

First Principles Investigation of the Structure and Properties of Superconducting Cubic Protactinium Hydride PaH₃

Tao Liu1*, Tao Gao²

¹School of Electronic and Communication Engineering, Guiyang University, Guiyang, China ²Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China Email: *liutao_july@163.com

How to cite this paper: Liu, T. and Gao, T. (2023) First Principles Investigation of the Structure and Properties of Superconducting Cubic Protactinium Hydride PaH₃. *Journal of Applied Mathematics and Physics*, **11**, 1113-1123.

https://doi.org/10.4236/jamp.2023.114073

Received: March 29, 2023 **Accepted:** April 25, 2023 **Published:** April 28, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Cubic protactinium hydrides are very important existing form in superconducting protactinium hydrogen series. In this work, the ground state structure and properties of cubic PaH₃ have been studied using the DFT + U method. This systematic study for two bulk properties includes the electronic structures, phonon dispersion curves, structural, mechanical and thermodynamic properties under the effective coulomb U and exchange JPBE + U parameters. Structural relaxation results show that the Pa-H and Pa-Pa distances in α -PaH₃ are significantly higher than that in β -PaH₃, and the H–H distances in α -PaH₃ are slightly smaller than that in β -PaH₃. For the ground state electronic structures of α -PaH₃ and β -PaH₃, we found that α -PaH₃ and β -PaH₃ are metallic, and the protactinium 5*f* electronic states and hydrogen have obvious bonding effect, resulting in weakening of the material's metallicity. This is consistent with observations for the other actinide hydrides such as ThH₃ and UH₃. The phonon spectrum calculations reveal that the PBE and PBE + U methods give quite different frequencies for the optical branches of phonons of α -PaH₃ and β -PaH₃. In addition, by including the vibrational entropy and the ZPE using the phonon frequencies obtained from the optimized unit cells we predict that the β -PaH₃ phase can not transit into α -PaH₃ phase above room temperature.

Keywords

 α -PaH₃ and β -PaH₃, Electronic Properties, Mechanical Properties, Thermodynamic Properties, Density Functional Theory (DFT)

1. Introduction

In the actinide hydrides series, Thorium (Th), Uranium (U) and Plutonium (Pu)

hydrides have been widely studied due to their important role in the nuclear industry. However, there are few reports on others actinide hydrides such as protactinium hydride (Pa-H). Protactinium hydride has generated some interest because protactinium is considered as a component of the conventional nuclear waste and an opportunity for studying the physics and chemistry of actinide-based materials [1] [2]. Moreover, protactinium hydride shows a variety of structural phases under different pressures. Xiao *et al.* systematically study the structure and superconductivity of protactinium hydride (PaH_n) at different pressures using the first principle [3]. Although the cubic PaH₈ (*Fm*-3*m*) exhibits high superconducting critical transition temperature under high pressure, the cubic PaH₃ structure seems to be thermodynamically stable within 100 GPa. Thus, in order to understand the rich structural phases and superconducting properties of protactinium hydride, it is very important to study the ground state structure and physical properties of cubic protactinium hydride.

As early as 1984, Ward *et al.* experimentally reported structures, physical and chemical properties of a solid solution Pa_3H_4 - Pa_3H_5 above 500 K and cubic PaH_3 phase for the Pa-H system [2]. Sellers *et al.* reported that metal Pa with H₂ reacted at 523 K to form a black β -PaH₃ which was isostructural with cubic β -UH₃ [1]. Dod reported that α -PaH₃ formed between 373 K and 473 K had a cubic α -UH₃-type structure [2]. Moreover, these early studies indicated that Pa-H system shows some similarities with U-H system. This also provides signs for further understanding and potential applications of cubic PaH₃ phase. The neighbouring thorium-hydrides (Th-H) and uranium-hydrides (U-H) systems have been thoroughly investigated [4] [5] [6] [7] and each exhibits unique properties, but the ground state structures and properties of the cubic PaH₃ are not known.

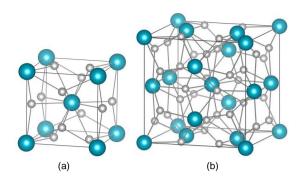
John W. Ward [2] reported that the high temperature phase β -PaH₃ transits irreversibly into the low temperature phase *a*-PaH₃ above room temperature. Based on the irreversibility of the β to *a* phase transition, *a*-PaH₃ is always believed to be a metastable state. To further understand the phase transition process, the ground state properties such as structures, phonon spectrum, electronic, mechanical and thermodynamic properties of cubic PaH₃ phase should be supplied. For actinide-based compounds, the density functional theory (DFT) schemes including the local spin density approximation (LSDA) or the generalized gradient approximation (GGA) fail to get the ground state, while the DFT + *U* formalisms can effectively get the right ground state such as its neighbor thorium and uranium compounds [8] [9] [10] [11]. Considering that 5*f* electronic states of cubic PaH₃ system show both localized and itinerant characters [2], here we present a comparative DFT + *U* study on the ground-state properties of *a*-PaH₃ and β -PaH₃.

2. Computational Details

In our works, all DFT calculations are performed using the Vienna Ab initio Simulation Package (VASP, version 5.4) [12] [13]. The exchange-correlation functional in the local density approximation (LDA) and the generalized gra-

dient approximation (GGA) as parametrized by Perdew-Burke-Ernzerhof (PBE) [14] [15] were used in this study. A Hubbard-like term was added in order to take into account the strong 5*f* electron correlations in actinide protactinium cation, according to the DFT + *U* scheme. The brillouin zones were divided using Monchhorst Pack *k*-mesh with $9 \times 9 \times 9$ grid for the DFT + *U* calculations. The kinetic energy cut off of 550 eV was used for plane waves. The energy convergence criterion was 10^{-6} eV. The Hellmann-Feynman forces on each atom for ionic relaxation were less than 0.01 eV/Å. The DFT + *U* approach [16] [17] [18] [19] [20] was carried out to enforce localization of Pa 5*f* electrons. The total energy functional for this scheme is of the form

$$E_{DFT+U} = E_{DFT} + \frac{U-J}{2} \sum_{\sigma} \left[Tr \rho^{\sigma} - Tr \left(\rho^{\sigma} \rho^{\sigma} \right) \right]$$
(1)


where ρ^{σ} is the density matrix of Pa-*f* states, *U* and *J* are the spherically averaged screened coulomb energy and exchange energy, respectively.

3. Results and Discussion

3.1. Structural and Mechanical Properties

The crystal structures of α -PaH₃ and β -PaH₃ have been shown in **Figure 1(a)** and **Figure 1(b)** respectively. The different magnetic orders (*i.e.* FM and AFM) are adopted in our DFT + U calculations. In the meanwhile, for α -PaH₃ and β -PaH₃, the relationship between the optimized lattice constant and a series of U values is shown in **Figure 2(a)** and **Figure 2(b)** respectively. Our LDA/PBE + U calculated results show that there is no obvious difference between the effect of ferromagnetic and antiferromagnetic order on the lattice parameters of cubic α -PaH₃ and β -PaH₃. In **Figure 2(a)**, when the U is around 2.0 eV, our calculated lattice constant of α -PaH₃ using the PBE + U method is good calculation result compared to experimental data. However, as shown in **Figure 2(b)**, our results for FM phase of β -PaH₃ demonstrates that the lattice constant is close to the experimental value [1] [2] when U is around 4.0 eV. Thus, for cubic α -PaH₃ and β -PaH₃, the lattice constants obtained from the PBE + U computations are in good agreement with the experimental data.

In **Table 1**, the lattice constant and the interatomic distance of α -PaH₃ and β -PaH₃ using the PBE and PBE + U methods were listed. Our structural relaxation results show that the atomic spacing has obvious difference in α -PaH₃ and β -PaH₃ structures. In α -PaH₃, the Pa-H distance is 2.305 Å, significantly higher than the Pa-H distance in β -PaH₃. Moreover, the Pa-H distance in β -PaH₃ is also higher than that in α -PaH₃ structure. Charge density decomposition using the Bader method suggests that the Pa atoms forming linear chains in β -PaH₃ atoms are bonded: the bond-lengths of 2.555 Å are only slightly larger than the largest nearest-neighbor distance in the metallic Pa phase (0.326 nm). Therefore, the calculated results show that the Pa-H and Pa-Pa distances in α -PaH₃ is slightly smaller than that in α -PaH₃.

Figure 1. Cubic PaH₃ structure: α -PaH₃ (a) and β -PaH₃ (b), where the large and small balls denote the protactinium and hydrogen atoms, respectively.

Figure 2. Optimized lattice parameter for α -PaH₃ (a) and β -PaH₃ (b) in LDA/PBE + U as a function of the parameter U.

				•	
Compound	Method	a ₀ (Å)	d (Ра–Н) (Å)	d (Pa-Pa) (Å)	d(H–H) (Å)
	PBE	4.135	2.288	4.093	2.047
a-PaH₃	PBE + U	4.149	2.305	4.123	2.061
	Expt. ^{[1][2]}	4.150			
	PBE	6.615	2.250	3.276	2.537
β-PaH₃	PBE + U	6.646	2.261	3.294	2.555
	Expt. ^[2]	6.648			

Table 1. The lattice constant and interatomic distance for α -PaH₃ and β -PaH₃.

In **Table 2**, the elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio of α -PaH₃ and β -PaH₃ using the PBE and PBE + U methods were listed. For cubic α -PaH₃ and β -PaH₃ structures, the elastic constants satisfy the following mechanical stability criteria [21]:

$$C_{11} > 0, \ C_{44} > 0, \ C_{11} > |C_{12}|, \ (C_{11} + 2C_{12}) > 0$$
 (2)

These results indicate that the structure of α -PaH₃ and β -PaH₃ is stable. We have calculated the bulk (*B*) and shear moduli (*G*), Young's modulus (*E*) and Poisson's ratio (*v*) of α -PaH₃ and β -PaH₃ using the Voigt-Reuss-Hill (VRH) approximations [22] [23]. From Table 2, the obtained bulk and shear moduli of

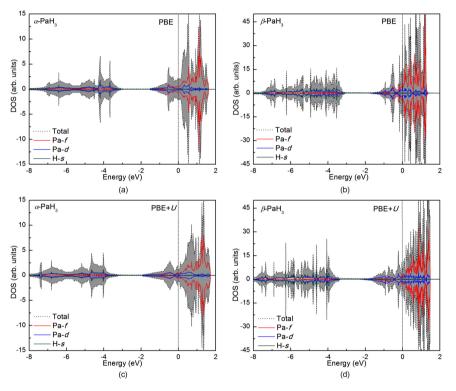
Compound	Methods	C_{11}	C_{12}	C_{44}	В	G	Е	υ
a-PaH ₃	PBE	316.29	51.40	28.87	139.70	49.08	131.80	0.34
	PBE + U	309.66	70.14	28.26	149.98	44.00	120.24	0.37
β-PaH ₃	PBE	195.48	79.53	51.94	118.18	39.02	105.45	0.35
	PBE + U	227.97	76.72	39.81	127.14	38.62	105.21	0.36

Table 2. The calculated elastic constants C_{ij} , bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio v for a-PaH₃ and β -PaH₃. The elastic constants and moduli are in units of GPa.

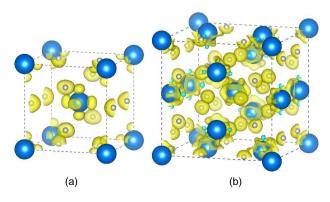
 α -PaH₃ and β -PaH₃ with the PBE+ *U* are larger than that the PBE. These differences might be owing to the overestimation of lattice constants by PBE + *U* method. Our obtained Poisson's ratio of 0.34 - 0.37 for α -PaH₃ and β -PaH₃ is reasonable for being in the range of 0.2 - 0.4 for typical metallic materials.

3.2. Electronic Properties

The total density of states (DOS) and projected density of states (PDOS) of α -PaH₃ and β -PaH₃ are shown in **Figure 3** by using the PBE and PBE + *U* methods. **Figure 3** shows the protactinium 5*f* electrons are mainly distributed and there is no obvious localization feature at the Fermi energy for the electronic structure of α -PaH₃ and β -PaH₃. Although the 5*f* electron of Pa in these two systems is a strongly electronic correlation effects, Pa-*f* and H-*s* electrons have obvious hybrid effect near the Fermi energy level, and further proves that the protactinium 5*f* electrons have itinerant characters in α -PaH₃ and β -PaH₃. In cubic PaH₃ structure, Pa 5*f* electrons does not show strong localization characteristics near the Fermi level, but has obvious bonding effect with Hand H 1s electrons. This is very similar to the electronic properties of protactinium hydride (PaH_n) (n = 1 - 9) in *Fm*3*m*-PaH₈ superconductive structure studied by Xiao *et al.* [3]. Thus, for cubic α -PaH₃ and β -PaH₃, the electronic properties for Pa-f and H-s are very important for the superconductivity of Pa-H system.


As shown in **Figure 4**, the difference charge density distribution is further analyzed for α -PaH₃ and β -PaH₃, to study the bonding characters between protactinium and hydrogen atoms. We can see clearly that the ionic character of the protactinium-hydrogen bonds is enhanced with the PBE + *U* formalism. This result is in consistent with our previous PDOS analysis.

3.3. Phonon Spectrum and Thermodynamic Properties


Phonon frequency and thermodynamic properties calculations are carried out using the Hellmann-Feynman theorem and the supercell method [24]. A $2 \times 2 \times 2$ supercell is adopted to calculate the force constants, and a $3 \times 3 \times 3$ Monkhorst-Pack *k*-points mesh is used for integrations over the BZ. The atomic displacements for force constants calculations are all set to 0.02 Å.

For α -PaH₃ and β -PaH₃, the phonon dispersion curves in the BZ and together with the phonon DOS are shown in Figure 5(a) and Figure 5(b). For cubic

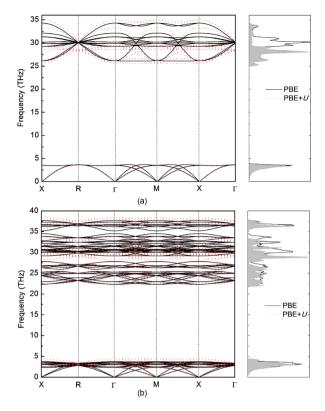

PaH₃, the acoustic and optical branches of phonon come from Pa and H vibrations, and Pa atoms are much heavier than H atoms, thus a large gap between acoustic and optical branches can be observed. For the three acoustic branches, the dispersion curves are almost the same in PBE and PBE + *U* results. While for the optical branches from **Figure 5(a)**, the frequencies calculated with PBE + *U* are all shifted down by about 2.3 THz that in comparison with PBE. This is because the on-site Coulomb repulsion enhances the ionic character of the Pa-H bonds, and thus reduces the bonding strength. Our studies indicate that the lattice dynamics behaviors of both α - and β -PaH₃ strongly depend on the electronic correlation effects.

Figure 3. Total and projected electronic density of states (DOS) of α -PaH₃ and β -PaH₃ using PBE and PBE + *U* method.

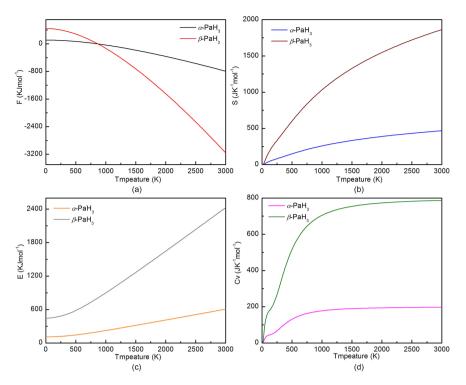


Figure 4. Difference electron charge density of α -PaH₃ (a) and β -PaH₃ (b) using the PBE + *U* method.

Figure 5. Phonon dispersion curves (left panel) and corresponding phonon DOS (right panel) of *a*-PaH₃ (a) and β -PaH₃ (b) using the PBE and PBE + *U* method.

The thermodynamic properties such as the Helmholtz free energy F, vibrational entropy S, vibrational energy E, the heat capacity C_v (Figure 6) and the zero point energy (ZPE, Table 3) have been calculated by the density functional perturbation theory (DFPT) [25] [26]. All these properties are expressed per α -PaH₃ and β -PaH₃ unit, and a sample of values at 300 and 500 K is presented in **Table 3.** For α -PaH₃ and β -PaH₃, the vibrational energy *E* exhibits a similar trend that increases almost linearly with temperature and tends to display $k_{\rm B}T$ behavior at high temperatures. With the increase of temperature, the differences between α -PaH₃ and β -PaH₃ becomes even more apparent, which may be attributed to the higher frequencies related to lighter H atom vibrations. And the Fdecreases almost linearly with temperature. The entropy S increases with the rising of temperature since the vibrational contribution to the entropy increases as the temperature rises. However, Figure 6(b) demonstrates the entropy of β -PaH₃ is significantly higher than that of α -PaH₃, the discrepancies are mainly because of the difference in the number of hydrogen atoms. In addition, the heat capacity C_v increases with the applied temperature. Below a temperature of around 200 K, the C_v increases very rapidly with increasing temperature and displays the T^3 law behavior. And above 800 K, the C_v increases slowly with temperature and gradually approaches the Dulong-Petit limit [27]. Hence, the β phase of cubic PaH₃ may not transit into α phase above room temperature owing to the thermodynamic criteria.

Figure 6. Thermodynamic properties of α -PaH₃ and β -PaH₃ using the PBE + *U* method: the Helmholtz free energy *F*(a), the entropy *S*(b), the internal energy *E*(c), and the constant-volume specific heat C_v (d).

Table 3. Predicted thermodynamic properties for α -PaH₃ and β -PaH₃ phases at 300 K and 500 K.

Phase	T(K)	F _{vib} J∕(K·mol)	S _{vib} J mol	Cv J∥(K·mol)	E _{vib} kJ mol	ZPE <i>kJ mol</i>
a-PaH₃	300	93.10	95.10	80.98	121.63	107.96
	500	68.65	149.11	130.95	143.21	
β-PaH₃	300	381.69	386.39	321.21	497.61	442.62
	500	282.99	599.28	515.32	582.63	

4. Conclusion

In summary, we have systematically studied the structural, electronic, mechanic and thermodynamic properties of α -PaH₃ and β -PaH₃ by employing the PBE and PBE + U methods. Firstly, to obtain reliable ground state structure and properties of α -PaH₃ and β -PaH₃ we found the effective U parameter. Then, the Pa-H and Pa-Pa distances in α -PaH₃ are significantly higher than that in β -PaH₃, and the H-H distances in α -PaH₃ are slightly smaller than that in β -PaH₃. Moreover, we found that α -PaH₃ and β -PaH₃ are metallic, and the protactinium 5*f* electronic states and hydrogen have obvious bonding effect. These studies on the ground state structure and properties of cubic PaH₃ system are crucial for further understanding and studying the superconducting properties of metal hydride. Especially for the cubic PaH₃, the weak bonding between Pa and H near the Fermi level provides a useful supplement to the understanding of superconductivity. As a result of effecting the Pa-H bonds, inclusion of the on-site Coulomb interaction largely influences the optical branches of vibration modes for α -PaH₃ and β -PaH₃. We thus suggest that measuring the vibrational or thermodynamic properties may give out information on the correlation strengths of uranium 5*f* electrons in α - and β -PaH₃. Furthermore, the calculations show that the β -PaH₃ phase can not transit into α -PaH₃ phase above room temperature.

Acknowledgements

The authors thank Doc. Shiyin Ma for useful discussion.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Sellers, P.A., Fried, S., Elson, R.E., Zachariasen, W. (1954) The Preparation of Some Protactinium Compounds and the Metal. *Journal of the American Chemical Society*, **76**, 5935-5938. <u>https://doi.org/10.1021/ja01652a011</u>
- Ward, J.W., Haschke, J.M., Rebizant, J., Bartscher, W. (1984) Phase Relations, Structures and Bonding for the Pa-H System. Journal of the Less Common Metals, 100,195-214. <u>https://doi.org/10.1016/0022-5088(84)90064-X</u>
- [3] Xiao, X., Duan, D., Xie, H., Shao, Z., Li, D., Tian, F., Song, H., Yu, H., Bao, K., Cui, T. (2019) Structure and Superconductivity of Protactinium Hydrides under High Pressure. *Journal of Physics: Condensed Matter*, **31**, Article ID: 315403. https://doi.org/10.1088/1361-648X/ab1d03
- [4] Rundle, R.E. (1947) The Structure of Uranium Hydride and Deuteride1. *Journal of the American Chemical Society*, 9, 1719-1723. <u>https://doi.org/10.1021/ja01199a043</u>
- [5] Flotow, H.E., Haschke, J.M. and Yamauchi, S. (1984) The Chemical Thermodynamics of Actinide Elements and Compounds: Pt. 9. The Actinide Hydrides. International Atomic Energy Agency, Vienna.
- [6] Zachariasen, W.H. (1953) Crystal Chemical Studies of the 5*f*-Series of Elements. XIX. The Crystal Structure of the Higher Thorium Hydride, Th₄H₁₅. *Acta Crystal-lographica*, 6, 390-393. <u>https://doi.org/10.1107/S0365110X53001095</u>
- [7] Peterson, D.T. and Rexer, J. (1962) The Composition of ThH₂ and Diffusion of Hydrogen in ThH₂. *Journal of the Less Common Metals*, 4, 92-97. https://doi.org/10.1016/0022-5088(62)90063-2
- [8] Devey, A.J. (2011) First Principles Calculation of the Elastic Constants and Phonon Modes of UO₂ Using GGA + U with Orbital Occupancy Control. Journal of Nuclear Materials, 12, 301-307. <u>https://doi.org/10.1016/j.jnucmat.2011.03.012</u>
- [9] Dorado, B., Amadon, B., Freyss, M., Bertolus, M. (2009) DFT + U Calculations of the Ground State and Metastable States of Uranium Dioxide. *Physical Review B*, 79, Article ID: 235125. <u>https://doi.org/10.1103/PhysRevB.79.235125</u>
- [10] Chen, Q., Lai, X., Tang, T., Bai, B., Chu, M., Zhang, Y. and Tan, S. (2010) First-Principles Study of the Electronic Structure and Optical Properties of UO₂.

Journal of Nuclear Materials, **401**, 118-123. https://doi.org/10.1016/j.jnucmat.2010.04.007

- [11] Liu, T., Li, S.C., Gao, T. and Ao, B.Y. (2020) Structural, Electronic, Magnetic and Optical Properties of Protactinium Oxides from Density Functional Theory. *Indian Journal of Physics*, 94, 53-60. <u>https://doi.org/10.1007/s12648-019-01457-z</u>
- [12] Kresse, G. and Hafner, J. (1994) *Ab Initio* Molecular-Dynamics simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. *Physical Review B*, **49**, 14251-14269. <u>https://doi.org/10.1103/PhysRevB.49.14251</u>
- [13] Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for *ab Initio* Total-Energy Calculations Using a Plane-Wave Basis Set. *Physical Review B*, 54, 11169-11186. <u>https://doi.org/10.1103/PhysRevB.54.11169</u>
- [14] Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K. (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. *Physical Review L*, **100**, Article ID: 136406. <u>https://doi.org/10.1103/PhysRevLett.100.136406</u>
- [15] Hong, J.W., Stroppa, A., Ínigue, J., Picozzi, S. and Vanderbilt, D. (2012) Spin-Phonon Coupling Effects in Transition-Metal Perovskites: a DFT + U and Hybrid-Functional Study. *Physical Review B*, **5**, Article ID: 054417. <u>https://doi.org/10.1103/PhysRevB.85.054417</u>
- [16] Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J. and Sutton, A.P. (1998) Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA + UStudy. *Physical Review B*, 57, 1505-1509. https://doi.org/10.1103/PhysRevB.57.1505
- [17] Anisimov, V.I., Zaanen, J. and Andersen, O.K. (1991) Band Theory and Mott Insulators: Hubbard UInstead of Stoner. *Physical Review B*, 44, 943-954. <u>https://doi.org/10.1103/PhysRevB.44.943</u>
- [18] Anisimov, V.I., Aryasetiawan, F. and Lichtenstein, A.I. (1997) First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: the LDA + UMethod. Journal of Physics: Condensed Matter, 9, 767-808. https://doi.org/10.1088/0953-8984/9/4/002
- [19] Liechtenstein, A.I., Anisimov, V.I. and Zaanen, J. (1995) Density-Functional Theory and Strong Interactions: Orbital Ordering in Mott-Hubbard Insulators. *Physical Review B*, **52**, R5467-R5470. <u>https://doi.org/10.1103/PhysRevB.52.R5467</u>
- [20] Czyżyk, M.T. and Sawatzky, G.A. (1994) Local-Density Functional and on-Site Correlations: The Electronic Structure of La₂CuO₄ and LaCuO₃. *Physical Review B*, 9, 14211-14228. <u>https://doi.org/10.1103/PhysRevB.49.14211</u>
- [21] Wu, Z.-J., Zhao, E.-J., Xiang, H.-P., Hao, X.-F., Liu, X.-J. and Meng, J. (2007) Crystal Structures and Elastic Properties of Superhard IrN₂ and IrN₃ from First Principles. *Physical Review B*, **76**, Article ID: 054115. <u>https://doi.org/10.1103/PhysRevB.76.054115</u>
- Hill, R. (1952) The Elastic Behaviour of a Crystalline Aggregate. *Proceedings of the Physical Society. Section A*, **65**, 349-354.
 https://doi.org/10.1088/0370-1298/65/5/307
- [23] Haines, J., Léger, J.M. and Bocquillon, G. (2001) Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31, 1-23. <u>https://doi.org/10.1146/annurev.matsci.31.1.1</u>
- [24] Parlinski, K., Li, Z.Q. and Kawazoe, Y. (1997) First-Principles Determination of the Soft Mode in Cubic ZrO₂. *Physical Review L*, **78**, 4063-4066. <u>https://doi.org/10.1103/PhysRevLett.78.4063</u>

- [25] Baroni, S., De Gironcoli, S., Dal Corso, A. and Giannozzi, P. (2001) Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. *Reviews* of Modern Physics, 73, 515-562. <u>https://doi.org/10.1103/RevModPhys.73.515</u>
- [26] Gonze, X. (1995) Adiabatic Density-Functional Perturbation Theory. *Physical Review A*, 52, 1096-1114. <u>https://doi.org/10.1103/PhysRevA.52.1096</u>
- [27] Terki, R., Bertrand, G., Aourag, H. and Coddet, C. (2008) Thermal Properties of Ba_{1-x}Sr_xZrO₃ Compounds from Microscopic Theory. *Journal of Alloys and Compounds*, 456, 508-513. <u>https://doi.org/10.1016/j.jallcom.2007.02.133</u>