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Abstract 
In this paper, we construct a local supersonic flow in a 3-dimensional axis- 
symmetry nozzle when a uniform supersonic flow inserts the throat. We ap-
ply the local existence theory of boundary value problem for quasilinear 
hyperbolic system to solve this problem. The boundary value condition is set 
in particular to guarantee the character number condition. By this trick, the 
theory in quasilinear hyperbolic system can be employed to a large range of 
the boundary value problem. 
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1. Introduction 

This paper considers a class of supersonic pipe flow problems. Supposed a 
three-dimensional axisymmetric pipe with steady uniform supersonic incoming 
flow at the throat, we consider the existence of local smooth supersonic flow 
field around there. 

The pipe flow problem is the focus of the study for high dimensional conser-
vation law, which is related to the theory and application of fluid mechanics and 
has important significance in the design of jet engine. This problem has been 
discussed in a large number of papers, and its research has a long history. In the 
past 20 years, it has been a hot topic in the study of high-dimensional conserva-
tion law. 

In [1] [2], the authors discuss the problem of subsonic pipe flow, constructing 
the global subsonic flow solution by the theory of quasi conformal mapping. In 
[3] [4], the authors discuss the problem of for the two-dimensional convex pipe 
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flow, constructing a global smooth solution and discussing the existence condi-
tions of vacuum. In a series of papers like [5]-[17], the authors made a lot of 
work on 2-dimensional transonic flow in a nozzle. In these papers, via a detailed 
singularity analysis, a local solution is constructed for a class of flow fields with 
sound velocity at the throat, the subsonic flow accelerates and becomes super-
sonic across throat. A further problem is the transonic shock wave. We do not 
go into details here. 

2. Statement of the Problem 

In this paper, it is assumed that x is the axis of symmetry and y is the distance to 
x-axis, as shown in Figure 1. The gas motion is described by the following three- 
dimensional steady axisymmetric irrotational Euler equation.  

( ) ( ) 0,

0,

x y

y x

vu v
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u v

ρρ ρ + + =

 − =

                    (1) 

where ( ),u v  is the velocity, ρ  is the density function following Bernoulli’s 
law  
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where q  is the limit speed. 
We assume that the gas is a polytropic gas. That is, the gas pressure p satisfies 

p A γρ= , where γ  is the adiabatic exponent belong to [ ]1,3 , and 0A >  is a 

constant. The sonic speed d
d

pc
ρ

= . 

Assume the velocity of the incoming flow at the throat is  

( ) ( ) ( )
0

, , ,0 .
x

u v u v u
=
= =                     (3) 

The pipe wall is expressed by  

( ): ,y b x=W                         (4) 

where  

( ) ( ) ( )0 1, 0 0 and 0.b b b x′ ′′= = >                (5) 

On the wall W , we have the solid boundary value condition  

on .vb
u

′ = W                         (6) 

Let Ω  be the domain bounded by the wall W  and the axis of symmetry 
0y = . That is  

( ) ( ){ }: , | 0 , 0 .x y y b x xΩ = < < >                  (7) 

We have the following 
Basic Problem: For incoming flow (3), with the supersonic assumption as 

follows  
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Figure 1. Supersonic axisymmetric flow 
in a nozzle. 

 
,u c>                             (8) 

we intend to construct a continuous flow field ( ),u v  in { }0 x δΩ∩ < < , sa-
tisfying 

1) the wall condition(6); 
2) the incoming flow conditions; 
3) the Equation (1). 
In this paper, we prove 
Theorem 1 If incoming flow u  satisfies (8), then there exists a sufficiently 

small constant 0δ > , such that there exists a solution for Basic Problem in 
[ ]0,x δ∈ .  

In this paper, we construct the local solution of three-dimensional axisymme-
tric supersonic pipe flow, using [18] theory of local solutions of quasilinear 
hyperbolic equations. There are two difficulties in solving the problem here. 

One is a relatively trivial difficulty, that is, the equation has singularity along 
the axis of symmetry. As a result, the theory of local solutions to the problem 
cannot be applied directly. However the incoming flow is uniform, the singular-
ity of the equations on the axis of symmetry can be directly verified by taking a 
constant states. This difficulty is not complicated when we only consider the lo-
cal existence of the solution. 

The second difficulty is that the characteristic number condition, which is re-
quired to prove the existence of the local solution in [18], is not valid. This con-
dition is not easy to guaranteed, it is only a sufficient condition. These limited 
the application of the results in [18] to a range. 

In this paper, we use a deformation to extend the application of characteristic 
number to a more general range and show the existence of local solution for su-
personic flows. Our proof is expected to generalize the results of [18] in further 
studies.  

3. Characteristic Form of Hyperbolic Equations  

For the smooth flow field ( ),u v  in Ω , (1) can be written as  

2 2

2 2 2

0,

21 1 0.

x y

x x y

v u

u uv v vu v v
yc c c

− =

   
− − + − + =   

   

              (9) 

Then we rewrite (9) in a matrix form  
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22 2

2 22 2 2 2

2 0
0.( )

1 0 0 0x y

cuv c vu u u
c u yc u c uv v v

  − −
       + + =−− −               −   

      (10) 

Under the supersonic assumption 2 2 2u v c+ > , the above equations have ei-
genvalues  

2 2 2

2 2: .uv c u v c
u c

λ±
± + −

=
−

                  (11) 

Multiplying the left-hand side of (10) by the eigenvector ( )1,l λ± = 

, we ob-
tain  

( ) ( )
2 2

2 2 2 2
0, and 0,c v c vu v u v

c u y c u y
λ λ+ + − −
− +∂ + ∂ + = ∂ + ∂ + =

− −
   (12) 

where derivative operator ±∂  is defined as  

: .x yλ±
±∂ = ∂ + ∂                          (13) 

4. The Proof of Theorem 1 

Proof. We are going to divide this boundary value problem into two parts, as 
shown in Figure 2. 

First: calculate the eigenvalue of the incoming flow field  

( ) ( )
2 2

,0 ,0 0.cu u
u c

λ λ+ −= − = >
−

                (14) 

Therefore, region  

( ) ( ){ }0 : , | 1 ,0 , 0, 0 ,x y y u x x yλ−Ω = ≤ + ≥ ≥             (15) 

is the hyperbolic determining region of the throat flow field. We verify directly 
that  

( ) ( ), ,0u v u=                          (16) 

is a 1C  solution of the Equation (12) satisfying incoming flow conditions (3) in 

0Ω .  
Second: we intend to obtain a 1C  solution of the Equation (9) in region  

( ) ( ) ( ){ }1 : , |1 ,0 , 0x y u x y b x xλ δ−Ω = + ≤ ≤ ≤ ≤           (17) 

which satisfies: 
1) the wall condition (6); 
2) the boundary value conditions  

( ) ( ) ( ), ,0 , and 1 ,0 .u v u u x yλ−= + =                (18) 

We consider applying Theorem 3.3.1 in [18] to this part. Following the nota-
tions in [18], we assume  

;
1 .

x t
y x
=

 = −  
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Figure 2. Solve the problem by two 
regions. 

 
Then, we have a differential relation:  

,x y t xλ λ± ±∂ + ∂ = ∂ − ∂  

Therefore  

1 2, ;u u u v= =  

1 2, .λ λ λ λ+ −= − = −  

From the characteristic form (12), we write the corresponding coefficient ex-
pression of the boundary value problem in [18] 

11 12

21 22

1
.

1
ζ ζ λ
ζ ζ λ

−

+

   
=   

   
                      (19) 

Moreover, we have  
11 12

21 22

1 .
1 1

λ λζ ζ
λ λζ ζ

+ −

+ −

−   
=   −−   

                 (20) 

The corresponding boundary value conditions are denoted as 
1) The characteristic boundary value condition (18) is set as follows  

0 0 0
1 2 1: , ;u u u v u G x tλ λ λ− − −+ = + = = = −               (21) 

2) The wall boundary value condition (6) is set as follows  

( ) ( )0 0 0 0
1 2 2: , 1.u u u v u v b u v G x b tλ λ λ λ+ + + + ′+ = + = + + − = = − +     (22) 

Then, we have  
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Further, using the definition of [18], we calculate the minimal characteristic 
number  

1 2

0 0 0
2

min 0 0 0 0 0 0, 0
1

inf .
γ γ

γ λ λ λ
θ

γ λ λ λ λ λ λ
+ − −

≠
+ − + − + −

 − −
= + =  − − − 

          (23) 

Because  

( )0 0

2 2
,0 .cu

u c
λ λ λ+ − += − = =

−
 

(23) yields  

min
1 1.
2

θ = <  

The proof is complete.  
Note The most important step is the construction of the right side of the equ-

ation (22). We multiply the wall relation b u v′ −  by 0λ+ , that ensures the final 
characteristic number is less than 1. Unless, there’s no way to guarantee this. The 
result inspires us to further optimize and generalize the conclusions in [18].  

5. Conclusions and Suggestions 

In this paper, we use a new method of boundary value problems for quasilinear 
hyperbolic systems to successfully solve the local solution of 3D axisymmetric 
supersonic flow in a nozzle with a singularity on its symmetrical axis. Especially, 
we make an equivalent linear transformation (22) of its boundary condition to 
satisfy the sufficient condition of the existence theory of local solution in [18]’s 
Theorem 3.3.1, which shall give others new ideas to solve this type of problem. 

On the other hand, we can generalize the formula (22) to  
( )0 0

2:u u K b u v Gλ λ+ + ′+ = + + − = , which inspires us to improve the existence 
theorem in [18], in order to be applied to more typical boundary value problems. 
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