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Abstract 
In this paper a new simplified method of stability study of dynamical nonli-
near systems is proposed as an alternative to using Lyapunov’s method. Like 
the Lyapunov theorem, the new concept describes a sufficient condition for 
the systems to be globally stable. The proposed method is based on the as-
sumption that, not only the state matrix contains information on the stability 
of the systems, but also the eigenvectors. So, first we will write the model of 
nonlinear systems in the state-space representation, then we use the eigen-
vectors of the state matrix as system stability indicators. 
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1. Introduction 

For nonlinear systems, Lyapunov methods play a vital role in both stability 
analysis and control synthesis [1]. The Lyapunov method is made on two parts. 
The first part consists on the knowledge and exploitation of the state model of 
the nonlinear system under study. Then, we have to propose a candidate energy 
function [2] (Lyapunov function) which allows to prove the stability of the non-
linear system [3] [4]. The disadvantage of this method is that it does not provide 
the tools to build the Lyapunov’s function. Despite this, the Lyapunov method is 
the most used for the stability analysis of nonlinear system [5] [6] [7]. 

In this paper, we propose a method of study of stability of nonlinear systems 
simpler than the Lyapunov method. The simplicity of this proposed method 
consists in the fact that it uses only the state model of the nonlinear systems, 
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without the need to propose a candidate energy function to prove the stability of 
systems. Thus, by using this proposed method, the study of stability of nonlinear 
systems will become simpler and easier, and this, because we managed to cir-
cumvent the principal difficulty of using Lyapunov method. 

The new method of stability study of nonlinear systems is based first:  
1) On writing the model of nonlinear systems in state-space representation, 

and the deduction of eigenvectors of these systems. We must note here that, since 
the systems considered, are nonlinear, so, the eigenvectors will not contain con-
stant values, but they contain terms that are functions of state variables. 

2) Then, to prove the stability of systems, we make an assumption that, not 
only the state matrix contains information on the stability of systems, but the ei-
genvectors contain also information on the stability of these systems. Other re-
search works say that, the eigenvector defines the meaning of evolution of the 
states of system [8]. 

Also, in this paper, we needed to introduce a new notion that we called a sta-
ble matrix point (SMP), and this, in order to describe the points that compose 
eigenvectors. The new proposed method should simplify the stability study of 
nonlinear systems, because it carries out the system stability study without the 
need to find a candidate energy function, as for the case of the Lyapunov method, 
which is the most inconvenient of the Lyapunov’s method. 

This paper is organized as follow. In Section 2, we present the new proposed 
method of the stability study of nonlinear systems. In Section 3, we prove the ef-
fectiveness of the new proposed method of checking of the stability of nonlinear 
systems, by the application of this method on several nonlinear systems given by 
their state representation. In Section 5 we give a conclusion of this work. 

2. Simplified Method of the Stability Analysis 
2.1. The State Model of Nonlinear Systems 

The nonlinear systems under consideration in this paper have the following ma-
thematical form [6]: 

( ) ( )x f x h x u= +                        (1) 

where: nx R∈  is the state, pu R∈  is the control input, : n nf R R→ . 
And: : n ph R R→  are Lipshiz functions such that: ( )0 0f =  [9]. 
To simplify the calculus, we consider that: 

( ) ( )h x u u x⋅ =                         (2) 

So we write the following model of nonlinear systems: 

( ) ( )x f x u x= +                        (3) 

Writing the physical formula of a system in the form of a state matrix is spe-
cific to linear systems. In this work, we will likewise write nonlinear systems in 
the state matrix representation [10], because, this will allow us to propose our 
new criterion for the stability study of nonlinear systems. However, writing a 
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nonlinear system as a state-space representation is generally not used, we can 
write nonlinear system in state-space representation just according to the nonli-
near system formula [10]. 

To explain the new proposed concept of stability study of nonlinear systems, 
we will take following example of second order nonlinear system: 

To explain the new proposed concept of stability study of nonlinear systems, 
we will take following example of second order nonlinear system: 

Sys1: 
3 2

1 1 2
 3

2 1 2 2

x x x

x x x x

= − −

= ⋅ −





                     (4) 

Writing this system in state matrix form gives: 

( )
2

1 11 2
2

2 22 2

x xx x
A x x

x xx x
 − −   

= ⋅ = ⋅    −    





               (5) 

with ( )A x  is the state matrix of the nonlinear system, which is not made up of 
constant values (as for linear systems), but is made up of the state variables 1x  
and 2x  Now, in the aim to define the stability of nonlinear systems, we will use 
the notion of eigenvectors [11] [12] [13]. 

We know that in automation field, the calculation of eigenvectors is done only 
for linear systems, not for nonlinear systems. Despite this, in this work, aim to 
define the stability of this system, we will propose to calculate the eigenvectors of 
nonlinear systems. 

2.2. The Simplified Method of the Stability Study of Nonlinear  
Systems 

In the aim to give the best explanation of the new proposed method of stability 
study of nonlinear systems, we will give the following Assumptions and Lem-
mas. 

ASSUMPTION 1: This consists in considering that the matrix representation 
of nonlinear systems (like for the systems given by Equation (5)) contains the 
eigenvectors of the system. 

Obviously, what we have just assumed in Assumption 1 is neither always ma-
thematically corrects nor verified. However we will give, an intuitive explanation 
on the concept by which we posed this supposition: 

- First we talk about the eigen-values of linear and nonlinear [14] [15] [16] 
systems. The calculation of eigen-values makes it possible to study the stability 
of linear systems. The study of stability of nonlinear systems is more complex, it 
requires a linearization [17] [18] of the state matrix of the system, because, for 
nonlinear systems, the state matrix is composed of functions of state variables 
(not constant values as for linear systems). 

- Now, we will talk about the eigenvectors (EV) of systems. The calculation of 
the eigenvectors is done by the calculation of the eigen-values. For example, for a 
second-order system, computing the eigen-values involves transforming the 
state matrix into a diagonal matrix whose second term and third term are zero. 
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So, Assumption 1 is only an approximation of the calculation of the eigenvectors 
of nonlinear systems, because the non-diagonal elements of the state matrices 
are not zero: Assumption 1 implies that we will not consider the true eigenvec-
tors of the nonlinear system, and the eigen-vectors obtained by this assumption 
can be considered as offset from to the true eigen-vectors of the nonlinear sys-
tem. So, we can call them: approximate eigenvectors (AEV). 

- Now, we will also assume that in spite of the offset of the approximate ei-
genvectors compared to the real eigenvectors, the information on the behavior 
of the nonlinear system which exists in the real eigen-vectors, will be the same 
information which is in the eigenvectors.  

- Although this first supposition lacks accuracy, but, thereafter, and through 
the application of Lemma1 to check the stability of different nonlinear systems, 
we can confirm that the approximate eigenvectors are a faithful reproduction of 
the true eigenvectors (concerning the description of the stability of nonlinear 
systems) since these approximate eigenvectors allow each time to verify the sta-
bility of nonlinear systems. 

To simplify the drawing of this paper, we will simply use the term eigenvector 
(EV) to designate the approximate eigen-vector (AEV). 

Assuming that the state matrix of the nonlinear system of Equation (5) is in 
eigenvector form, this implies that we have the following two eigenvectors 1S  
and; 2S   

[ ]1 1
1 2

2 2

x x
x x
   

= ⋅   
   

S S




                      (6) 

Eigenvectors are: 
2
1

1
2

x
x

 −
=  
 

S , and 
 
2

2 2
2

x
x

 −
=  

− 
S   

The state matrix ( )A x  is composed of the two vectors 1S  and 2S . This 
matrix defines the evolution of the system. We can deduce like shown in Figure 
1, the resultant of these two vectors: 1 2= +S S S . We can say that this resultant 
vector represent totally the state matrix. 

In general case, the state matrix of systems ( )A x  contains information on 
the properties of the systems, in particular the stability of systems. For linear 
systems, eigenvectors are used to diagionize the state matrix of systems, while 
the eigenvalues provide information on the stability of linear systems [8]. On the 
other hand, we know that a eigenvector represents the direction of the state ma-
trix, so the eigenvector also defines the meaning of evolution of the states of sys-
tem. Thus, we are going to propose a second assumption concerning the relation 
between eigenvector of state matrix, and the stability of nonlinear systems. 

ASSUMPTION 2: For any nonlinear system, if we manage to define the val-
ues of eigenvectors, this will allow us to have information on the stability of sys-
tems. Mathematically, we can express this assumption as: 

For any second order nonlinear system (like for the system of Equation (4)), 
we have that, each of the two eigenvectors of the system is composed of two 
points, and, for a eigenvector to be a finite (stable), the two points that define  
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Figure 1. Eigenvector for state matrix. 

 
this vector, must be finite points. Still considering that the matrix ( )A x  men-
tioned above is composed of eigenvectors, now, we will write the elements of the 
state matrix as a state function. So, for nonlinear system of second order, we 
have: 

( ) ( )
( ) ( )

1 1 3 1

2 2 4 2

x A x A x x
x A x A x x

    
= ⋅    

    





                  (7)
 

Later, we will see that the points which define the eigenvectors will not be only 
finite (constant) values, but these are a state functions (depending on the state 
variable x). The new concept of stability study of nonlinear systems is finally 
given by following two lemmas. 

LEMMA 1: (First case) Where the four elements ( )1A x , ( )2A x , ( )3A x , 
( )4A x  are the elements that define the state matrix ( )A x . To deduce the sta-

bility of the nonlinear system at origin ( ( )0,0x = ), we must check that each of 
the four elements ( )1A x , ( )2A x , ( )3A x , ( )4A x  is either negative definite 
function, or is constant value. So, the principle of this lemma can be represented 
by the following Figure 2. 

According Lemma1, we can propose the following arbitrary nonlinear system, 
with a state matrix composed of elements depending on state variables, and oth-
er elements which are constant values. 

( )
( ) ( )

1 11

2 22 3

x xV x cte
x xV x V x

    
= ⋅    

    





 



                   (8)
 

In Equation (8), the functions that make up the state matrix are mentioned 
with the derivative, to allude to Lyapunov’s negative definite functions [14]. So, 
we can write: 

( ) ( )d
0

d
j

j

V x
V x

t
=

  with: 1,2,3,4j =              (9)
 

we have 1,2,3,4j =  in Equation (9), because for a second order nonlinear sys-
tem, the maximum number of negative definite functions we can have is 4. Ob-
viously for a nonlinear system, the four elements of the state matrix cannot all be 
constant values, otherwise, the system would be a linear system. 

Thus, for this nonlinear system to be stable, we have to prove that elements 1, 
2 and 4 for the state matrix are negative definite functions, and that the third  
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Figure 2. Eigenvectors define the stability of systems. 
 
element of the state matrix is a constant negative or positive value. On the other 
hand, if we want to define the eigenvectors of Equation (6): 1S  and 2S  are 
composed by points, which are negative definite functions, or constant values.

 In this paper, we will purpose a new term to express the two possibilities for 
the elements of the state matrix ( )A x  that give the stability of nonlinear sys-
tems (a constant value or a negative definite function). The new term is called a 
stable matrix points (SMP), and in the inverse case, unstable matrix points 
abbreviated by UMP. So, for example, and as for Lyapunov functions, a point 

( ) 2
2 1V x x= −  is a SMP, and ( ) 3

1 1V x x=  is UMP. 
As we will see later, when we will make the application of the new method of 

the stability study to verify the stability of several nonlinear systems, the pro-
posed Lemma 1 is not sufficient to solve the stability of all nonlinear systems. 

In other way, as already mentioned, for certain nonlinear systems, it is neces-
sary to check not the sign of the elements of eigenvector, but we must check the 
sign of the elements of the resultant of the eigenvectors. We give the following 
second Lemma. 

LEMMA 2: (second case) In some case, to resolve the stability of some nonli-
near systems, it is necessary to verify that the resultant vector S  of vectors 1S  
and 2S , is composed of two stable matrix points SMP (which are either con-
stant values or negative definite functions). Notice that in this second case, the 
summation of the two vectors 1S  and 2S  must always begins with the second 
vector 2S . 

3. Application of the Proposed Method to Nonlinear Systems 

Thus, for the first example of nonlinear system given by Equation (4), we can 
imagine that we have two eigenvectors: 1S  which starts from a stable matrix 
point (SMP): 2

1x−  and goes towards the unstable matrix point (UMP):  
2x  (  

2x  
cannot be a SMP because it is neither constant value or negative definite func-
tion). 

Then the vector 1S  will be added to the second vector 2S  which starts from 
the UMP: 

 
2x− , towards the SMP (negative definite function 2

2x− ). Thus: 
( ) 2

1 1V x x= − , and ( ) 2
2 2V x x= −  are two points that define two negative definite 

functions, like defined in Lyapunov’s theory. For this first nonlinear system, we 
must make the two following remarks: * From Lemma 2, we conclude that the 
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two vectors 1S  and 2S  are necessarily added together to obtain the resultant 
S , and this, because there is a possibility (and need) to link these two vectors in 

order to prove the stability of the nonlinear system at origin: We have two stable 
matrix points, for each eigenvector, and one point in common, which is the 
UMP point 2x . 

* We must note that we have reversed the vector 2S , to have a common point 

2x , thus, to obtain a resultant vector S , which is a stable vector, because it 
starts from a SMP to another SMP. Thus, we arrive at our final goal, that of 
proving the stability of the nonlinear system given by Equation (4) at origin. 

Remark: The most important remark to make, is that we proved the stability 
of the origin of the system of Equation (4), according to the method proposed in 
this paper, in a simple way and above all, without the need to propose an energy 
function, as in the case of the Lyapunov method. The stability study of the non-
linear system of Equation (4) at origin using the Lyapunov method, gives the 
same result with the following Lyapunov function candidate: 

( ) ( )2 2
1 2

1
2

V x x x= +                         (10) 

Example 2: Consider the following nonlinear system:  

Sys 2: 
2 3

1 1 2
2  

2 2 12

x x x

x x x

= − +

= − ⋅





                       (11) 

Writing this system in state matrix form gives: 
2

1 11 2
2

2 222 0
x xx x
x xx

 −   
= ⋅    −    





                    (12) 

We obtain two eigenvector for this system: 
 
1

1  
22

x
x

 −
=  

− 
S  and 

2
2

2 0
x 

=  
 

S  

From Lemma 2, we have that the eigenvector 2S  starts from a SMP 0, and 
goes to the UMP: 2 

2x . Then the eigenvector 2S  will be added to 1S  which 
starts from the point: 22x−  (same that 2 

2x  of 2S ) towards the UMP: 1x− . 
The evolution of the resultant S  goes from vector 2S , to vector 1S . So, the 
resultant S  goes from a SMP: 0, to an unstable point: 1x−  (or semi unstable 
point because: 2x−  is not included here). This implies that we have a local sta-
bility of the nonlinear system of Equation (11) at origin, because 1x−  which the 
first point of the vector 1S  (and final point of resultant S ) is not an SMP. It 
can take positive or negative values. The stability study of the nonlinear system 
given by Equation (11) at origin, using Lyapunov method gives the same result: 
The local stability of this nonlinear system may be verified using following can-
didate Lyapunov function: 

( ) 2 2
1 2

1
2

V x x x= +                         (13) 

Example 3: Consider the third nonlinear system:  
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Sys 3: 
3

1 1
 

2 1

x x u

x x

= − +

=





                      (14) 

Writing this system in state matrix form gives:  
2

1 11

2 2

10
01 0

x xx u
x x

    −  
= ⋅ +      

     





                  (15) 

We obtain the two eigenvector for this nonlinear system: 
2 
1

1 1
x −

=  
 

S  and 2

0
0
 

=  
 

S  

From Lemma 2, the second eigenvector of this system is the vector 2S  that 
starts from a SMP: 0, and goes to the SMP 0. Then, 2S  will be added to 1S  
which starts from the point 1, towards the SMP 2 

1x− . The stability study of this 
nonlinear system at origin using Lyapunov method gives the same result. The 
global stability may be obtained using following candidate function: 

( ) 2 2
1 2V x x x= +                         (16) 

Example 4: Consider the fourth nonlinear system:  

Sys 4: 
 2

1 1 2
 

2 2

x x x

x x

= − +

= −





                      (17) 

Writing this system in state matrix form gives: 

1 12

2 2

1
0 1

x xx
x x

−    
= ⋅    −    





                     (18) 

We obtain the two eigenvector for this system: 

1

1
0
− 

=  
 

S  and 2
2 1

x 
=  − 

S  

From Lemma 2, this system, 2S  starts from a UMP: 2x  and goes to the sta-
ble point: −1. Then 2S  will be added to the eigenvector 1S  which starts from 
the point: −1 towards the SMP: 0. 

For this example, the vector 2S  starts from a UMP, and this directs by sum-
mation to the vector 1S  towards a stable point: 0. This example can be solved 
by first and by second Lemma. We will assume that the resultant which is the 
vector S  behaves exactly the same way as the nonlinear system. We conclude 
that this nonlinear system et globally stable at origin. The stability study of the 
nonlinear system at origin given by Equation (17) using Lyapunov method gives 
the same result: the global stability at origin may be obtained using following 
Lyapunov function:  

( ) ( )2 2
1 2

1
2

V x x x= +                      (19) 

Example 5: Consider the following example:  

Sys 5: 
 2  

1 1 2 1
 2  

2 1 2 2

2 2x x x x

x x x x

= ⋅ −

= − ⋅ −





                    (20) 
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Writing this system in state matrix form gives: 
  

1 11 2
  

2 21 2

2 2
1

x xx x
x xx x

 − ⋅   
= ⋅    − ⋅ −    





                 (21)
 

Thus the eigenvectors which form the matrix ( )A x  are: 

1   
1 2

2
x x
− 

=  − ⋅ 
S  and 

  
1 2

2
2

1
x x ⋅

=  
− 

S  

From Lemma 2, we have that the vector 2S  starts from a SMP −1, and goes 
to the UMP   

1 22x x⋅ . Then the vector 2S  will be added to 1S . The eigenvector 

1S  starts from the point   
1 2x x⋅  towards the SMP: −2. The stability study of the 

nonlinear system of Equation (20) at origin using Lyapunov method gives the 
same result: The global stability may be obtained using following Lyapunov 
function. 

( ) ( )2 2
1 2

1 2
2

V x x x= +                      (22) 

Example 6: Consider the following nonlinear system:  

Sys 6: 
 

1 2
  3

2 1 2 12 2 4

x x

x x x x

=

= − − −





                   (23) 

Writing this system in state matrix form gives: 

1 1
2 

2 1 2

0 1
2 4 2

x x
x x x
     

= ⋅     − − −     





                  (24) 

We obtain two vectors for this nonlinear system: 

1 2
1

0
2 4x

 
=  − − 

S  and 2

1
2

 
=  − 

S
 

From Lemma 1, So, we conclude that the vector 2S  starts from a SMP: −2 
and goes to the SMP: 1. Then 1S  starts from the SMP: 2

12 4x− −  towards the 
SMP: 0.  

For both eigenvectors we have only stables matrix points. Here, it is not ne-
cessary to add vector 2S  to vector 1S . The stability study of this nonlinear 
system at origin, using Lyapunov method gives the same result. 

The global stability is verified using following Lyapunov function:  

( ) 2 2 4
1 2 14 2 4V x x x x= + +                      (25) 

Example 7: Consider the following nonlinear system:  

Sys 7: ( )x u x x= ⋅                        (26) 

This nonlinear system is of first order. So, if we consider a state-space model, 
we have a state matrix with only one element. 

( ) ( ) ( )1 1u x A x V x= =                        (27) 

Obviously, for this example there is no eigenvectors. In the aim to prove that 
the origin of this nonlinear system is a global stable point, the unique element of 
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the state matrix must be negative definite function. So, we can choose: 

( ) ( ) 2
1  u x V x x= = −                        (28) 

So, ( ) 2
1  V x x= −  is an SMP, and the global stability of this system at origin 

may be obtained using following Lyapunov function:  

( ) 2
 

1
2

V x x=                           (29) 

Similarly, the local stability of the origin can be obtained by a command: 

( ) ( )1u x V x x= = −                        (30) 

Example 8: Consider now the following unstable nonlinear system:  

Sys 8: 
 

1 2
 3  

2 1 1 2

3

5 2

x x

x x x x

=

= − + −





                    (31) 

Writing this system in state matrix form gives: 

1 1
2 

2 1 2

0 3
5 2

x x
x x x
     

= ⋅     − + −     





                   (32) 

We obtain two vectors for this nonlinear system: 

1 2
1

0
5 x

 
=  − + 

S  and 2

1
2

 
=  − 

S
 

From Lemma 1, So, we conclude that the vector 2S  starts from a SMP: −2 
and goes to the SMP: 1. Then 1S  starts from the matrix point: 2

15 x− +  to-
wards the SMP: 0. So, we conclude that we have the stability of the nonlinear 
system with the condition that: 

2 2
1 15 0 5x x− + ≤ ⇒ ≤                     (33) 

Here, it is not necessary to add vector 2S  to vector 1S . The stability study of 
this nonlinear system at origin, using Lyapunov method gives the same result. 
The global stability is verified using following Lyapunov function:  

( ) 2 4   2
1 2 1 2 212 6 6V x x x x x x= − + +                 (34) 

4. Conclusions 

In this paper we proposed a new method of studies of stability of nonlinear sys-
tems. The new method is called simplified method of stability study of nonlinear 
system. This method is based on first writing the formula of nonlinear systems 
in the form of state matrix, then, we deduce the convergence of nonlinear sys-
tems by an evaluation of the eigenvectors of the state matrix of these nonlinear 
systems. 

Also, we proposed a lemma to define the stability of systems directly from the 
obtained eigenvectors. To prove the effectiveness of this method, we applied this 
proposed method for the study of stability of six nonlinear systems. Results show 
that this method makes it possible to quickly deduce the stability of these sys-
tems. 
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Abbreviations and Acronyms 

SMP: stable matrix point. 
UMP: unstable matrix point. 
EV: eigenvector. 
AEV: approximate eigenvector. 
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