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Abstract 
For the linear least squares problem with coefficient matrix columns being 
highly correlated, we develop a greedy randomized Gauss-Seidel method with 
oblique direction. Then the corresponding convergence result is deduced. 
Numerical examples demonstrate that our proposed method is superior to the 
greedy randomized Gauss-Seidel method and the randomized Gauss-Seidel 
method with oblique direction. 
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1. Introduction 

We focus on the linear least squares problem  
2

2min ,
∈

−y X
nβ

β                          (1) 

where ×∈X m n  ( )≥m n  is of full column rank, ∈y m  and 
2⋅  denotes 

the Euclidean norm. There is a wide range of applications for the least squares 
problem in many fields, such as signal processing, image restoration, and so on. 
As we know, the coordinate descent method is an effective iteration method for 
(1). It applies the Gauss-Seidel method to the following equivalent normal Equa-
tion  

T T ,=X X X yβ                          (2) 

leading to the following formula  
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where X
kj

 denotes the jkth column of X , e
kj

 is the jkth unit coordinate 
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vector and the superscript T denotes the transpose. The convergence of the 
Gauss-Seidel method highly depends on the order of the column selected in each 
step. 

Inspired by the fancy work of Strohmer and Vershynin [1], Leventhal and 
Lewis [2] proposed the randomized Gauss-Seidel (RGS) method and proved that 
it has an expected linear convergence rate. As Bai and Wu [3] pointed out an 
obvious flaw of the RGS method that the probability for selecting column will be 
a uniform column sampling if the coefficient matrix is scaled with a diagonal 
matrix. To tackle this problem, they proposed the greedy randomized coordinate 
descent (GRCD) or called the greedy randomized Gauss-Seidel (GRGS) method 
by adopting an effective probability for selecting the working column to capture 
larger entries of the residual vector with respect to (2). They showed that the 
GRGS method is significantly superior to the RGS method in terms of both 
theoretical analysis and numerical experiments. In addition, there are tons of at-
tention about the Gauss-Seidel type methods [4] [5] [6] [7]. However, the con-
vergence rate of the RGS method will be significantly reduced when the coeffi-
cient matrix columns are highly correlated. To improve the convergence rate, 
Wang et al. [8] proposed the randomized Gauss-Seidel method with oblique di-
rection (RGSO) by combining two successive selected unit coordinate directions 
as the search direction  
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k k

k

j j
k j j

j
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They showed that, in terms of both theory and experiments, the RGSO method 
outperforms the RGS method. For more discussions about the oblique projec-
tion, we refer the readers to other literatures [9] [10] and their references. 

However, the RGSO method still exists in the same flaw of the RGS method 
that the probability for selecting column will be a uniform column sampling if 
the coefficient matrix is scaled with a diagonal matrix. In addition, it is worth 
noting that the convergence rate of the GRGS method would significantly de-
crease when the coefficient matrix columns are close to linear correlation. For 
the above mentioned limitations, we present a greedy randomized Gauss-Seidel 
method with oblique direction (GRGSO) for solving (1), by combining the obli-
que direction and the GRGS method. In theory, it is proved that the iterative so-
lutions generated by the GRGSO method can converge to the least squares solu-
tion *β  when the coefficient matrix is of full column rank. Numerical results 
show that compared with the RGSO and GRGS methods, the GRGSO method 
has a significant advantage over the iteration steps and computing time, espe-
cially when the coefficient matrix columns are highly correlated. 

The organization of this paper is as follows. In Section 2, some notation and 
lemmas are introduced. In Section 3, we propose the GRGSO method for solving 
(1) and give its convergence analysis. Some examples are used to demonstrate 
the competitiveness of our proposed method in Section 4. Finally, we draw some 
brief conclusions in Section 5.  
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2. Notion and Preliminaries 

In the beginning of this section, we give some notation. For a Hermitian positive 
definite matrix B  and a column vector β  with appropriate dimension, we  

denote 
21

2 2

2

,= =B B Bβ β β β  and ( )iβ  the ith entry of β . For a given  

matrix ×∈S m n , ( )minσ S  and S F
 denote the smallest nonzero singular 

value and the Frobenius norm of matrix S , respectively. Let = −r y Xk kβ  and 
T=s X rk k , then ( ) T=s X rj

k j k  represents jth entry of sk . *β  is the optimal so-
lution of the corresponding problem. We indicate by k  the expected value 
conditional on the first k iterations, that is,  

[ ] [ ]0 1 1| , , , ,−⋅ = ⋅ k kj j j   

where , 0,1, , 1= −tj t k  is the column selected at the t-th iteration. 
In the following, we give a basic lemma.  
Lemma 1 (See Bai and Wu [11]) If the vector u  is in the column space of 
TA , it holds  

( )2 22
min2 2 .σ≥Au A u  

3. GRGSO Method  

In this section, we design the GRGSO method for solving (1), by combining the 
oblique direction with the GRGS method. The pseudo-code of GRGSO method 
is listed in Table 1. The difference between the RGSO method and GRGSO me-
thod is the selection strategy. The RGSO method utilizes the random selection 
strategy. Specially, the RGSO method selects 1+kj th column with probability  

1

2

2
2

kj

F

+
X

X
 in the numerical experiments, which can be equivalent to the uniform  

sampling if the Euclidean norms of all the columns of the matrix X  are same; 
while the GRGSO method aims to grasp the larger entries of the residual vector 
at each iteration. Compared with the GRGS method, our proposed method con-
siders the oblique projection, which is expected to have better convergence per-
formance in some cases of coefficient matrix columns being highly correlated. 

Remark Let 
( ) 2

2
21
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 =  
 
 

s
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t , which implies ∈k kt V . Therefore, for all 

iterative step k, the index set kV  generated by the GRGSO method is nonempty.  

Remark In the GRGSO method, it holds that  
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Table 1. GRGSO method. 

Input: 0, ,×∈ ∈ ∈X ym n m n  β  and l . 

Output: Approximate lβ  solving (1). 

1. Randomly select { }1 1,2, ,∈ j n  with probability 1

2
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X
j

F
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s e
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2. For 1=k  to 1−l  do 
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Therefore, the GRGSO method can be executed more effectively if TX X  can 
be computed in an economical manner at the beginning.  

Next, we give some lemmas which are useful to analyze the convergence of the 
GRGSO method. 

Lemma 2 For the GRGSO method, we have  
( ) ( )0, 0 ,= ∀ >s kj
k k                      (6) 
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( ) ( )1 0, 1 .− = ∀ >s kj
k k                        (7) 

Proof. For 1=k , one has  

( ) ( )
( )1

1
1 1 1 1

1

T T T 0
1 1 0 2

2

0.
 
 = − = − + =  
 

s
s X y X X y X X e

X

j
j

j j j j

j

β β         (8) 

For 1>k , we have  
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which together with (8) proves (6). 
By (6), it follows for 0>k  that  
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which leads to (7).  
Remark From (6) and (7), it is obvious that in kth iteration, the GRGSO me-

thod dose not select kj , 1−kj , which means 1 1,+ −≠k k kj j j . Thus, the direction 
w

kj
 can be the combination of two unit coordinate directions. This is also the 

advantage of the GRGSO method compared with the RGSO method. Since the 
RGSO method randomly selects 1+kj  in the kth iteration, which can not avoid 
selecting kj  and 1−kj  while the GRGSO method can avoid.  

Lemma 3 For jk
h  in the GRGSO method, it satisfies  
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and  
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Hence, we complete this proof.  
Lemma 4 The iteration sequence { } 0

∞

=k k
β  generated by the GRGSO method 

satisfies  

( ) ( ) ( )2 2 2
1 * * 12 2 2

, 0,1, 2, .+ +− = − − − =X X X k k k k kβ β β β β β  

Proof. For 0=k , we have  
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This means that the vector ( )T
1 *−X X β β  is perpendicular to the vector 

1
e j . 

Since 1 0−β β  is parallel to 
1

e j , the vector ( )T
1 *−X X β β  is perpendicular to 

1 0−β β . 
For 0>k , It follows from Lemma 3 and Lemma 2 that  
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which means that the vector ( )T
1 *+ −X X kβ β  is perpendicular to the vector 

w
kj

. Since 1+ −k kβ β  is parallel to w
kj

, the vector ( )T
1 *+ −X X kβ β  is per-

pendicular to 1+ −k kβ β . For all 0,1,= k , it follows that  

( ) ( ) ( )T
1 * 1 1 * 1, , 0,+ + + +− − = − − =X X X Xk k k k k kβ β β β β β β β  

which together with Pythagoras theorem leads to the desired result.  
Next, the convergence theory of the GRGSO method is deduced.  
Theorem 5 For the least squares problem (1), the iteration sequence { } 0

∞

=k k
β  

generated by the GRGSO method from any initial guess 0β  satisfies  
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( ) ( )
12 2

* 0 *2 2
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Proof. By Lemma 2, it follows for 1>k  that  
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For 1=k , it follows from (6) that  
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By Lemma 4, Lemma 3 and Lemma 1, for 1≥k , we have  
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which together with (11) and (10) can lead to  

( ) ( )2 2
1 2 * 1 1 *2 2

ζ− ≤ −X X β β β β               (12) 

and  

( ) ( )2 2
1 * *2 2

, 1,ζ+ − ≤ − >X Xk k k k β β β β           (13) 

respectively. For 0=k , we can similarly get  

( ) ( ) 22
1 * 0 0 *2 2

.ζ− ≤ −X X β β β β  

Then taking the full expectation on both sides of (12) and (13) and by induc-
tion on the iteration index k, we can easily obtain (9). Thus, we complete the 
proof.  

Remark Suppose that the upper bound for convergence rate of the GRGS 
method [3] is defined as  
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Since ( ]2max sin , 0,1
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, 2

2 1γ γ< < X F  and  
( ) 22

min0 σ< ≤X X F , we have  
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This implies that the upper bound on the convergence factor of the GRGSO 
method is smaller, uniformly with respect to the iterative step k, than that of the 
GRCD method.  

4. Numerical Experiments  

Some examples are designed in this section to verify the effectiveness of the 
GRGSO method. Specially, the GRGSO method is compared with the GRGS 
method [3], RGS method [2] and RGSO method [8]. We list the tested results of 
these methods in terms of the number of iteration steps (denoted by “IT”) and 
the running time in seconds (denoted by “CPU”). 

The coefficient matrix ( )×∈ ≥X m n m n  in numerical experiments is from 
two sources. One is the random matrix whose entries are randomly taken from 
the interval [ ],1c  ( )0≥c  by using the function rand in MATLAB. c being 
close to 1 implies that the matrix columns are highly correlated. Another is 
sparse matrices from the literature [12] listed in Table 2. We use ( )cond X  to 
represent the condition number for X , and define the density as  

number of nonzero entries of an matrixdensity .×
=

×
m n

m n
 

We randomly generate the true vector *β  by utilizing the MATLAB function 
randn and construct the vector y by *=y Xβ  when the linear system is consis-
tent; while for the inconsistent linear systems the right-hand side is set by 

*= +y X noiseβ , where ( )T∈noise Xnull . We take zero vector for the initial 
approximation of each iteration process. Since  

( ) 2 2 2
* * * 2 22

,− = + − − = −X X noise r X noise rk k kβ β β β   

which was also used in the work of Wang et al. [8], we terminate the iteration 
process once  
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10 .−−
= <

noise r
y

kRSE  

We set “-” in the numerical tables if the number of iteration steps exceeds 
300,000. All the results are averages from 20 repetitions. All experiments were 
implemented by using MATLAB (R2021b) on a computer with 2.30 GHz central 
processing unit (Intel(R) Core(TM) i7-10875H CPU), 16 GB memory. 

 
Table 2. Sparse matrix properties of realistic problems [12]. 

Name m × n density cond(X) 

abtaha1 14,596 × 209 1.68% 12.23 

Cities 55 × 46 53.04% 207.17 

WorldCities 315 × 100 23.87% 66.00 

ash219 219 × 85 2.35% 3.02 

divorce 50 × 9 50.00% 19.39 
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For the randomly generated matrices, with 0=c , the numerical results for 
consistent and inconsistent linear systems are listed in Table 3 and Table 4, re-
spectively. It is easy to observe from Table 3 and Table 4 that the GRGSO me-
thod significantly outperforms the RGS, GRGS and RGSO methods in terms of 
both IT and CPU. 

In the following, we compare these methods for solving (1) when the ran-
domly generated matrix is with different c. We list the numerical results for the 
consistent and inconsistent systems in Table 5 and Table 6, respectively. From 
Table 5 and Table 6, it is easy to observe that the IT and CPU of the RGS and 
GRGS methods increase significantly with c increasing closer to 1. When c in-
creases to 0.8, the IT of the RGS method exceeds the maximal number of itera-
tion steps. And when c increases to 0.9, the IT of the GRGS method exceeds the 
maximal number of iteration steps. For the different c values, the methods with 
the oblique direction outperform the methods without the oblique direction. In 
addition, compared with the other methods, the GRGSO method performs best 
in terms of both IT and CPU.  

For the full-rank sparse matrices from literature [12], the numerical results for 
the consistent and inconsistent linear systems are listed in Table 7 and Table 8, 
respectively. It can be seen that for the matrix abtaha1 the performance of the 
GRGSO method is similar to that of the GRGS method in terms of both IT and 
CPU, whereas for the other matrices the GRGSO method significantly performs 
better in terms of both IT and CPU than the other methods. 

 
Table 3. The consistent system with 0=c : different m impacts on IT and CPU. 

Method m × n 1000 × 100 2000 × 100 3000 × 100 4000 × 100 5000 × 100 
RGS IT 9650 8082 7113 7378 7209 

 CPU 0.1919 0.1858 0.1859 0.2716 0.2953 

GRGS IT 3271 2753 2266 2581 2538 

 CPU 0.0708 0.0664 0.0622 0.1003 0.1078 

RGSO IT 3914 3553 3243 3509 3499 

 CPU 0.0921 0.0980 0.1092 0.1739 0.2113 

GRGSO IT 755 761 739 828 860 

 CPU 0.0190 0.0210 0.0246 0.0412 0.0536 
 

Table 4. The inconsistent system with 0=c : different m impacts on IT and CPU. 

Method m × n 1000 × 100 2000 × 100 3000 × 100 4000 × 100 5000 × 100 
RGS IT 9499 7926 7310 7287 6910 

 CPU 0.1958 0.1821 0.1927 0.3039 0.2766 

GRGS IT 2812 2550 2530 2547 2390 

 CPU 0.0648 0.0610 0.0715 0.1113 0.1018 

RGSO IT 3715 3519 3464 3525 3285 

 CPU 0.0890 0.0985 0.1187 0.1952 0.1966 

GRGSO IT 706 753 787 829 800 

 CPU 0.0171 0.0201 0.0269 0.0472 0.0488 
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Table 5. The consistent system with 1000 100×∈X  : different c impacts on IT and CPU. 

Method c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
RGS IT 13902 17612 26137 42060 66402 98900 237339 - - 

 CPU 0.2800 0.3624 0.5472 0.9380 1.4841 2.2364 5.2936 - - 
GRGS IT 4096 5436 8152 11374 22992 28719 75396 154734 - 

 CPU 0.0902 0.1223 0.1814 0.2748 0.5540 0.6953 1.8127 3.7762 - 
RGSO IT 4103 3864 3934 4266 4264 3680 4356 3860 3445 

 CPU 0.0985 0.0952 0.0977 0.1127 0.1115 0.0972 0.1158 0.1031 0.0884 
GRGSO IT 765 740 774 800 816 704 834 761 681 

 CPU 0.0203 0.0186 0.0197 0.0213 0.0220 0.0196 0.0226 0.0203 0.0184 
 

Table 6. The inconsistent system with 1000 100×∈X  : different c impacts on IT and CPU. 

Method c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
RGS IT 13212 17463 25396 36517 59507 113307 197337 - - 

 CPU 0.2773 0.3815 0.5726 0.8210 1.3082 2.5499 4.5799 - - 
GRGS IT 4373 5373 7890 11197 19498 33295 60924 147676 - 

 CPU 0.1006 0.1272 0.1917 0.2680 0.4583 0.8193 1.5151 3.5326 - 
RGSO IT 3949 3740 3997 3692 3936 4185 3729 3490 3266 

 CPU 0.0995 0.0998 0.1075 0.0980 0.1027 0.1145 0.1035 0.0929 0.0890 
GRGSO IT 745 716 769 731 762 815 711 691 632 

 CPU 0.0197 0.0193 0.0216 0.0198 0.0207 0.0221 0.0201 0.0183 0.0177 
 

Table 7. The consistent system: IT and CPU time of test methods for different sparse 
matrices. 

Method Name abtaha1 Cities WorldCities ash219 divorce 
RGS IT 167141 - 76327 3785 5312 

 CPU 16.6240 - 1.4365 0.0665 0.0581 
GRGS IT 27246 96279 8069 654 1025 

 CPU 2.8197 1.3852 0.1640 0.0129 0.0120 
RGSO IT 164535 245186 56391 3598 244 

 CPU 22.0450 3.6255 1.2173 0.0720 0.0031 
GRGSO IT 26670 25115 3163 609 79 

 CPU 3.5948 0.3780 0.0695 0.0122 0.0010 
 

Table 8. The inconsistent system: IT and CPU time of test methods for different sparse 
matrices. 

Method Name abtaha1 Cities WorldCities ash219 divorce 
RGS IT 166432 297734 70098 3502 5554 

 CPU 16.9889 3.9135 1.3268 0.0645 0.0608 
GRGS IT 24268 92576 8204 676 959 

 CPU 2.5255 1.3239 0.1729 0.0140 0.0113 
RGSO IT 168963 220109 52808 3464 260 

 CPU 22.9293 3.2584 1.1308 0.0723 0.0033 
GRGSO IT 23454 23230 3216 632 81 

 CPU 3.2018 0.3560 0.0732 0.0145 0.0010 
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5. Conclusion 

In this manuscript, we construct the GRGSO method for the linear least squares 
problem. We have established the convergence analyses of the GRGSO method. 
Numerical experiments show that the GRGSO method is superior to the RGS, 
GRGS and RGSO methods in terms of both IT and CPU, especially when the 
coefficient matrix columns are highly correlated. It is natural to generalize the 
GRGSO method by introducing a relaxation parameter in its probability crite-
rion. However, the choice of the optimal relaxation parameter is difficult in theory 
up to now. How to find the optimal relaxation parameter in theory is worthy of 
further study.  
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