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Abstract 
Block multiple measurement vectors (BMMV) is a reconstruction algorithm 
that can be used to recover the support of block K-joint sparse matrix X from 
Y X V= Ψ + . In this paper, we propose a sufficient condition for accurate 
support recovery of the block K-joint sparse matrix via the BMMV algorithm 
in the noisy case. Furthermore, we show the optimality of the condition we 
proposed in the absence of noise when the problem reduces to single mea-
surement vector case. 
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1. Introduction 

Compressed sensing [1] [2] [3] theory is a theoretical method to solve sparse so-
lutions of large underdetermined linear systems, which has received lots of at-
tention in the last decades and it has been applied to many research domains, in-
cluding signal processing [4], radar system [5], medical imaging [6], image 
compression [7] and so on. Suppose a signal { }1 2, , , N

Nx x x x= ∈  , we aim to 
reconstruct it from linear measurements  

,y x v= Ψ +                           (1) 

where My∈  is called measurement vector, M N×Ψ∈  denotes a measure-
ment matrix with M N , and Mv∈  is the noise vector. Because the signal 
x  we need to reconstruct is a vector, (1) is named as single measurement vector 
(SMV) model. Since the solution of (1) is not unique, some additional con-
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straints on Ψ  and x  are needed to reconstruct x  uniquely. What we are 
interested in is that x  is sparse. 

0x  is the 0  norm. When 
0x K≤ , we 

say signal x  is K-sparse. To reconstruct such a signal x  from noisy model (1), 
a intuitive idea is to find a solution of 0  minimization  

0min s.t. ,x y x v= Ψ +                     (2) 

where Ψ  and y  are known. The problem mentioned above is called the SMV 
problem, and it is also the most common problem model in the field of signal 
recovery. The optimization problem (2) has a lot of efficient and effective algo-
rithms that use greed strategy to recover x , such as orthogonal matching pur-
suit (OMP) [8], stagewise OMP [9], regularized OMP [10], compressive sam-
pling matching pursuit [11], subspace pursuit [12], generalized OMP (gOMP) 
[13], optimized OMP [14], backtracking-based adaptive OMP [15], etc. And 
various researches see [16] [17] [18]. 

If the signal we need to recover is not a vector but a matrix N HX ×∈ , then 
model (1) is transformed to multiple measurement vector (MMV) model as fol-
lows.  

,Y X V= Ψ +                          (3) 

where M HY ×∈  and M HV ×∈ . 
In many applications, including reconstruction multiband signals [19] and 

face recognition [20], the matrix X has a few nonzero rows with blocks, i.e., we 
call block joint sparse matrix. In terms of how to measure the block joint sparsi-
ty, we can use a series of row blocks to present X. As in [21] and [22], we assume 
that each block has the same length and is d . Therefore, for rewriting X, we 
firstly define  

[ ] ( ) ( )
TT T T T

11 1 1 2, , , , ,dj djd j d jX j X X X X−− + − +
 =    

for 1 j P≤ ≤ , where iX  denotes the i-th row of X. Then, X is represented as:  

[ ] [ ] [ ] [ ]
TT T T T1 , 2 , , 1 , .X X X X P X P = −   

If there are no more than K blocks [ ]X j ≠ 0  in N HX ×∈ , X is a block 
K-joint sparse matrix. The measurement matrix Ψ  can be rewritten as:  

[ ] [ ] [ ] [ ]1 , 2 , , 1 , ,P PΨ = Ψ Ψ Ψ − Ψ    

where  

[ ] ( ) ( ) 11 1 1 2, , , , ,dj djd j d jj −− + − +
 Ψ = Ψ Ψ Ψ Ψ   

for 1 j P≤ ≤ , and iΨ  denotes the i-th column of Ψ . 
Thus, to reconstruct X, we turn to solve the following optimization problem, 

which is called MMV problem.  

( )min s.t. ,supp X Y X V= Ψ +                  (4) 

where the ( ) [ ]{ }|supp X j X j= ≠ 0  represents the set of nonzero blocks. 
To discuss the performance of the reconstruction algorithm for solving (2), 
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restricted isometry property (RIP) [23] is very common. Then, to study (4), 
block RIP (bRIP) as a generalization of RIP was proposed in [24]. Particularly, 
we say that matrix Ψ  obeys the bRIP with parameter ( )0,1blockδ ∈  if  

( ) ( )2 2 2
2 2 21 1block blockδ θ θ δ θ− ≤ Ψ ≤ +                (5) 

for any block K-sparse vectors θ . The smallest one among all blockδ  meeting 
(5) is called the block restricted isometry constant (bRIC) of A with order K. For 
simplicity of writing, throughout this paper, we still use Kδ  to represents the 
bRIC whenever there is no confusion. 

Based on the MMV algorithm [25], Fu et al. firstly proposed a new greedy algo-
rithm in [22], which is called block MMV (BMMV), to recover the block joint sparse 
matrices by thinking about block joint sparsity. Simply, the BMMV algorithm is 
a block multiple measurement vectors version of OMP. For { }1,2, , PΓ ⊂  , we 
use Γ  to denote the cardinality of Γ . Let [ ] M × ΓΨ Γ ∈  denote the subma-
trix of the vector X whose rows indices are restricted to Γ  and the submatrix of 
Ψ  that whose columns indices are only restricted to the set Γ  is denoted by 
[ ] HX Γ ×Γ ∈ . The BMMV algorithm selects the block index closest to the resi-

dual to add to the estimated support at each iteration. The estimated support is 
used to solve a least square problem to get the estimated original signal. We 
present the detailed framework of the BMMV algorithm which is described in 
Algorithm 1. 

 

 
 

Like other signal reconstruction algorithms, many results about performance 
of recovering block MMV problem via BMMV are studied. It is represented in  

[22] that if Ψ  obeys 1
1

1K K
δ + <

+
, then the block K-joint sparse matrices can 

be accurately reconstructed in K iterations from noiseless model Y X= Ψ  by 

BMMV. In [21], the condition in [22] was improved to 1
1

1K K
δ + <

+
 which  

also is proved to be sharp. As far as we know, there are no researches on support 
recovery under noisy model (3) with block structure. We complete this part of 
content that has not yet been studied. It is necessary to study the recovery per-
formance of the BMMV algorithm in noisy case because it is inevitably conta-
minated by noise in practical applications. Specifically, we firstly prove that if  
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1
1

1K K
δ + <

+
 and [ ]

1

2min
1 1Fi

K

X i
K
ε

δ∈Ω
+

>
− +

, then the BMMV algorithm can 

perfectly recover ( )supp X  with stopping criteria k
F

R ε≤  under FV ε≤ . 

Moreover, our sufficient condition is optimal if noisy model degenerates to 
noiseless model. Besides, when 1d =  and 1H = , the BMMV algorithm turns 
to the OMP algorithm, and the sufficient condition we mentioned above dege-
nerates to ([17], Theorem 1). 

2. Preliminaries 
2.1. Notation 

Let 
2⋅  and 

F⋅  denote the 2  and Frobenius norm of a vector and matrix, re-
spectively. The zero and identity matrix are denoted by 0  and I, respectively. The 
j-th element of vector x  is denoted by jx . Let ( ) [ ]{ }T|supp X j X jΩ = = ≠ 0  
denotes the support of a matrix X with block structure, then KΩ ≤  for any 
matrix X which is block K-joint sparse, where [ ]TX j  denote the transpose of 

[ ]X j . P as the number of blocks of X is assumed for simplity. Let 1 2\S S  
represents a set which elements are indexed by 1S  and are not contained in set 

2S  for any set { }1 2, 1,2, ,S S P⊂  . Similarly, we use { }1,2, , \c PΩ = Ω  and 
{ }1,2, , \c PΓ = Γ  represent the complementary of set Ω  and Γ , respec-

tively. Let [ ] [ ] [ ]( ) [ ]
1† T T−

Ψ Γ = Ψ Γ Ψ Γ Ψ Γ  denotes the pseudoinverse of [ ]Ψ Γ  
if the rank of the columns of [ ]Ψ Γ  is full, where the inverse of a square matrix 
is represented by ( ) 1−⋅ . Therefore, the projector and its orthogonal complement 
on the columns space of [ ]Ψ Γ  can be denoted by [ ] [ ] [ ]†Γ = Ψ Γ Ψ ΓP  and 

[ ] [ ]I⊥ Γ = − ΓP P , respectively. 

2.2. Some Useful Lemmas 

For proving our subsequent theoretical studies, we first present some useful 
lemmas for our theoretical analysis. 

Lemma 1 ([26], Lemma 1) Suppose Ψ  obeys both the bRIP of orders 1K  
and 2K , then 

1 2K Kδ δ≤  with 1 2K K< .  
Lemma 2 ([11], Proposition 3.1) Suppose Γ  is a set with KΓ ≤  and Ψ  

obeys the bRIP of order K. Then  

[ ] ( )T
22

1 ,Kx xδΨ Γ ≤ +  

where ∈ Mx  .  
Lemma 3 ([26], Lemma 2) Let 1S  and 2S  satisfy 1 2\ 1S S ≥ . Suppose Ψ  

obeys 1 2S S∪ -order bRIP, then  

( ) [ ] [ ] ( )1 2 1 2

22 2
1 2 12 22

1 \ 1 ,S S S Sx S S S x xδ δ⊥
∪ ∪− ≤ Ψ ≤ +P  

where 2 1S Sx ∪∈ .  
Lemma 4 ([27], Lemma 1) Let m nB ×∈  and n pD ×∈ . Then  

2 T .F F F
BD D B BD≤  
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3. Main Results 

Lemma 5 is proposed and plays a very important role in the subsequent theoret-
ical proof. 

Lemma 5 Let Γ ⊆ Ω  with Γ < Ω , then  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] ( )

T

\

T

1

max \ \

max \ \

\
1 \ 1 .

\

c

Fi

Fj

F

i X

j X

X
δ

⊥

∈Ω Γ

⊥

∈Ω

Ω +

Ψ Γ Ψ Ω Γ Ω Γ

− Ψ Γ Ψ Ω Γ Ω Γ

Ω Γ
≥ − Ω Γ +

Ω Γ

P

P  

Proof 1 The skill of proof is similar to the results in ([21, Lemma 4, Lemma 5). 
To prove Lemma 5, we first show that  

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ]

2

T

\

\ \
max \ \ .

\ \
F

Fi
F

X
i X

X

⊥
⊥

∈Ω Γ

Γ Ψ Ω Γ Ω Γ
Ψ Γ Ψ Ω Γ Ω Γ ≥

Ω Γ Ω Γ

P
P  (6) 

By assumption, it is easy to get Γ ⊆ Ω , Γ < Ω , and [ ]\ 0
F

X Ω Γ ≠ , then  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]( ) [ ] [ ] [ ]

[ ] [ ] [ ]
[ ]

T

\

T

T
(i)

2
(ii)

max \ \

\ \ \

\

\ \ \

\

\ \
,

\ \

Fi

F

F

F

F

i X

X

X

X

X

⊥

∈Ω Γ

⊥

⊥ ⊥

⊥

Ψ Γ Ψ Ω Γ Ω Γ

Ψ Ω Γ Γ Ψ Ω Γ Ω Γ
≥

Ω Γ

Γ Ψ Ω Γ Γ Ψ Ω Γ Ω Γ
=

Ω Γ

Γ Ψ Ω Γ Ω Γ
≥

Ω Γ Ω Γ



P

P

P P  

(i) is because  

[ ]( ) [ ] [ ] [ ] [ ]T
,⊥ ⊥ ⊥ ⊥ ⊥Γ Γ = Γ Γ = ΓP P P P P            (7) 

and (ii) is from Lemma 4 with [ ] [ ]\B ⊥= Γ Ψ Ω ΓP , and [ ]\D X= Ω Γ . Thus, 
(6) holds. So, by (6), we can easily get that  

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

2

T

\

\ \

\ \ max \ \ .
F

F Fi

X

X i X

⊥

⊥

∈Ω Γ

Γ Ψ Ω Γ Ω Γ

≤ Ω Γ Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

P

P
    (8) 

Let  

\ 1 1
,

\
α

Ω Γ + −
= −

Ω Γ
 

then, by some sample calculations, we obtain  

2
2 \ ,

1
α
α

= − Ω Γ
−

                       (9) 

2

2
1 \ 1.
1

α
α

+
= Ω Γ +

−
                      (10) 
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To simplify the notation, for given cj∈Ω , it is necessary to introduce a new 
matrix d PZ ×∈ , and the p-th column of Z is defined as  

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

T

T

\ \
,

\ \

1 ,

p
p

p F

j X
Z

j X

p P

⊥

⊥

Ψ Γ Ψ Ω Γ Ω Γ
=

Ψ Γ Ψ Ω Γ Ω Γ

≤ ≤

P

P           (11) 

where [ ]\pX Ω Γ  is the p-th column of [ ] \\ PX Ω Γ×Ω Γ ∈ . Furthermore, we 
define  

[ ] [ ] [ ] ( )\ 1\ ,MQ j × Ω Γ +⊥= Γ Ψ Ω Γ Ψ ∈   P             (12) 

[ ] ( )\ 1\
,

0
PX

U Ω Γ + ×Ω Γ 
= ∈ 
 

                   (13) 

[ ]
( )\ 10

.\
P

F

W X Zα
Ω Γ + × 

= ∈ Ω Γ 
                (14) 

Then  

[ ] [ ] [ ]\ \QU X⊥= Γ Ψ Ω Γ Ω ΓP                 (15) 

and  

( ) [ ] 22 21 \ ,F F
U W Xα+ = + Ω Γ                 (16) 

( ) [ ]2 22 2 21 \ .
FF

U W Xα α α− = + Ω Γ               (17) 

Moreover,  

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

T T

1

(iii)
T T

1

(iv)
T T

1

(v)
T

\ \ \

\ \ \

\ \ \ ,

P

i i
p

P

p pF
p

P

p pF
p

pF F

W Q QU

X Z j X

X Z j X

X j X

α

α

α

=

⊥ ⊥

=

⊥

=

⊥

= Ω Γ Ψ Γ Γ Ψ Ω Γ Ω Γ

= Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

= Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

∑

∑

∑

P P

P

P

   (18) 

where (iii) is because (12)-(15), (iv) follows from (7), and (v) is from (11). 
Therefore, for any cj∈Ω , by applying (18), we can get  

( )

( )

( )
[ ] [ ] [ ] [ ] [ ]

2

2

21

2 2 T T
2 2

1 1

2 2 T

2

2 \ \ \

F
P

p p
p

P P

p p p p
p p

F F F F

Q U W

Q U W

QU QW W Q QU

QU QW X j Xα

=

= =

⊥

+

= +

= + +

= + + Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

∑

∑ ∑

P

(19) 

and  
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( )

( )

( )
[ ] [ ] [ ] [ ] [ ]

22

22

21

2 24 2 T T
2 2

1 1

2 24 3 T

2

2 \ \ \ .

F
P

p p
p

P P

p p p p
p p

F F F F

Q U W

Q U W

QU QW W Q QU

QU QW X j X

α

α

α α

α α

=

= =

⊥

−

= −

= + −

= + − Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

∑

∑ ∑

P

(20) 

By the (19) and (20) are mentioned before, we can have  

( ) ( )
( ) ( ) [ ] [ ] [ ] [ ] [ ]

( ) [ ] [ ] [ ] [ ] [ ]

( ) [ ] [ ] [ ] [ ] [ ]( )

22 2

24 2 T

4 T
2

4 T

1 2 1 \ \ \

21 \ \ \
1

1 | \ | \ \ \ ,

F F

F F F

F F F

F F F

Q U W Q U W

QU X j X

QU X j X

QU X j X

α

α α α

αα
α

α

⊥

⊥

⊥

+ − −

= − + + Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

 = − + × Ω Γ Ψ Γ Ψ Ω Γ Ω Γ − 

= − − Ω Γ × Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

P

P

P

(21) 

where the last equality because of (9). It is not hard to check that  

( ) ( )

( ) ( )
( ) ( ) [ ] ( ) ( ) [ ]

( ) [ ] ( ) ( )( )

22 2

(vi) 22 2
1 1

(vii) 2 22 2 2
1 1

22 2
1 1

1 1

1 1 \ 1 1 \

1 \ 1 1

F F

F F

F F

F

Q U W Q U W

U W U W

X X

X

α

δ δ α

δ α δ α α

α δ δ α

Ω+ Ω +

Ω + Ω +

Ω + Ω +

+ − −

≥ − + − + −

= − + Ω Γ − + + Ω Γ

= + Ω Γ − − +

 

( ) [ ] ( ) ( )( )
( ) [ ]

( ) [ ] ( )

22 2 2
1

2
24

12

(viii) 24
1

1 \ 1 1

11 \ 1
1

1 \ 1 \ 1 ,

F

F

F

X

X

X

α α δ α

αα δ
α

α δ

Ω +

Ω +

Ω +

= + Ω Γ − − +

 +
= − Ω Γ − − 

= − Ω Γ − Ω Γ +

                   (22) 

where (vi) follows Lemma 3 and (12), (vii) is due to (16) and (17), and (viii) is 
from (10). By (15), (21), (22), and the fact that 41 0α− > , we have  

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] ( )

2

T

2 T

2
1

\ \

\ \ \ \

\ \ \ \

\ 1 \ 1 .

F

F F

F F F

F

X

X j X

QU X j X

X δ

⊥

⊥

⊥

Ω +

Γ Ψ Ω Γ Ω Γ

− Ω Γ Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

= − Ω Γ Ω Γ Ψ Γ Ψ Ω Γ Ω Γ

≥ Ω Γ − Ω Γ +

P

P

P
 

Combining the aforementioned Equation with (8), we obtain  

[ ] [ ] [ ] [ ] [ ](
[ ] [ ] [ ] [ ] )

[ ] [ ] [ ] [ ] [ ](

T

\

T

T

\

\ \ max \ \

\ \

\ \ max \ \

F Fi

F

F Fi

X i X

j X

X i X

⊥

∈Ω Γ

⊥

⊥

∈Ω Γ

Ω Γ Ω Γ × Ψ Γ Ψ Ω Γ Ω Γ

− Ψ Γ Ψ Ω Γ Ω Γ

≥ Ω Γ Ω Γ × Ψ Γ Ψ Ω Γ Ω Γ

P

P

P
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[ ] [ ] [ ] [ ] )
[ ] ( )

T

2
1

max \ \

\ 1 \ 1 ,

c Fj

F

j X

X δ

⊥

∈Ω

Ω +

− Ψ Γ Ψ Ω Γ Ω Γ

≥ Ω Γ − Ω Γ +

P
 

which implies that  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

( ) [ ]

T

\

T

1

max \ \

max \ \

1 \ 1 \
.

\

c

Fi

Fj

F

i X

j X

Xδ

⊥

∈Ω Γ

⊥

∈Ω

Ω +

Ψ Γ Ψ Ω Γ Ω Γ

− Ψ Γ Ψ Ω Γ Ω Γ

− Ω Γ + Ω Γ
≥

Ω Γ

P

P  

Thus, we complete the proof.   
Remark 6 Specially, Lemma 5 is a general block version of ([28], Theorem 

3.2). The main difference between our Lemma 5 and ([28], Theorem 3.2) exist in 
two aspects. First, our model is block version of multiple measurement vectors. 
Second, the ways of calculating ( )supp X  are different.  

Based on the Algorithm 1 and lemmas we presented above, we show our main 
results in this section. We provide a sufficient guarantee for the exact support 
recovery of block joint sparse matrices with the BMMV algorithm under the 

FV ε≤  bounded noise from noisy model (3). 
Theorem 7 Consider (3). Assume that FV ε≤  and matrix X is block 

K-joint sparse. Provided that measurement matrix Ψ  obeys the bRIP of order 
1K +  with  

1
1 ,

1K K
δ + <

+
                       (23) 

and X satisfies  

[ ]
1

2min .
1 1Fi

K

X i
K
ε

δ∈Ω
+

>
− +

                 (24) 

Then based on the stopping criteria k
F

R ε≤ , the BMMV algorithm can 
accurately recover the ( )supp X  in K iterations.  

Proof 2 For proving Theorem 7, there are two points that need to be shown, 
namely, one is to prove that the BMMV algorithm selects a correct block index 
from ( )supp XΩ =  in each iteration, and the second is that the BMMV algo-
rithm will select all the indices in Ω  in all K iterations. The proof consists of 
two parts. First, we illustrate that all correct indices are identified in all iteration 
via BMMV. Second, we show that the process of identifying terminates after it is 
executed just K = Ω  iterations. In the first step the mathematical induction 
method is used. Suppose that in the first 1k −  iterations, the BMMV algorithm 
has selected the correct indices, which means that { }1 2 1

1 , , , k
k ω ω ω −
−Ω = ⊆ Ω  

and 1 k K≤ ≤ Ω = . Since 0Ω =∅ , it obviously holds when 1k = . Therefore, 
we only have to prove that a correct index is selected by the BMMV algorithm at 
the k-th iteration, i.e., 1\k

kω −∈Ω Ω . 
By the Step 3 and 4 in Algorithm 1, we can obtain that the orthogonal rela-
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tionship between 1kR −  and the columns space of [ ]iΨ , then we have  

[ ]T 1 0,k
F

i R −Ψ =  

for any 1ki −∈Ω , so we get that 1
k

kω −∉Ω . For proving 1\k
kω −∈Ω Ω , by the 

Step 1 of BMMV, we turn to proof  

[ ] [ ]
1

T 1 T 1

\
max max .

ck

k k
F Fi j

i R j R
−

− −

∈Ω Ω ∈Ω
Ψ > Ψ             (25) 

By the estimating step of the BMMV algorithm, we obtain  

[ ] [ ] [ ]( ) [ ]1T T
1 1 1 1

ˆ .k k k kX Y
−

− − − −Ω = Ψ Ω Ψ Ω Ψ Ω            (26) 

Then, from Step 4 of the BMMV algorithm and (26),  

[ ] [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]

( 1)
1

1 1 1

( 2)

1 1 1 1 1

( 3)

1 1 1 1

ˆ

\ \

\ \ ,

k
k k k

k k k k k

k k k k

R Y X X V

X X V

X V

τ

τ

τ

− ⊥
− − −

⊥
− − − − −

⊥ ⊥
− − − −

= −Ψ Ω Ω = Ω Ψ +

= Ω Ψ Ω Ω +Ψ Ω Ω Ω Ω +

= Ω Ψ Ω Ω Ω Ω + Ω

P

P

P P

   (27) 

where (τ1) is because the definition of [ ]1k
⊥

−ΩP  is used, (τ2) is based on 
( )supp XΩ =  and 1k−Ω ⊆ Ω , and (τ3) is due to [ ] [ ]1 1 0k k

⊥
− −Ω Ψ Ω =P . Con-

sequently, to show (25), we try to use (27) to obtain the lower and upper bound 
on the left and right side of (25), separately. For any 1\ ki −∈Ω Ω  and cj∈Ω , 
by the triangle inequality, it is obtained that  

[ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

1

1

1

1

T 1

\

T T
1 1 1 1\

T
1 1 1\

T
1\

max

max \ \

max \ \

max

k

k

k

k

k
Fi

k k k k Fi

k k k Fi

k Fi

i R

i X i V

i X

i V

−

−

−

−

−

∈Ω Ω

⊥ ⊥
− − − −∈Ω Ω

⊥
− − −∈Ω Ω

⊥
−∈Ω Ω

Ψ

= Ψ Ω Ψ Ω Ω Ω Ω +Ψ Ω

≥ Ψ Ω Ψ Ω Ω Ω Ω

− Ψ Ω

P P

P

P

 (28) 

and  

[ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

T 1

T T
1 1 1 1

T T
1 1 1 1

max

max \ \

max \ \ max .

c

c

c c

k
Fj

k k k k Fj

k k k kF Fj j

j R

j X j V

j X j V

−

∈Ω

⊥ ⊥
− − − −

∈Ω

⊥ ⊥
− − − −

∈Ω ∈Ω

Ψ

= Ψ Ω Ψ Ω Ω Ω Ω +Ψ Ω

≤ Ψ Ω Ψ Ω Ω Ω Ω Ψ Ω

P P

P P

(29) 

Therefore, by (28) and (29), to show (25), we only need to prove  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

1

1

T
1 1 1\

T
1 1 1

T T
1 1\

max \ \

max \ \

max max .

k

c

ck

k k k Fi

k k k Fj

k kF Fi j

i X

j X

i V j V

−

−

⊥
− − −∈Ω Ω

⊥
− − −

∈Ω

⊥ ⊥
− −∈Ω Ω ∈Ω

Ψ Ω Ψ Ω Ω Ω Ω

− Ψ Ω Ψ Ω Ω Ω Ω

> Ψ Ω + Ψ Ω

P

P

P P

      (30) 

Next, we try to find a lower bound on the left side of (30). Using the inductive 
assumption 1k−Ω ⊆ Ω  and [ ]( )1\ 1ksupp X k−Ω Ω = Ω + − . Hence, we obtain  

[ ] [ ]1\ 1 min .k F Fi
X k X i− ∈Ω

Ω Ω ≥ Ω + −               (31) 
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Since 1 1k k−Ω = −  and 1k−Ω ⊆ Ω , according to Lemma 5, we obtain  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] ( )
[ ] ( )

[ ] ( )

1

T
1 1 1\

T
1 1 1

1
1

( 4) 1
1

( 5)

1

max \ \

max \ \

\
1 2

1

\
1 1

1

min 1 1 ,

k

c

k k k Fi

k k k Fj

k F

k F

KFi

i X

j X

X
k

k

X
K

k

X i K

τ

τ

δ

δ

δ

−

⊥
− − −∈Ω Ω

⊥
− − −

∈Ω

−
Ω +

−
Ω +

+∈Ω

Ψ Ω Ψ Ω Ω Ω Ω

− Ψ Ω Ψ Ω Ω Ω Ω

Ω Ω
≥ − Ω + −

Ω + −

Ω Ω
≥ − +

Ω + −

≥ − +

P

P

         (32) 

where (τ4) is due to the assumption of X in this paper and the fact that 1k >  
and (τ5) is from Lemma 1, (23) and (31). Then, we deduce a upper bound on the 
right side of (30). There are 1\ kα −∈Ω Ω  and cβ ∈Ω  that make  

[ ] [ ] [ ] [ ]
1

T T
1 1\

max ,
k

k kF Fi
i V Vα

−

⊥ ⊥
− −∈Ω Ω

Ψ Ω = Ψ ΩP P  

[ ] [ ] [ ] [ ]T T
1 1max .

c k kF Fj
j V Vβ⊥ ⊥

− −
∈Ω

Ψ Ω = Ψ ΩP P  

Hence, we obtain  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

( )

1

T T
1 1\

T T
1 1

( 6) T
1

( 7)

1

max max

2 ,

2 1 ,

ck
k kF F Fi j

k kF F

k
F

K

i V j V

V V

V
τ

τ

α β

α β

δ ε

−

⊥ ⊥
− −∈Ω Ω ∈Ω

⊥ ⊥
− −

⊥
−

+

Ψ Ω + Ψ Ω

= Ψ Ω + Ψ Ω

≤ Ψ Ψ Ω  

≤ +

P P

P P

P
      (33) 

where (τ6) is because [ ] [ ] [ ]T
1, k Vα β ⊥
−Ψ Ψ Ω   P  is a matrix with two d H×  

subvectors and (τ7) are due to Lemma 2 and  

[ ]1 ,k FF
V V ε⊥

−Ω ≤ ≤P                   (34) 

respectively. Based on (32) and (33), (30) holds when  

( ) ( ) [ ]1 12 1 1 1 min ,K K Fi
K X iδ ε δ+ + ∈Ω

+ < − +  

that is,  

[ ] ( )1

1

2 1
min .

1 1
K

Fi
K

X i
K
δ ε

δ
+

∈Ω
+

+
>

− +
 

In addition, by (23), we obtain 1 1Kδ + < . Hence, once (24) is satisfied, a cor-
rect index is identified by the BMMV algorithm in each iteration. 

Next, the BMMV algorithm needs to be specified to be performed exact 
KΩ =  iterations, that equals to prove that we always have k

F
R ε>  for all 

[ )1,k K∈  and K
F

R ε≤ . Since only one correct index is selected by the 
BMMV algorithm at a iteration under (24), by (27) and triangle inequality, for 
all [ )1,k K∈ , we obtain  
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ]

( ) ( ) [ ]

( 8)

( 9)

1

1

\ \

\ \

1 \

1 min

1 ,

k
k k k kF F

k k k kF F

K k F

K Fi

K

R X V

X V

X

K k X i

τ

τ

δ ε

δ ε

δ ε

⊥ ⊥

⊥ ⊥

+ ∈Ω

+

= Ω Ψ Ω Ω Ω Ω + Ω

≥ Ω Ψ Ω Ω Ω Ω − Ω

≥ − Ω Ω −

≥ − − −

≥ − −

P P

P P

 

where (τ8) is from (34) and Lemma 3, and (τ9) is because of Lemma 1 and (31). 
Hence, if  

[ ]
1

2min ,
1Fi

K

X i ε
δ∈Ω

+

>
−

                   (35) 

then k
F

R ε>  for each [ )1,k K∈ . After some transformations, it is easily get  

1 1

2 2 ,
1 1 1K KK

ε ε
δ δ+ +

≥
− + −

                  (36) 

which is from ( )11 0,1Kδ +− ∈  and 1 11 1 1K KK δ δ+ +− + ≤ − . Therefore, from 
(35) and (36), if (24) holds, k

F
R ε>  for each 1 k K≤ < , i.e., it does not ter-

minate until the K-th iteration is completed. Likewise, from (27), we have  

[ ] [ ] [ ] [ ]

[ ]
( 10)

\ \

,

K
K K K KF F

K F

R X V

V
τ

ε

⊥ ⊥

⊥

= Ω Ψ Ω Ω Ω Ω + Ω

= Ω ≤

P P

P
 

where (τ10) is due to K KΩ = Ω = . Due to the termination criteria, the 
BMMV algorithm stops after the K-th iteration. Hence, the BMMV algorithm 
just executes K iterations. Our proof is complete.   

When 1H = , the X turns to a block K-sparse vector x  and V turns to a 
vector v . For block K-sparse vector, there are already many researches on re-
covery performance of block reconstruction algorithms, for example, block 
OMP (BOMP) ([26] [29]) and block gOMP (BgOMP) ([30] [31]).  

Corollary 8 Taking 1H =  in (3) and Theorem 7. Assume that 
2v ε≤  and 

vector x  is block K sparse. Provided that measurement matrix Ψ  obeys the  

bRIP of order 1K +  with 1
1

1K K
δ + <

+
, and x  satisfies  

2
1

2min [ ] .
1 1i

K

x i
K
ε
δ∈Ω

+

>
− +

 

Then based on the stopping criteria 
2

kr ε≤  ( r  is a residual vector), the 
BMMV algorithm can accurately recover ( )supp x  in K iterations.  

Remark 9 The results in the Corollary 8 are consistent with the results of [26], 
which is a sharp sufficient condition. However, [29] gives a new analysis for 
support recovery that is less restrictive for [ ] 2

mini x i∈Ω . For more details, 
please refer to [29].  

If the length of blocks 1d = , the block K-joint sparse is equivalent to K-row 

sparse. In [32] gives two theorems to show the bound 1
1

1K K
δ + <

+
 is optimal  
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in noiseless case. More details are in [32], which means the bound based on 
bRIP we proposed is optimal in the noiseless case. 

Corollary 10 Taking 1H =  and 1d =  in (3) and Theorem 7, X reduces to x , 
V reduces to v . Assume that 

2v ε≤  and vector x  is K sparse. Provided that  

measurement matrix Ψ  obeys the bRIP of order 1K +  with 1
1

1K K
δ + <

+
, 

and x  satisfies  

1

2min .
1 1ii

K

x
K
ε

δ∈Ω
+

>
− +

 

Then based on the stopping criteria 
2

kr ε≤ , the BMMV algorithm can ac-
curately recover ( )supp x  in K iterations.  

Remark 11 The Corollary 10 is same as ([17], Theorem 1), which is a sharp 
condition. [33] gives a less restrictive bound on mini ix∈Ω . This means that our 
result have room for improvement.  

4. Conclusions and Future Works 

In this paper, studies on the performance of support recovery of block K-joint 
sparse matrix via the BMMV algorithm from Y X V= Ψ +  are analyzed. We  

obtained that if Ψ  satisfies bRIP with 1
1

1K K
δ + <

+
 and  

[ ]
1

2min
1 1i F

K

X i
K
ε

δ∈Ω
+

≤
− +

, then BMMV can accurately reconstruct the  

( )supp X  in K iterations. With the help of ([32], Theorem 2), we also show the 
RIP-based condition is optimal when the problem reduces to SMV problem un-
der the noiseless case. 

Because our result about [ ]mini F
X i∈Ω  is not yet optimal. Thus, one of fu-

ture directions is to continue to refine this result and continue to study theoreti-
cal improvement of the related algorithms. Because the block length considered 
in this paper is a fixed value for simplicity, it is also worth considering that the 
block length is a variable. Then, the support recovery conditions are theoretical, 
and how it applies to practical applications is also a question. The BMMV algo-
rithm selects only one index for each iteration, which means that the recovery 
program will directly fail once a wrong index is added to the estimation support. 
It is interesting to propose an improved algorithm to solve the problem. 
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