; Lie Zi, 450-375 BCE). Lie Tzu stated 百尺之竿, 日折其半, 永世

不休, which means “give you a 100-foot pole, halving it every day, day by day, 
continue from you to your offspring, generations after generations, yet the task 
cannot be finished in infinite generations.” The plot of Lie Tzu’s halving the pole 
is like Zeno’s plot of series 1 in Figure 5 and Figure 6, except there is a differ-
ence in finite numbers 64 (for Zeno) and 100 (for Lie Tzu). In Equation (3), 
d(q(Y − Yb)) = −KdX, the X and K (with K = 0.2) stand for “日折其半” daily 
halving; X and Y are non-terminating continuous numbers, with Y having Yb as 
its bottom asymptote stand as “永世不休”. The Yb is a nonlinear zero which can 
be approached but can never be reached or touched by the Y. In Equation (3a), 
q(Y − Yb) = −KX + qC, the initial value of Y at X = 0 is Y = C = 100 which 
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stands for “百尺之竿”. We will plot three sets of data later (including Y3) to 
demonstrate the meaning of C and K in Equation (3a). 

What Inspirations Do We Learned from the Above Subsections 1 to 5?  
We learned eight nonlinear concepts: First, there are two types of continuous 

numbers (walks): linear and nonlinear numbers (walks). Linear numbers have 
no asymptotes, and nonlinear numbers have asymptotes. Second, there are two 
types of zeros: linear zero and nonlinear zero. A linear zero is attainable and can 
be crossed, whereas a nonlinear zero is an asymptote which is not attainable. 
Third, a nonlinear change of nonlinear numbers is best expressed by a change of 
nonlinear true values. Fourth, asymptotes can be any real numbers including 
zero (e.g., 100, 64 and 0), and asymptotes are not attainable by the nonlinear 
numbers. In the sucrose inversion experiments, we have demonstrated that the 
bottom asymptote of the angle of rotation is a negative number at Yb = 2.2 [1] 
[4]. Fifth, a graph with a logarithmic scale (semi-log graphs in this section) is 
needed to express the nonlinear change in nonlinear face-values (Y − Yb) and 
(Yu − Y), and to indicate the existence of asymptotes (e.g., Yb = ϕ and Yu = 64). 
Sixth, in the logarithmic scale, when Y decreases, it continuously decreases to-
ward the nonlinear zero as its bottom asymptote but will never attain nonlinear 
zero. Seventh, alpha beta (αβ) mathematics have continuity everywhere, whereas 
traditional math has a problem of continuity (e.g., y is undefined at x = 0 for y = 
1/x, to be discussed in discussion section). Eighth, use of logarithmic paper, ei-
ther a semi-log or a log-log, is important in scientific analyses, especially in ana-
lyses of any nonlinear phenomena. 

6) Zeno’s Achilles—a linear race versus a nonlinear race 
Zeno’s Achilles is another example that has been called a paradox. In fact, it is 

not a paradox but a nonlinear mathematical joke. Suppose Achilles and a tor-
toise (a slow person) have a race. The speed of the tortoise is 60% that of Achilles. 
The tortoise is given a 100-meter advantage at the start. Achilles is at point B0, 
and the tortoise is at point B1. As Zeno put it, Achilles runs 100 meters and ar-
rives at the place where the tortoise started, B1. Meanwhile, the tortoise has run 
60 meters and is therefore that far ahead of Achilles at point B2. While Achilles 
runs those 60 meters, arriving at the place where the tortoise was, point B2, the 
tortoise has run 36 meters and is that far ahead of Achilles, point B3. And while 
Achilles runs those 36 meters, arriving at the place where the tortoise was, point 
B3, the tortoise has run 21.6 meters and is that far ahead of Achilles, point B4. 
And so on. It seems that Achilles will never catch up with the tortoise. As we 
know, because Achilles can run faster than the tortoise, Achilles will eventually 
pass the tortoise. Thus, is called a paradox by many. The fact is there can be two 
types of races, linear and nonlinear. In a linear race, there is no restriction and 
rule such that Achilles can pass the tortoise. In a nonlinear race, there is a non-
linear restriction and rule, meaning the race be run in stages and never hitting 
the asymptote.  

Suppose Achilles can run at a speed of x meters per second and the speed of 
tortoise is 0.6x meters per second. In a linear race, Achilles can catch up with the 
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tortoise in 100/(x − 0.6x) seconds. Numerical examples are as follows. If Achilles’ 
speed is 2 meters per second, x = 2, the tortoise’s speed is 1.2 meters per second. 
It will take 125 seconds for Achilles to catch up with tortoise. In 125 seconds, 
Achilles will run 250 meters and the tortoise will run 150 meters. 150 meters 
plus the 100-meter advantage gives a total of 250 meters for the tortoise and both 
will meet. Likewise, if Achilles’ speed is 10 meters per second, x = 10, it will take 
25 seconds for Achilles to run 250 meters and for tortoise to run 150 meters at 6 
meters per second. 150 meters plus a 100-meter advantage gives a total of 250 
meters for the tortoise and both will meet. In these linear races Achilles can 
catch up with tortoise. Achilles’ linear race is given in Figure 7. 
 

 

Figure 7. Achilles’ linear race. 
 

In a nonlinear race, the distance between Achilles and tortoise Y decreases in 
each stage. At stage 0, Y0 = B1 − B0 = 100. At stage 1, Y1 = B2 − B1 = 60. At 
stage 2, Y2 = B3 − B2 = 36, etc. The distance decreases with each stage. It de-
creases toward zero with zero as an asymptotic zero, Yb = ϕ (0). In this nonli-
near race, the nonlinear change in the nonlinear face value (Y − Yb) is negatively 
proportional to the linear change in the number of stages, X. Since the nonlinear 
change of nonlinear face value is d(q(Y − Yb)), we get the differential equation 
as d(q(Y − Yb)) = −KdX, this is equation Equation (3). Its integral form is Equa-
tion (3a). In this example K = 0.5108/2.30285 = 0.2218 and C = 100.  

The graph of (Y − Yb) versus X is given in Figure 8(a). The corresponding 
proportionality plot is given in a semi-log graph as shown in Figure 8(b). Achilles 
will never catch up with the tortoise in a nonlinear race because the nonlinear 
face-values (Y − Yb) is approaching the bottom asymptote Yb, with Yb = ϕ, but 
will never reach Yb. 

2. Discussions 

Most of the continuous data in science, engineering, and life and biomedical 
fields are nonlinear. In theory, all the nonlinear data need to be analyzed with 
nonlinear mathematics; however, due to improper mathematical education in 
early schools and the tendency of the practitioners to shy away from mathemat-
ics, nonlinear analysis has not been properly applied in the past. Let us address 
some wrong teachings in the arithmetic and algebraic classes. 
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(a) 

 
(b) 

Figure 8. (a) Nonlinear race of Achilles and (b) Proportionality plot of Achilles’ race. 
 

1) Know the basic flaws in XY math and seek the new expression for re-
lating two variables 

Current XY math cannot distinguish between the linear numbers and the 
nonlinear numbers for independent variable X and dependent variable Y in the 
equation Y = X and Y = 1/X. Let us discuss some issues using the simplest forms 
of XY equations in Equation (4) and Equation (5).  

Y X=                             (4) 

1Y
X

=                             (5) 

The first issue here is that we use the same symbol of Y and X in two equa-
tions, yet the meanings of two equations are dramatically different. In the Equa-
tion (4), the Y and X are linear numbers; yet, in Equation (5), the Y and X are 
nonlinear numbers. It is wrong to use the same symbols for representing both 
the linear and the nonlinear numbers. In Equation (4), the Y is proportional to 
X; their relationship is simple and straightforward, as shown in Figure 9(a). 
However, in the second equation, Equation (5), we have some issues. When we 
plot Equation (5) in a rectilinear graph, we obtain a curved line, as shown in 
Figure 9(b). A curved line means either one of Y or X or both Y and X are non-
linear numbers. This does not mean there is no proportionality relationship be-
tween Y and X; in fact, when we convert both the axes in Figure 9(b) from li-
near into nonlinear logarithmic scale we obtain a straight-line in Figure 9(c) in-
dicating the nonlinear numbers Y is proportional to the nonlinear numbers X. 
Here, the α means we measure the nonlinear numbers Y relative to its bottom 
asymptote as nonlinear face value (Y − Yb); and the β means we measure the 
nonlinear numbers X relative to its bottom asymptote as nonlinear face value  
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(a) 

 
(b) 

 
(c) 

Figure 9. (a) Graph of Y = X in linear-linear scale, (b) Graph of Y = 1/X in linear-linear 
scale, and (c) Graph of qα = 1/qβ in log-log scale (qY = −qX, Yb = 0, Xb = 0). 
 
(X − Xb). (Note 1, we do axis conversion by pointing the arrow of the mouse on 
the scale, we will get a manual. Then, from the manual, we select Format Axis. 
Then, from the Axis option select logarithmic scale). 

Here is the second issue. In Equation (5), when X is 0, what will be the Y? 
Teachers in traditional math class will teach students that at X = 0, the Y is un-
defined or infinite. A sound math should have everything defined and infinity is 
an ambiguous irresponsible “word”. It is irresponsible to say something is unde-
fined. Then, what shall we do? We need a new nonlinear math concept, the Al-
pha-Beta (αβ) Math concept, to give the right answer and right expression, such 
as expression of Figure 9(c). This figure says the nonlinear change of Y (in 
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terms of the nonlinear face value (Y − Yb), or nonlinear true value q(Y − Yb)), is 
negatively proportional to the nonlinear change of X (in terms of nonlinear face 
value (X − Xb), or nonlinear true value q(X − Xb)). Notice that we always meas-
ure the nonlinear numbers relative to their asymptote. The third issue is that 
when Equation (5) represents two different nonlinear variables, we need an ad-
ditional symbol to address the true nature of the equations, such as extending 
the XY symbols to (αβ) symbols, as shown in Figure 9(c). 

Figure 9(b) indicates that the nonlinear numbers Y have the bottom asymp-
tote Yb equivalent to x-axis and the nonlinear numbers X has the bottom asymp-
tote Xb equivalent to y-axis. Their nonlinear face values are α = α(Y − Yb) and β 
= β(X − Xb), and their true values are qα = q(Y − Yb) and qβ = q(X − Xb). These 
mean when plotting the face values on the nonlinear logarithmic scale we are 
comparing the two true values, as shown in Figure 9(c). When we have a plot of 
qα vs. qβ showing as a straight line, it means that q(Y − Yb) is negatively pro-
portional to q(X − Xb) or qY = −qX with Yb = ϕ, and Xb = ϕ. In equation form 
we write as Equation (6a), with proportionality constant K = 1 and integral con-
stant C = 1 (log 1 = 0). Its differential equation is Equation (6).  

( )( ) ( )( )d q Y Yb Kd q X Xb− = − −               (6) 

( ) ( )q Y Yb Kq X Xb qC− = − − +               (6a) 

Figure 9(c) is good for positive values of Y and X. When either Y or X or both 
assume negative numbers in Equation (5), we will get curved lines in the second, 
third, and fourth quadrants of Figure 9(b); as shown in Figure 10. In traditional 
math, we cannot plot the curves in Figure 10 into log-log graph like Figure 9(c) 
because the negative numbers are not plotable on logarithmic scale.  

In Figure 10, when we converted both axes into nonlinear logarithmic scales, 
we get only one straight line for the data from the first quadrant. The values 
from the second, third, and fourth quadrants all disappeared because the nega-
tive number is not plotable on logarithmic scale. This is another drawback of the 
traditional XY math. Then, what shall we do? Fortunately, the αβ math can come 
to rescue. 
 

 

Figure 10. Graph of Y = 1/X in linear-linear scale. 
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Figure 11. Graph of qα = 1/qβ in log-log scale. 
 

When X assumes both positive and negative values, one curve exists in the 
first quadrant and the other in the third quadrant in a Cartesian graph, as shown 
in Figure 10. The data clearly show that the X and Y are nonlinear numbers. In 
the first quadrant, the nonlinear numbers Y have the bottom asymptote Yb 
equivalent to x-axis; however, this x-axis becomes the upper asymptote of Y in 
the third quadrant. Meanwhile, in the first quadrant, the nonlinear numbers X 
have the bottom asymptote Xb equivalent to y-axis; however, this y-axis be-
comes the upper asymptote of X in the third quadrant. Because they share the 
common asymptote, we call them the pivot asymptotes, and represent them as 
Yp = 0 and Xp = 0. In the first quadrant, the nonlinear change in nonlinear 
numbers Y is negatively proportional to the nonlinear change in nonlinear 
numbers X. We can express their relationship like Equations Equation (6) and 
Equation (6a) and written as Equation (7) and Equation (7a). Their relationship 
is d(q(Y − Yp)) = −Kd(q(X − Xp)). In the third quadrant, the nonlinear change in 
nonlinear numbers Y is proportional to the nonlinear change in nonlinear 
numbers X, and their relationship is Equation (8a), q(Yp − Y) = −K(q(Xp − X)) + 
qC and their differential equation is Equation (8).  

( )( ) ( )( )d q Y Yp Kd q X Xp− = −                    (7) 

( ) ( )q Y Yp Kq X Xp qC− = − +                    (7a) 

( )( ) ( )( )d q Yp Y Kd q Xp X− = −                    (8) 

( ) ( )q Yp Y Kq Xp X qC− = − +                    (8a) 

The Equations (7a) and (8a), means “please plot the following face-values on 
the nonlinear logarithmic scale”, i.e., plotting the face-values (Y − Yp), (X − Xp) 
etc., on logarithmic scale. Once the face values (Y − Yp), (X − Xp) etc., are plot-
ted on logarithmic scale, their nonlinear true-values are q(Y − Yp), q(X − Xp) 
etc. These nonlinear true values are what we need in a comparison of proportio-
nality between two numbers. The existence of proportionality in the equation 
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implies that, when plotting one nonlinear face value versus the other nonlinear 
face value on a log-log graph, we can obtain a straight-line. Equation (7a) can be 
stripped down and written into a conventional mathematical form, Equation (9), 
when Xp = ϕ = (0). It is a different form of power equation. 

( ) KY Yp CX− =                            (9) 

We can use the above equations to describe many mathematical expressions 
of some famous equations and physical phenomena, including inverse equation, 
root equation, power equations, and many physical examples. 

2) Relationship between nonlinear numbers and their asymptotes  
Let us use two simple arithmetic continuous numbers (one-sided continuous 

numbers) to illustrate the relationship between continuous nonlinear numbers 
and their asymptote. 

When we have “one divides by three”, we write 
1
3

 and get . 

People also write this as 

1 0.3,0.33,0.333 0.3
3
= =

                     (10) 

Likewise, people write.  

0.9,0.99,0.9999 0.9 1= =

                     (11) 

Equations Equation (10) and Equation (11) are erroneous because of using 
“equal sign”. The numbers 0.3, 0.33, 0.333, 0.333… are non-terminating nonli-
near numbers. When 1/3 gives 0.3, there is a residue 0.1; when 1/3 gives 0.333, 
there is residue 0.001 etc. The 1/3 can never equate to the nonlinear numbers 
0.3, 0.33, 0.333, 0.333… The fact is 1/3 is the upper asymptote of the nonlinear 
numbers 0.3, 0.33, 0.333, 0.333… This nonlinear numbers can approach the 
asymptote 1/3 but cannot touch it. The asymptote is never a part of nonlinear 
numbers. The 1/3 is static and the nonlinear numbers 0.3, 0.33, 0.333, 0.333… 
are dynamic. Static cannot equate to dynamic; we cannot violate Newton’s law.  

Likewise, the numbers 0.9, 0.99, 0.999, 0.9999… are non-terminating nonli-
near numbers. We need to add 0.1 to 0.9 to give 1; we need to add 0.01 to 0.99 to 
give 1; we need to add 0.0001 to 0.9999 to give 1 etc. The nonlinear numbers 0.9, 
0.99, 0.999, 0.9999… can approach the asymptote 1, but cannot touch it. The 
asymptote is never a part of nonlinear numbers. The 1 is static and the nonlinear 
numbers 0.9, 0.99, 0.9999… are dynamic. Static cannot equate to dynamic; we 
cannot violate Newton’s law.  

In short, we cannot use the equal sign “=” in Equation (10) and Equation (11), 
instead we can use an arrow → or some other sign such as ~ to relate the nonli-
near numbers and the asymptote, as shown in expression (12) and (13), where 
each has an arrow sign. We will discuss how to measure the change (or the dif-
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ferential) of nonlinear numbers later. 

1 0.3,0.33,0.3333 0.3
3
= =

   wrong 

10.3,0.33,0.333
3

→   O.K.                  (12) 

0.9,0.99,0.9999 0.9 1= =

   wrong 

0.9,0.99,0.9999 1→   O.K.                  (13) 

The above two nonlinear numbers are regular nonlinear numbers. There are 
other irregular nonlinear numbers, such as 2  ~ 1.4, 1.41, 1.414, 1.4142, 1.41421, 
1.414213, 1.4142135… 1.414213562… forever. 

Nonlinear numbers 0.9, 0.99, 0.9999… are a one-sided nonlinear number 
having an upper asymptote Yu, Yu = 1. Let us compare the change of these non-
linear numbers with the change of universal linear numbers Ul and check 
whether the number 1 is the unique asymptote of the nonlinear numbers. Refer-
ring to Figure 12, let us input the universal linear numbers in Column A as X and 
the nonlinear numbers in Column B as Y, as shown in Excel Screen Figure 12. 

In the Excel Screen, we reserve Cell E1 for imputing an active upper asymp-
tote, Yu. We input 1 into Cell E1, as shown in Figure 13. We shall use this asymp-
tote to calculate (Yu − Y) in Column C. Formula bar gives the formula for Cell 
C2 as “=$E$1-B2”. We then copy Cell C2 into Cell C3 through Cell C10 to com-
plete the column. By plotting Column A vs. Column B, we obtain Figure 14(a) 
for X vs. Y in a linear scale, where the data line is approaching an upper asymp-
tote, Yu. This is a primary graph and is also an asymptotic graph where the 
asymptotic curve is monotonically increasing and nonterminating. It is also a 
leading graph because the continuous changing of the slope of the curve will lead 
us to the proportionality relationship and equation. Now, we can visualize that 
the distance from asymptote Yu to Y, (Yu − Y), is negatively proportional to the 
linear distance of X, as shown by the solid and dashed arrow. The larger the solid 
arrow the smaller the dashed arrow becomes, or vise visa. 
 

 
Figure 12. Nonlinear numbers 0.9, 0.99, … 
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Figure 13. Nonlinear numbers 0.9, 0.99, … 

 
Refer to Figure 13, by plotting Column A vs. Column C for X vs. (Yu − Y), we 

obtain Figure 14(b) in linear scale; this is a pre-proportionality graph. It is also a 
transitional graph, because we need to convert the vertical axis into final nonli-
near logarithmic scale. We can copy Figure 14(b) into Figure 14(c) and convert 
the vertical scale into nonlinear logarithmic scale, as shown in Figure 14(c). No-
tice in Figure 14(b) we are comparing (Yu − Y) vs. X in linear-by-linear scale; in 
Figure 14(c) we are comparing q(Yu − Y) vs. X in the log-linear scale. The next 
step is to display proportionality equation (trendline equation) and coefficient of 
determination for the proportionality plot. 

Let us right click on data series in Figure 14(c) followed by selecting “Add 
Trendline”; and then “Exponential” from Trendline Options, also selecting “Dis-
play Trendline” and “Display R-squared”, then Close. We obtain Figure 14(d). 
The coefficient of determination is R2 = 1. The proportionality plot of Figure 
14(d) is the expression of Equation (2) and Equation (2a), with d(q(Yu − Y)) = 
−KdX and q(Yu − Y) = −KX + qC where K = 1 and C = 1. Ideally, the trend line 
equation for a straight line in a semi-log graph should be written as y = Cθ−Kx, 
where C is the position constant (intercept of the straight line at X = 0) and K is 
the proportionality constant or the slope of the straight line. In Figure 14(d), the 
original equation (from using the Exponential Trendline Option) for y (=Yu − 
Y) vs. x is y = 1e−2.303x; it should be written as y = 1θ−x, where C = 1 and K = 1 
(note: 2.303/2.303 = 1; 2.303 is a conversion factor between natural logarithm e 
and 10-based logarithm). Note: if we try to add trendline for Figure 14(c) as li-
near, logarithmic, polynomial, or power lines, we cannot get the desired results, 
as shown in Appendix A. 

3) To identify the unique upper asymptote, we can use a trial-and-error 
or a template method 

In Figure 15, let us pick a number slightly larger than 1, say, 1.0000001, and 
input 1.0000001 into Cell E1, as shown in Figure 15. Figure 14(d) turns into 
Figure 16(a), with data line strays from the straight line and R2 reduced to 
0.9967 (also green dots line in Figure 16(b)). When we change the number into  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. (a) Primary graph, also a Leading Graph, Y vs. X in linear scale; (b) Pre- 
proportionality graph, (Yu − Y) vs. X in linear scale; (c) Proportionality graph q(Yu − Y) 
vs. X in log-linear scale; and (d) Proportionality graph q(Yu − Y) vs. X in log-linear 
scale. 
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Figure 15. Nonlinear numbers 0.9, 0.99, … (continued). 

 

 
(a) 

 
(b) 

Figure 16. (a) Proportionality graph I, q(Yu − Y) vs. X in log-linear scale, Yu = 
1.0000001; (b) Proportionality graph II, q(Yu − Y) vs. X in log-linear scale, Yu = 1, 
1.00001, 1.0000001, 1.0000001. 
 
1.00001 and input 1.00001 into Cell E1, we obtain red dots line in Figure 16(b) 
and R2 reduced to 0.9523. We can improve R2 by increasing the number of zero 
after 1 in the numerator, such as 1.0000001. In doing this, we get yellow dots line 
in Figure 16(b) and the R2 improves to 0.9995. The overall trend is that all the 
numbers eventually approach 1 as an upper asymptote. This example shows that 
the nonlinear numbers have an association with asymptote and that the mea-
surement of nonlinear change needs to be measured relative to their asymptote. 
In short, we can express the linear relationship between linear Y and linear X 

https://doi.org/10.4236/jamp.2023.115080


R. W. Lai et al. 
 

 

DOI: 10.4236/jamp.2023.115080 1228 Journal of Applied Mathematics and Physics 
 

using the Equation (1), while expressing the nonlinear relationship between 
nonlinear Y and liner X using equations Equation (2) and Equation (3). The above 
approach of identifying unique Yu is a trial-and-error method. We can also use a 
template method for general identifying of the unique asymptote as shown in 
Appendix C [5] [6]. 

4) To handle the elusive nonlinear zero Yb, we use linear zero (0) as ac-
cessible nonlinear zero 

Figure 17 lists various data for nonlinear numbers Y1 and Y2. We leave row 2 
as blank for use as zero or blank in calculations. Column A (A3: A10) gives ele-
mentary numbers (x); Column B (B3: B10) gives cumulative of (x) as cumulative 
numbers X, where B3 = B2 + A3, B4 = B3 + A4, B5 = B4 + A5 or we can copy B3 
to B4 through B10 to complete the column. Elementary numbers have no con-
nectivity; however, the cumulative numbers have connectivity. For example, Cell 
A5 is 4, this 4 has no relationship with the 4 in Cell A10. On the contrary, the 
value in column B (B3: B10) is monotonically increasing and their values are in-
terconnected. When we change the Cell A5 from 4 to 6, the Cell B5 changes 
from 8 to 10, and the Cell B10 changes from 28 into 30. 

Column C (C3: C10) gives the elementary nonlinear numbers (y1), whose 
values may move up or down but without connectivity. Column D (D3: D10) 
gives cumulative of (y1) as cumulative numbers Y1, where D3 = D2 + C3, D4 = 
D3 + C4, D5 = D4 + C5, or we can copy D3 to D4 through D10 to complete the 
column. The connectivity of dependent variable Y is like that of the independent  
 

 
(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure 17. Nonlinear numbers Y1 and Y2. 
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variable X. The elementary nonlinear numbers (y1) have no connectivity, but the 
cumulative nonlinear numbers Y1 have connectivity. For example, Cell C5 is 
4.66, this 4.66 has no relationship with the 0.47 in Cell C10. On the contrary, the 
value in column D (D3: D10) is monotonically increasing and their values are 
interconnected. Column G (G3: G10) gives the dependent variable Y2, whose 
values are Y2 = 30θ−0.5X; or Y2 − Yb = 30θ−0.5X, with Xb = 0. These Y2 values give 
the asymptotic curve in Figure 3. This asymptotic cure is like that of Zeno’s 
nonlinear walk curve starting from the wall at 64 meter and the nonlinear equa-
tion as y = 64θ−0.3x.  

In Figure 17, Raw 12 to Raw 21 is the work area for searching the upper 
asymptote, Yu (see Appendix C).  

By plotting Column B (B3: B10) versus Column D (D3: D10) for X versus Y1, 
we get the primary graph Figure 18(a), showing as an asymptotic convex curve 
with continuous changing of the slope. When we insert Column B (B3: B10) 
versus Column C (C3: C10) for X versus (y1) into Figure 18(a), we get Figure 
18(b), where the elementary number curve (y1) is in the form of skewed bell. 
Figure 18(b) shows that it is easy to mathematically describe the asymptotic 
curve with equation such as Equation (2), but more difficult to describe the skewed 
bell with equation. 

In Figure 18(a), the asymptotic curve is for the nonlinear number Y1. This Y1 
has an upper asymptote Yu, as indicated with horizontal line in Figure 2 earlier. 
Its value is in Cell F12 of Figure 17, with Yu = 20.00. By copying Figure 18(a) 
and converting its vertical axis from linear into nonlinear logarithmic scale, we 
get Figure 19(a) along with an Excel warning banner indicating that negative or  
 

 
(a) 

 
(b) 

Figure 18. (a) Primary graph, cum. X vs. cum. Y, linear by linear scale; (b) Cum. X vs. 
cum. Y1 plus (y1), linear by linear scale. 
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(a) 

 
(b) 

 
(c) 

Figure 19. (a) qY1 versus X in log by linear scale; (b) Y1 vs. X in linear- by-linear scale 
with excluding the surrogate 0; (c) Y1 in log by linear scale with excluding the surrogate 
0. 
 
zero values cannot be plotted on log scale. There are 8 data points in Figure 
18(a); however, there are only 7 data points in Figure 19(a), with 6 points con-
nected in line and with one lone point hanging outside. This is a special expres-
sion of the Excel to indicate that there is an original “surrogate zero or surrogate 
0” that cannot be plotted in logarithmic scale of Figure 19(a), because this “sur-
rogate zero, or surrogate 0” is a linear zero that cannot be plotted in a nonlinear 
logarithmic scale. From Figure 19(b), we can see that the asymptotic curve is a 
nonlinear curve for nonlinear numbers Y1. By the definition of nonlinear num-
bers, we should always have a bottom asymptote; and in some cases, we have 
both a bottom and an upper asymptote. When we plot Column B (B4: B10) ver-
sus Column D (D4: D10) for X versus Y1 with excluding the point in D3 with 
shaded 0.00, we get Figure 19(b) and Figure 19(c), where we get connected 7 
data points in a line. The case in Figure 18(a) is that we have both a bottom and 

https://doi.org/10.4236/jamp.2023.115080


R. W. Lai et al. 
 

 

DOI: 10.4236/jamp.2023.115080 1231 Journal of Applied Mathematics and Physics 
 

an upper asymptote. The bottom asymptote, in this case, is a nonlinear zero 
which cannot be expressed in a linear graph but can only be illegally represented 
by a “surrogate 0”. 

Combination of Figures 18(a)-19(c) enhances the basic theory of alpha beta 
(αβ) math that the nonlinear numbers are always associated with a bottom 
asymptote equivalent to nonlinear zero.  

Now, let us apply the face-value concept in nonlinear math to restore the 8th 
data point. We know that the change of nonlinear numbers needs to measure 
their change relative to their asymptote. In our case, we shall need to make use 
of (Yu − Y1). Column E (E3: E10) gives the face-value of Y1 relative to the upper 
asymptote Yu. By plotting Column B (B3: B10) versus Column E (E3: E10) for X 
versus y, y = (Yu − Y1), we get Figure 20(a), showing as a demulative asymp-
totic cure. By copying Figure 20(a) and converting its vertical axis from linear 
into nonlinear logarithmic scale, we get the proportionality graph Figure 20(b), 
without trendline and coefficient of determination. 

To obtain trendline equation and the coefficient of determination in the pro-
portionality graph, we right click on data series (in Figure 20(b)). Then → add-
ing trendline → then, in Trendline Options, select “exponential” → select “Dis-
play Equation on chart” → select “Display R-squared value on chart” → close. We 
obtain regression equation as y = 20e−0.115x, and coefficient of determination R2 = 
1. When we select “exponential” in the Trendline Options, Excel gives us semi- 
log graph and provides trendline equation as exponential equation. This is awk-
ward because Excel is not capable of providing a 10-based equation for log-linear 
straight line. The remedy is we convert e to θ (θ = 10) and −0.115 to −0.05 using 
conversion factor of 2.303 (0.115/2.303 = 0.05), as shown in Figure 20(b), where 
we insert y = 20θ−0.05x.  
 

 
(a) 

 
(b) 

Figure 20. Face value and proportionality graph. (a) Face value graph, (Yu − Y) vs. X, li-
near by linear scale; (b) Proportionality graph, q(Yu − Y) vs. X, log by linear scale. 
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The equation y = 20θ−kx means (Yu − Y) = Cθ−kx. By taking log on both sides 
of the equation, we get q(Yu − Y) = −KX + qC, whose differential equation is 
d(q(Yu − Y)) = −KdX, meaning the change of nonlinear true value q(Yu − Y) is 
negatively proportional to the change of linear true value X, or the nonlinear 
change of face value (Yu − Y) is negatively proportional to the linear change of 
X. 

Column G of Figure 17 gives a series of demulative numbers, with Cell G3 = 
30.0 (at X = 0). By plotting Column B (B3: B10) versus Column G (G3: G10) for 
X versus Y2, we obtain Figure 21(a), showing as a concave asymptotic curve. By 
copying Figure 21(a) followed by converting the vertical axis from linear into 
nonlinear logarithmic scale, we obtain Figure 21(b) without trendline equation 
and coefficient of determination. We can use a similar way as Figure 20(b) to 
insert trendline equation and coefficient of determination R2 to obtain the final 
Figure 20(b). 

To show the characteristics of concave asymptotic curve in equation Equation 
(3) and Equation (3a), let us copy Figure 21(a) to get Figure 22(a) by inserting 
Zeno’s Series 1 and Lie Tzu’s data into the graph. We also copy Figure 21(b) to 
get Figure 22(b) by inserting Zeno’s Series 1 and Lie Tzu’s data into the graphs. 

Figure 22(a) and Figure 22(b) illustrate the description of concave asymp-
totic curves for equation Equation (3) and Equation (3a). Their characteristics 
are: 1) the curves are associated with a bottom nonlinear asymptote; 2) the curves 
start at a finite value, e.g., 100, 64, and 30, equivalent to the “C” value in the 
trendline regression equations. The bottom nonlinear asymptotes, in general, are 
nonlinear zero, but they can be any numbers including a negative one [1] [4].  
 

 
(a) 

 
(b) 

Figure 21. Demulative Y2 and its Proportionality graph. (a) Demulative Y2 Graph, Y2 vs. 
X, linear by linear scale; (b) Proportionality Graph, qY2 vs. X, log by linear scale. 
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(a) 

 
(b) 

Figure 22. Demulative Y and their proportionality graph. (a) Demulative Y Graph, Y vs. 
X, linear by linear scale; (b) Proportionality Graph, qY vs. X, log by linear scale. 
 
The “C” in Equation (3) and Equation (3a) gives the intercept of the straight-line 
at X = 0; the K (0.2, 0.2, and 0.05) give the slope of the straight-line. The simplest 
form of nonlinear equations is Equation (3) and Equation (3a) for description of 
concave asymptotic curves where a single bottom asymptote exists as a nonlinear 
zero. Equations Equation (1a), Equation (2a), and Equation (3a) are two-parameter 
equations where the parameter C dictates the positions of the straight-line, as 
shown in Figure 22(b).  

The concave asymptotic curves are shown in Figure 8(a), Figure 20(a), Fig-
ure 21(a), Figure 22(a), as well as in Figure 5. In Series 1 of Figure 5, Zeno’s 
nonlinear walk starts from the wall of 64 meters toward the other wall of nonli-
near zero. Additionally, Zeno’s Achilles in Figure 8(a) has the same meaning. In 
these cases, when we change the vertical axis in linear graph from linear into non-
linear logarithmic scale, we can convert the concave curve into linear straight- 
line in log-linear graph, such as from Figure 20(a) to Figure 20(b); Figure 
21(a) to Figure 21b); Figure 22(a) to Figure 22(b); and Figure 8(a) to Figure 
8(b). 

Contrary to the concave asymptotic curve, the convex asymptotic curve is 
more troublesome and needs extra attention to its nonlinear bottom asymptote 
or the usage of “surrogate 0”. The convex asymptotic curve is more complicated 
because it involves two asymptotes: an upper asymptote and a bottom asymp-
tote. The upper asymptote Yu can be resolved and identified through Excel op-
eration, while the bottom asymptote is, in general, a nonlinear zero, which can-
not be plotted on a linear scale or linear graph but can only be represented as Yb 
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and calculate as a “blank cell” or “surrogate 0” in Excel operation. When we 
convert the vertical axis of convex asymptotic line from linear into nonlinear lo-
garithmic scale, such as from Figure 2 or Figure 18(a) into Figure 19(a) or Fig-
ure 19(c), we don’t get a straight-line, instead we get curved lines. It is a com-
mon misconception to think that a curved line can turn into a straight-line by 
converting the scale from linear into logarithmic scale.  

In summary, Zeno’s room-walk and Zeno’s Achille are nonlinear phenomena 
that can be described by the concave and convex asymptotic curves with the dif-
ferential equations Equation (2) and Equation (3) along with integral equations 
Equation (2a) and Equation (3a). The characteristics of Equation (3a) is that 
there is a finite value of Y at X = 0. The characteristics of Equation (2a) is that 
the face-value of (Yu − Y) gives (Yu − 0) or Yu at X = 0. 

5) Second order asymptotic phenomena—a phenomenon involves skewed 
bell and sigmoid curve 

So far, we have discussed the first order asymptotic phenomena. In the real 
world there are more paradoxes and controversial interpretations of experiences 
that need to be expressed with a higher order nonlinearity of asymptotic curves, 
thus we shall briefly introduce and discuss the second order asymptotic pheno-
mena in the Appendix to extend the general usage of nonlinear math.  

The second order asymptotic phenomena are more varied and, to fully com-
prehend them, we must engage many graphs with connectivity including primi-
tive, primary, leading, pre-proportionality (or transitional graph), and propor-
tionality graphs. Mostly, a second order asymptotic phenomenon will involve 
skewed bell and sigmoidal curve. One example with discussion is given in Ap-
pendix B. 

3. Summary 

 The full knowledge of Zeno’s paradoxes needs to be explained in three as-
pects: First, need an intellectual statement; Second, need mathematical ex-
pression with αβ Math; and third, need to illustrate with graphs. 

 We discussed two of Zeno’s mathematical arguments as well as Lie Tsu’s 
philosophy using the Alpha Beta (αβ) nonlinear math. Zeno’s room walk has 
three options: one linear walk and two nonlinear walks. Zeno’s Achilles has 
two options: one linear run and one nonlinear run. And Lie Tsu’s pole halv-
ing has one option: nonlinear halving.  

 The new nonlinear concepts are the variables are classified into linear and 
nonlinear, and the change of a linear variable is a simple change, while the 
change of a nonlinear variable is a nonlinear change relative to its asymptotes. 
For assimilation of nonlinear experiences, we use the continuous asymptotic 
curves to describe and derive the equations for expressing the two-variable 
relationship. 

 Traditional XY math is insufficient to describe the nonlinear phenomena; 
therefore we extend the XY math into the αβ Math to account for the exis-
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tence of asymptotes, i.e., we extend XY = {(X), (Y)} into αβ = {α(Y, Yu, Yb), 
β(X, Xu, Xb)}.  

 We can describe nonlinear phenomena with a simple proportionality equa-
tion and four types of graphs: primitive, primary, leading, and proportionali-
ty graphs. We cannot use a primitive elementary graph based on “y” to build 
an X-Y mathematical relationship, because each elementary “y” has no ma-
thematical connectivity, and one elementary number cannot mathematically 
relate to the other cumulative numbers. Instead, we must relate one cumula-
tive number (or demulative numbers) with another cumulative number and 
use the primary graph for mathematical analysis. Cumulative numbers (or 
demulative numbers) mean the existence of connectivity.  

 In data analyses, we must always account for the origin. The peak of asym-
metric bells in the primitive elementary graph depends on the size of incre-
mental X and thus should not give any interpretation based on its height [1] 
[2]. 

 The Alpha Beta (αβ) Math is a science for connecting a straight line to 
asymptotic, sigmoid, and various bell curves in biomedical and physical sciences 
[1] [2]. In Appendix C, we provide example for building Excel Templates to 
solve for upper asymptotes and building a straight-line proportionality equa-
tion using Microsoft Excel via determining the “coefficient of determina-
tion”.  

 When generating regression equation for a straight line in a log-linear (semi- 
log) graph, we first select “exponential” option in the regression manual to 
get exponential equation, then followed by converting the equation into a 
10-based logarithmic equation using a conversion factor of 2.303, e.g., in 
Figure 14(d), we convert y = 1e−2.303X into y = 1(10)−X, or y = 1θ−X (see Ap-
pendix A). 

 Data in science and engineering fields are mostly nonlinear and thus need to 
be analyzed from the viewpoint of nonlinear mathematics, where the data 
can be at an ordinary nonlinearity or at a higher order of nonlinearity.  

 The Alpha Beta (αβ) Math is a graph-based proportion-oriented math for re-
lating independent variable β(X, Xu, Xb) and dependent variable α(Y, Yu, 
Yb). 

4. Conclusion 

Traditional XY math is insufficient to describe the nonlinear phenomena; there-
fore we need to extend the XY math into the αβ Math to account for the exis-
tence of asymptotes, i.e., we extend XY = {(X), (Y)} with inclusion of X and Y 
into αβ = {α(Y, Yu, Yb), β(X, Xu, Xb)} with inclusion of Y, Yu, Yb, and X, Xu, 
Xb. Analysis of two variable relationships is best to examine their proportionali-
ty. Zeno’s paradoxes and Lie Tzu’s pole halving wisdom can be explained with 
first order asymptotic equations where the nonlinear change of dependent va-
riables in term of nonlinear face-value (Y − Yb) or (Yu − Y) is proportional to 
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the linear change of independent variable X. For the higher order of nonlinearity 
involving skewed bells and sigmoidal curves, we shall need to use a second order 
nonlinear face-value of (qYu − qY) (note: q = log). 
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Appendix A 

Six options in Excel for expressing a straight-line data in log-linear plot. 
(In Figure A1, y = 1e−2.303x equals y = 1θ−x, where 2.303 is a conversion factor 

between natural logarithm e and 10-based logarithm. Equation y = 1θ−x means 
(Yu − Y) = 1θ−x or by taking log on both sides q(Yu − Y) = q1 − X. This is q(Yu 
− Y) = qC − KX with C = 1, K = 1. Its differential equation is d(q(Yu − Y)) = − 
KdX.). 
 

 

Figure A1. (a) q(Yu − Y) vs. X in log-linear scale, (b) q(Yu − Y) vs. X in log-linear scale, (c) q(Yu − Y) vs. X in log-linear 
scale; (d) q(Yu − Y) vs. X in log-linear scale; (e) q(Yu − Y) vs. X in log-linear scale; (f) q(Yu − Y) vs. X in log-linear scale. 
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Appendix B 

Example of Second Order Asymptotic Phenomena [1] [5] 
The second order asymptotic curve involves a convex asymptotic curve in a 

log-linear scale, as shown in Figure A2(c). This second order asymptotic curve 
originated from its primitive elementary graph in Figure A2(a) and its primary 
graph in Figure A2(b). In the beginning, the elementary numbers “y” gives a set 
of skewed bells in a linear-by-linear scale, as shown in Figure A2(a), their cu-
mulative numbers Y give a sigmoidal curve in a linear-by-linear scale, as shown 
in Figure A2(b). By converting the vertical axis from linear to nonlinear loga-
rithmic in Figure A2(b), we get a convex asymptotic curve, as shown in Figure 
A2(c). Figure A2(c) is a leading graph that will lead us to the pre-proportional 
graph in Figure A2(d) and the proportional graph in Figure A2(e). 

Figure A2(c) gives the plotting of continuous nonlinear numbers Y versus li-
near numbers X in a log-linear scale, where the value of nonlinear variable is qY. 
The line starts from the origin (nonlinear zero, which is the bottom asymptote of 
qY and because this nonlinear zero as bottom asymptote is not part of the non-
linear numbers, it cannot be shown in the graph). Meanwhile, the curved conti-
nuous line is asymptotically approaching the upper asymptote, qYu. Again, this 
qYu is never a part of the qY line. The face value of this second order nonlinear-
ity of Y is (qYu − qY). Since the change of nonlinear numbers is a nonlinear 
change of nonlinear face values, we need to take a nonlinear logarithmic trans-
formation of its value to get q(qYu − qY) and designate the change of nonlinear 
face value as d(q(qYu − qY)). In the graph, as the solid double arrow increases, 
the dashed linear double arrow decreases, or vise visor. That is the solid arrows 
are negatively proportional to the dashed double arrows. In equation form we 
get equation Equation (14), indicating nonlinear change of Y in second order of 
nonlinearity is negatively proportional to the linear change of X, where we 
measure the change relative to the asymptote as (qYu − qY) and call it a second 
order of nonlinearity. More detailed descriptions are available in [1] [2] [3] [4]. 

( )( )d q qYu qY KdX− = −                    (14) 

( )q qYu qY KX qC− = − +                   (14a) 

( )( ) ( )( )d q qYu qY Kd q X Xb− = − −               (15) 

( ) ( )( )q qYu qY K q X Xb qC− = − − +              (15a) 

Like the ordinary case of nonlinearity, we may have a nonlinear change of Y 
in second order of nonlinearity negatively proportional to a linear change of X 
and a nonlinear change of X. For the nonlinear-by-linear change we have Equa-
tion (14) and Equation (14a); for the nonlinear-by-nonlinear situation, we have 
equations Equation (15) and Equation (15a) [1] [2] [3] [4]. 

Physical examples described with Equation (14) and Equation (15) are plenti-
ful, such as the growth of soybean plants as a function of days [1] [2] or the 
fructose concentration versus enzyme activity [1] [2] [5], and the percent oxygen 
saturation versus partial pressure of oxygen in myoglobin and hemoglobin. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure A2. Graphs relating to enzyme activity. (a) Primitive elementary graph y vs. X; (b) 
Primary graph Y vs. X; (c) Convex asymptotic graph, qY vs. X in log-linear scale; (d) 
Pre-proportionality graph (Yu − Y) vs. X, linear by linear scale; (e) Proportionality graph 
q(qYu − qY) vs. X, log by linear scale. 
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Appendix C 

Illustration for Solving the Upper Asymptote Yu 
In the following, let us use simulated data like the primary graph Figure 18(a) 

for illustration to obtain the upper asymptote and equation parameters using 
both template and trial-and-error methods. 

Figure A3 illustrates a series of potential upper asymptotes Yu1 to Yu7. Our 
task is to identify the unique upper asymptote among them. 

The following is an illustration on how to resolve for the unique optimal Yu 
using Microsoft Excel. First, we build a template and then systematically resolve 
for the Yu through solving optimal coefficient of determination R^2 (R2). The 
sequence is: first, select 7 to 10 estimated upper asymptotes, Yu1, Yu2, and Y3 … 
Yu7 (see Figure A3 Illustration A). Second, calculate the R^2 for each estimated 
upper asymptote, as shown in worksheet 1 to worksheet 5; and third, plot the es-
timated Yu vs. R^2 and visually identify the optimal Yu from the graph. 

Figure A5 (Worksheet0) gives the basic data of the example. Column A gives 
the elementary (x); Column B is the cumulative X for succession of (x); Column 
C gives the elementary (y); Column D gives the cumulative Y for succession of 
X, e.g., D4 = D3 + C4, D5 = D4 + C5 etc. When plotting Column B vs. Column 
C for X versus (y), we obtain a primitive elementary graph, showing a skewed- 
bell curve in Figure A4(a). By plotting Column B vs. Column D for X versus cu-
mulative Y, we obtain an asymptotic curve as shown in Figure A4(b). This is al-
so a leading graph because it leads us to generate physical equations based on its 
continuous change of the slope of curve and its relationship with its upper asymp-
tote. In the Alpha Beta (αβ) Math, the nonlinear numbers Y are associated with 
their asymptotes Yu and Yb. In most cases, the bottom asymptotes Yb are non-
linear zeros. Thus, we need only to solve for the upper asymptote Yu during the 
search for theoretical equation and parameters. Based on the new (αβ) math 
concept, we need to do all the calculations relative to their asymptotes. In Figure 
A4(b), the Y is a nonlinear number and increases from the origin toward an 
asymptote. However, where is the upper asymptote? How do we determine the 
upper asymptote? 
 

 

Figure A3. Illustration A. 
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(a) 

 
(b) 

Figure A4. Primitive elementary graph and Primary graph in linear-by-linear scales. (a) 
Primitive elementary graph, linear by linear scale, y vs. X; (b) Primary graph, cum. Y vs. 
cum. X, linear by linear scale. 
 

 
(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure A5. (Worksheet 0). 
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In Figure A4(b), we show the upper asymptote Yu as dashed horizontal line. 
The graph shows that the distance of vertical solid double arrow is negatively 
proportional to the distance of horizontal dashed double arrow; the larger the 
solid double arrow the smaller the horizontal dashed double arrow becomes, or 
vise visa. In equation form, it is “the nonlinear change of nonlinear face-value 
(Yu − Y) is proportional to the linear change of linear face-value X,” or “the 
change of nonlinear true value q(Yu − Y) is negatively proportional to the 
change of linear true value X,” as shown in Equation (2). Its integral form is Eq-
uation (2a). Where K is the proportionality constant, C is an integral constant or 
position constant (for dictating the position of a straight-line moving up/down 
in a graph). 

According to Equation (2a), we can plot (Yu − Y) vs. X on a log-linear graph 
for q(Yu − Y) vs. X to obtain a straight line when the true upper asymptote Yu is 
applied in the calculation. (Note: we plot nonlinear face-value (Yu − Y) on ver-
tical logarithm scale to give true value q(Yu − Y)). To find the straight line, we 
first calculate y = (Yu − Y) and qy = q(Yu − Y) and plotting the equation y ver-
sus X on a log-linear (semi-log) graph. Next, let us generate a few (7 to 10) in-
cremental estimated Yu as Yu1, Yu2, Yu3… Yu7, with initial Yu (Yu0) picked 
from the last largest Y number in Column D (i.e., Cell D10), Yu0 = 19.20. We 
assign an active incremental Yu value, ∆Yu, in Cell B12 as about one percent 
(1%) of Yu0, i.e., 0.02 (∆Yu = 0.02), as shown in Worksheet 1 (Figure A6). We 
can generate a series of estimated Yu, from Yu1 to Yu7 in Column B (B15: B21). 
Formula for Yu1 in Cell B15 is “=B14 + $B$12” as shown in formula bar. We 
copy Cell B15 to Cell B16 through Cell B21 to complete the column. By changing 
∆Yu, we can obtain a wide range of estimated Yu for Yu1 to Yu7.  

Next, we need to calculate Column E, Column F, and coefficient of determi-
nation R2 for a given estimated Yu starting from Yu1. We assign this first Yu1 
value (in Cell B15) to Cell F12, as shown in Figure A7 (Worksheet 2), and call 
this estimated Yu1 as key estimated active Yu (inside dashed Cell). We will use 
this key estimated active Yu for calculating y = (Yu − Y) in Column E, qy = 
q(Yu − Y) in Column F, and for calculating the Coefficient of determination 
R^2 in Cell F13. After the calculation, we will sequentially change the key esti-
mated active Yu from Yu1 to Yu2, Yu3… Yu7, etc. Figure A7 (Worksheet 2) 
shows the calculation of Column E, the formulas bar shows the Cell E3 as 
“=$F$12-D3”. We copy Cell E3 to Cell E4 through Cell E10 to complete the 
column. 

The next step is to calculate the Column F for q(Yu − Y). This is done by tak-
ing the log of Column E, e.g., the formulas bar shows the calculation of Cell F3 
as “=LOG (E3)”, as shown in Figure A8 (Worksheet 3). We copy Cell F3 to Cell 
F4 through Cell F10 to complete the column, as shown in Worksheet 3. Next, we 
need to use the same key estimated active Yu in Cell F12 to calculate the Coef-
ficient of determination R2, as shown in Worksheet 4 (Figure A9). Cell F13 gives 
the Coefficient of Determination. There are two ways to get Coefficient of De-
termination. We can use either “=(CORREL (array1, array2))^2” as shown in  
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(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure A6. Resolving Optimal Yu (Worksheet 1). 
 

 
(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure A7. (Worksheet 2). 

https://doi.org/10.4236/jamp.2023.115080


R. W. Lai et al. 
 

 

DOI: 10.4236/jamp.2023.115080 1244 Journal of Applied Mathematics and Physics 
 

 
(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure A8. (Worksheet 3). 
 

 
(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure A9. (Worksheet 4). 
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the formula bar, or “=RSQ (known_y’s, known_x’s)”. The calculated R2 can have 
any number of decimals, as is shown in Cell F13, where we have 0.9737884 with 
six decimal places.  

By using 19.40 (Yu1) as key estimated active Yu in Cell F12, we obtain R^2 
as 0.973788 in Cell F13. We record this number in Cell E15 (parallel to the Yu1 
line) for the case of Yu1. By changing the key estimated active Yu in Cell F12 to 
19.60 (Yu2), the Cell F13 changes to 0.993255. We recorded this number in Cell 
E16. We sequentially change the Cell F12 values from Yu2, Yu3, through Yu7 in 
Column B (B15: B21) and record the resulting R^2 in Cell F13 into Column E 
(E15: E21), as shown in Figure A10 (Worksheet 5).  

For special case, when changing the key estimated active Yu in Cell F12 to 
20.00 (Yu4), the Cell F13 changes to 1. We record this number in Cell E18, as 
shown in Figure A10 (Worksheet 5). By changing the key estimated active Yu 
in Cell F12 to 20.60 (Yu7), the Cell F13 changes to 0.995595. We recorded this 
number in Cell E21. By plotting Column B for Yu1 to Yu7 (B15: B21) versus 
Column E for corresponding R2 in Column E (E15: E21), we obtain Figure A11, 
where an arrow is pointing to the optimal upper asymptote Yu, Yu = 20.00 with 
maximum R2 at 1 is the final answer. 
 

 
(x) and (y) are elementary X and elementary Y, y is for equation y. X is cumulative of (x), 
Y is cumulative of (y). 

Figure A10. (Worksheet 5). 
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Figure A11. Optimal unique Yu. 
 

The last thing to do is to express the proportionality equation and graph using 
the optimal upper asymptote. By assigning the optimal upper asymptote Yu (Yu 
= 20.00) to Cell F12, we have all data ready for graphing. We first plot Column B 
(B3: B10) for X vs. Column E (E3: E10) for (Yu − Y) on a linear-by-linear scale, 
as shown in transitional graph Figure A12(a). By converting the vertical axis 
from linear into nonlinear logarithmic scale in this graph, we obtain Figure A12(b) 
without trendline equation and without coefficient of determination. This log- 
linear (semi-log) graph is the proportionality graph. The transitional graph is a 
plot of (Yu − Y) vs. X in a linear-by-linear scale. The proportionality graph is a 
plot of (Yu − Y) vs. X in a log by linear scale where the true comparison is q(Yu 
− Y) vs. X. 

To obtain trendline equation and the coefficient of determination in the pro-
portionality graph, we right click on data series (in Figure A12(b)). Then → 
adding trendline → then, in Trendline Options, select “exponential” → select 
“Display Equation on chart” → select “Display R-squared value on chart” → 
close, and we obtain Figure A12(b) with regression equation as y = 20e−0.115x, 
and coefficient of determination R2 = 1. When we select “exponential” in the 
Trendline Options, Excel gives us semi-log graph and provides trendline equa-
tion as exponential equation. This is awkward because Excel is not capable of 
providing a 10-based equation. The remedy is to convert e to θ(θ = 10) and con-
vert −0.115 to −0.05 using conversion factor of 2.303 (0.115/2.303 = 0.05), as 
shown in Figure A12(b), where y = 20θ−0.05x. The equation y = 20θ−kx means (Yu 
− Y) = Cθ−kx . By taking log on both sides of the equation, we get q(Yu − Y) = 
−KX + qC, its differential equation is d(q(Yu − Y)) = -KdX, meaning the nonli-
near change of nonlinear true value q(Yu − Y) is negatively proportional to the 
linear change of linear true value X. 

Summary of the corresponding steps:  
1) Use the last experimental data point as a reference upper asymptote Yu, 

e.g., Yu0 = 19.20) Assign an active incremental Yu value, ∆Yu , e.g., ∆Yu = 0.02 
(about 1% of Yu0), such that we can generate 7 to 10 estimated upper asymp-
totes to cover a range of Yu, e.g., we generate estimated upper asymptotes Yu1, 
Yu2, Yu3… Yu7 in Column B (B14: B21); 3) Assign an estimated upper asymptote  
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(a) 

 
(b) 

Figure A12. (a) Transitional graph, Transitional graph (Yu − Y) vs. X, Linear by linear 
scale and (b) Proportionality graph, q(Yu − Y) vs. X, Log by linear scale. 
 
(e.g., Yu1) to a special Cell in Excel (e.g., Cell F12) for use to calculate nonlinear 
face value y = (Yu − Y) in Column E and true nonlinear values qy = log (Yu − Y) 
in Column F; 4) Assign a special Cell (e.g., Cell F13) for calculating coefficient of 
determination R^2; 5) Calculate R^2 in Cell F13 using the formula “=CORREL 
(B3: B10, F3: F10)^2”; 6) Copy R^2 values from Cell F13 to Cell E15 (parallel to 
Yu1 value); 7) Go on to the next estimated Yu (e.g., Yu2) and repeat the last 4 
steps (step 3 to step 6); 8) Using the 7 estimated upper asymptotes along with its 
coefficient of determinations to plot estimated asymptotes versus the coefficient 
of determinations, (B14: B21) vs. (E14: E21), to obtain the optimal asymptote, as 
shown in Figure A11. The above example with Figure A11 and Figure A12 and 
its associated equation is like that of an example in arsenic toxicokinetic analysis 
presented in reference [3]. 

Other than template method, we can also use the trial-and-error method: First, 
let us copy Figure A12(b) into Figure A13 in Excel, then high light the data area 
→ right click the mouse → select data → click “Add” in Legend Entres → in Edit 
Series, enter series name Yu = 19.40 (Figure A9) → enter Column B (B3: B10) in 
series X values → enter Column E (E3: E10) in series Y values → OK. This is fol-
lowed by adding trendline and coefficient of determination for this Yu = 19.40. 
Subsequently, we try out with Yu = 19.60, 20.00, and 20.60. Figure A13 indicates 
that only the Yu = 20.00 gives the best optimal R^2 = 1. 

Attachment I 
Summary of the Alpha Beta (αβ) math (an Extension of XY Math into the αβ 

Math) 
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Figure A13. Trial and error for optimal Yu, Proportionality graph, q(Yu − Y) vs. X, log 
by linear scale. 
 
 We classify continuous numbers into linear and nonlinear. The key to the 

classification is the asymptote: liner numbers have no asymptote, such as … 
−3, −2, −1, 0, 1, 2, 3, 4…; In contrast, nonlinear numbers are associated with 
one or two asymptotes, such as …10−3, 10−2, 10−1, 100, 101, 102, 103, 104…, with 
a nonlinear zero as bottom asymptote. The numbers decrease in steps from 
right to left and decrease toward nonlinear zero but will never reach or touch 
the nonlinear zero. Asymptote is never part of the nonlinear numbers. There 
are two types of zero, linear zero and nonlinear zero. 

 The change of linear numbers is dY and dX. The change of nonlinear num-
bers is the nonlinear change relative to their asymptotes. For example, when 
there is one upper asymptote Yu or bottom asymptote Yb associated with Y, 
the nonlinear change of Y is d(q(Yu − Y)) or d(q(Y − Yb)).  

 Two mathematical Axioms in the αβ Math are: Axiom I on continuity and 
Axiom II on asymptote. 

Axiom I: Continuity exists for all collection of continuous numbers. Conti-
nuous numbers are dynamic, non-terminating, and can never be forced to stop 
(It is dishonest to use the uncertain word “infinity” as a disguise to stop the con-
tinuity). 

Axiom II: Asymptote is approachable but cannot be touched or crossed by the 
continuous nonlinear numbers, i.e., asymptote is never a part of the continuous 
nonlinear numbers.  
 The standard scale for nonlinear numbers is a 10 based logarithmic scale; its 

characteristic is the existence of a nonlinear zero, which is approachable but 
cannot be reached or touched.  

 When trying to plot a zero value on a logarithmic graph using a Microsoft 
Excel, we will get a warning banner telling us we cannot plot a zero in the lo-
garithmic scale. The nonlinear zero is approachable but cannot be touched 
and it is not plot able on the graph.  

 When either the linear numbers or the cluster of nonlinear numbers are as-
signed or plotted on the axes of graphs, these numbers are called face values 
of the numbers. For linear numbers, the face values are the same as the true 
values. For nonlinear numbers, the face values of nonlinear numbers are not 
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the same as the true values of nonlinear numbers. The true values of nonli-
near numbers are obtained by nonlinear logarithmic transformation to the 
nonlinear face values. For example, when we assign a nonlinear numbers αi 
to the nonlinear scale, its face-value is αi; however, its true-value is qαi. True- 
values, but not the face values, are what we need to account for when eva-
luating nonlinear changes. Face values of nonlinear numbers that can be as-
signed to the nonlinear scales may include a difference, a ratio, or a combina-
tion of both nonlinear numbers, all having nonlinear numbers measured rel-
ative to the asymptote. 

Symbols 

θ = 10; q = Log (nonlinear logarithmic); αβ (extension of XY); ϕ = (0) (nonlinear 
zero); x = elementary independent variable, y or (y) = elementary dependent va-
riable or y = equation y (inside the graph); X = cumulative of x, Y = cumulative 
of y or (y). 
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