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Abstract 
This paper proposes a novel approach and simplified model of Quantum 
Gravity based on the unification framework of Generalized Thermodynamics 
which suggests cross-related terms and modified equations of General Relativ-
ity and Quantum Mechanics. To address the “background problem”, a metric 
tensor is introduced into stationary Schrödinger equations via curved coordi-
nates yielding quantum spacetime variation term. Then quantum Lagrangian 
is added to Einstein-Hilbert functional yielding quantum stress-energy tensor. 
Obtained from one variational principle, two theories are linked by a com-
mon quantum spacetime field. The theory offers some interpretations of the 
quantum vacuum spacetime fluctuations, zero-point-fields, quantum fields 
shifting towards high spacetime densities, the quantum nature of spacetime, 
and black hole singularity. 
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1. Introduction 

Quantum Gravity (QG), the theory pretending to combine General Relativity 
(GR) [1] [2] and Quantum Mechanics [3] [4] [5] [6] (QM), is included in the list 
of the most important unresolved problems in physics [7] with the following 
formulation: “How can the theory of quantum mechanics be merged with the 
theory of general relativity/gravitational force and remain correct at microscopic 
length scales? What verifiable predictions does any theory of quantum gravity 
make?” Another formulation includes the following [8]: “Gravity is negligible in 
many areas of particle physics, so that unification between general relativity and 
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quantum mechanics is not an urgent issue in those particular applications. 
However, the lack of a correct theory of quantum gravity is an important issue in 
physical cosmology and the search by physicists for an elegant ‘Theory of Eve-
rything’ (TOE). Consequently, resolving the inconsistencies between both theo-
ries has been a major goal of 20th- and 21st-century physics. This TOE would 
combine not only the models of subatomic physics but also derive the four fun-
damental forces of nature from a single force or phenomenon.” 

After a brief historical review, the goal of this work is to describe a novel 
approach to build equations of Quantum Gravity (QG) based on Generalized 
Thermodynamics (GT) which provides the framework for uniting fields in in-
terconnected physical theories like thermo-elasticity, thermo-electricity, electro-
magnetism, quantum field theory, and others. For the last century, GT evolved 
into some kind of Theory-of-Everything based on the most common laws of na-
ture capable to formulate unification principles also applicable to Quantum 
Gravity. After defining GT’s extensive and intensive factors, energy, and state 
laws, GT suggests cross-related terms and modified GR and QM equations lead-
ing to a quite simple QG model, especially in stationary conditions. Modified GR 
equations include additional quantum stress-energy tensor reflecting quantum 
effects on spacetime while modified QM Schrödinger equations in curved space-
time include GR metric tensor reflecting the effect of curved spacetime onto 
quantum fields. Obtained from one variational principle, QM and GR become 
connected by a common quantum spacetime field. As discussed, the effect of a 
curved spacetime on quantum mechanical fields becomes significant only at 
high spacetime densities near black holes while quantum effects onto spacetime 
are significant for close-to-vacuum states. 

The novelty of the described QG theory is that it is based on Generalized 
Thermodynamics (GT) which evolved from Classical Thermodynamics dealing 
with heat and entropy into a generic framework for uniting interconnected fields 
from different theories based on common GT laws. GT simply says that if some 
two theories—QM and GR in our case—are connected, there should be some 
cross-reference terms in state, energy, and transfer equations. So, curved GR 
spacetime should be introduced into QM Schrödinger equations while QM wave 
function should be introduced into Einstein’s GR equations making the two theo-
ries connected. However, this GT unification idea requires a challenging proce-
dure described here leading to the GTQG model which correlates with some 
known Lagrangian QG formulations observed hereafter.  

1.1. Brief Historical Review of Quantum Gravity 

This brief review of Quantum Gravity development [1]-[75] is based on more 
comprehensive reviews of Rovelli [6], Stachel [33], and Hamber [34] [35]. Quan-
tum Gravity theory to combine GR with QM started in the 1920s soon after the 
onset of GR in 1915 and QM in 1926. Einstein himself in 1916 pointed out that 
quantum effects should lead to modifications of GR [6] [26]. The pioneering 
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work on building a new theory has started by Klein [27], Rosenfeld [28], Fierz 
and Pauli [29] [30], Blokhintsev and Galperin [31], Bohr and Heisenberg [32], 
and by the 1940s the notions of “gravitons” and “quantum theory of gravita-
tional fields” have become familiar concepts [6]. Early QG theories have been 
summarized in some comprehensive reviews by Stachel [33], Rovelli [6], and 
Hamber [34] [35]. There are multiple major streams of QG research [1]-[16], 
[27]-[62]—covariant QG formulation [27] [28] [29] [30] [31] [35], canonical QG 
[11] [24] [25] [34] [37], loop quantum gravity [6] [38] [53] [55] [62], Euclidean 
quantum gravity [34] [36] [37], supergravity [60], string [45] [46] [49] [56] [57] 
[58] [59], and quantum field theories [15] [16] [47] [50] [55] [64] [65]. 

The covariant line of research [6], [27]-[35], started by Rosenfeld, Fierz, and 
Pauli [27] [28] [29] [30] in the 1930s, assumes building QG using fluctuations of 
the metric over a flat Einstein-Minkowski space, or another metric. The Feyn-
man rules of GR were laboriously found by DeWitt and Feynman in the 1960s [6] 
[11] [21] [24]. In the 1970s, firm evidence of a non-renormalizability problem [6] 
[34] [35] [61] has been found which triggered a search for an extension of GR 
for renormalizable or finite perturbation expansions [6] [34] [35] [61]. Through 
high derivative theory and supergravity [60], the search converged successfully 
[6] to string theory [45] [46] [49] [56] [57] [58] [59] in the 1980s. 

The canonical QG stream [6] [11] [24] [25] [26] [34] [35] [36] [37] involves 
constructing QG based on the Hamiltonian formulation of GR without a back-
ground metric to be fixed. The program set by Bergmann, Dirac, Peres, Deser, and 
Misner in the 1950s and 1960s [6] [9] [11], has led to central Wheeler-DeWitt eq-
uations [1] [6] [11] [33] [34] [35] originally called by DeWitt as “Schrödin-
ger-Einstein” equations in 1967. The Wheeler-DeWitt equation [11] [33] [34] 
[35], as a functional-differential equation on the space of three-dimensional spa-
tial metrics, has the form of a Hamiltonian constraint operator acting on a wave 
functional. While important in theoretical physics, this equation was found as 
“too ill-defined” [6] [34] and complicated to do real calculations. Canonical 
Hamiltonian formulations are complicated not only for GR but also for QM eq-
uations which need to be rewritten in curved spacetime to address “the back-
ground problem” of QM [24] [25] where Schrödinger equations were originally 
formulated in flat spacetime. For example, the authors of a recent paper [25] 
provide a very complex Hamiltonian for Schrödinger equation in curved space-
time which includes many terms like wave function and metric tensors with 
their derivatives in complex-number coordinates. Also, canonical QG theories 
employ Feynman path integrals [21] [24] [35] [37] typically used to derive the 
QM Schrödinger equation from a variational principle. The need to address 
QM’s “background problem” leads to even more complicated expressions for 
path integrals over curved spacetime.  

There were multiple attempts to build simplified versions of QG like Eucli-
dean Quantum Gravity [6] [34] [36] [37] based on Wick’s rotation and related to 
ADM formalism finally leading to a generalization of Einstein-Hilbert functional 

https://doi.org/10.4236/jamp.2023.114066


S. Yu. Eremenko 
 

 

DOI: 10.4236/jamp.2023.114066 991 Journal of Applied Mathematics and Physics 
 

by including a path integral of QM. This approach allowed S. Hawking to derive 
theoretically significant black hole radiation [6] [20] [36] [37] called “Hawking 
Radiation” nowadays. Hawking’s result is not directly connected to quantum 
gravity—it is a skillful application [6] of quantum field theory in curved space-
time—but had a very strong impact on the field [6] [18] [34] [35] [43] [67] [68] 
leading to a new research stream in “black hole thermodynamics” reviewed in [6] 
[18] [43]. The research points out the existence of a general relationship between 
quantum theory, gravity, and thermodynamics [18] [43] [67] [68] also explored 
in this work. Later, Hartle and Hawking [69] introduce the notion of the “wave 
function of the universe” opening up a new intuition on quantum gravity and 
quantum cosmology. But the Euclidean integral [36] [37] did not provide a bet-
ter way of computing field theoretical quantities than the Wheeler-DeWitt equa-
tion [6] [11]. Later, Hartle [70] and Isham [71] develop the idea of a sum over 
histories formulation of GR into an extension of quantum mechanics to the gen-
eral covariant setting. But still, the Euclidean functional integral for field theoreti-
cal quantities was proved as “a weak calculation tool” [6] [34] as the Whee-
ler-DeWitt equation [11] [34]. 

Further development of canonical QG in the late 1980s has led to Loop 
Quantum Gravity (LQG) which claims to provide better calculation tools for 
quantum spacetime quantities [5] [6] [38] [39] [53] [54]. LQG, pioneered by 
Rovelli, Smolin, Ashtekar, and Jacobson [5] [6] [38] [39] [53] [54], is formally 
background-independent, leads to solutions in the form of intersecting loops 
and discrete spectrum of volumes correlating well with the quantum nature of 
spacetime in QG theories. LQG is based on a formulation where quantum GR 
equations are the Hamiltonian constraints [38] [53] [54] which are different 
from string and quantum field theories based on Lagrangians and involve many 
fields rather than only quantized gravity primarily focused in LQG. Other diffi-
culties of LQG are related to problems of deriving standard GR equations as 
LQG semiclassical limit [38], as well as a reconciliation of the discrete combina-
torial nature of quantum states with the continuous nature of spacetime in clas-
sical theories [38] [39].  

An interesting interpretation of Quantum Gravity has been proposed in 1986 
by R. Penrose [63] who suggested that the wave function collapse in quantum 
mechanics might be of quantum gravitational origin. This radical [6] idea im-
plies rethinking the basis of QM and GR, but with the prospects of an experi-
mental test. Other contributions of R. Penrose include twistor theory and spin 
networks [64] found some confirmations in loop quantum gravity later. 

Other major physical theories—quantum field theory (QFT) [15] [16] [47] [50] 
[55] [64] [65] and string theory [45] [46] [49] [56] [57] [58] [59]—are also ad-
dressing the problem of quantum gravity from the generic theory of many fields. 
After Green, Schwarz, and Witten in the book on superstring theory [48] proc-
laim that strings might describe “our universe”, the long search [6] for computa-
ble theory delivered perturbative string theory [48] and heterotic strings [46] in 
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the 1980s. The central string theory assumption of ten dimensions that need to 
be reduced to four-dimensional QG was studied in terms of compactification on 
Calabi-Yau manifolds in [49] and has led to conformal field theory by Belavin, 
Polyakov, and Zamolodchikov [50]. Later, Witten introduced topological quan-
tum field theory [51] [52] with Jones polynomials relevant to knot theory inva-
riant and “loop transform” from loop quantum gravity [53] [54]. Enhanced by 
Atiyah [55], topological QFT strongly affected later QG development [6] [34]. 
General topological theories in any dimension have been introduced by Horowitz 
[56]. In the 1990s, the QFT has been expanded by Turaev, Viro, and Ooguri [57] 
[58] with the model of quantization of 2D gravity extended later to 4D. Then, n 
string theory, more complex branes, matrix models, and M-theory reviewed in 
[59] have emerged giving hopes of building a unique fundamental theory based 
on strings. In recent years, the new theory variants like supergravity and confor-
mal theories [34] [35] [60] by Maldacena have merged into string theory lead-
ing to an explosion of interest [6] in the “holographic principle” promoted by 
Susskind [44] and t’Hooft [61]. Reconciliation of loop quantum gravity and 
string theory has been attempted by Smolin [62], but due to different funda-
mentals, the theories have kept their separation [6]. In general, the complexity of 
ten-dimensional string models and still undiscovered supersymmetric particles 
put some skepticism [6] on the completeness of background-independent theory 
based on strings. Nevertheless, QFT and string theory, along with loop quantum 
gravity, have emerged as the two main contenders [6] for truly fundamental 
Quantum Gravity theory as a part of a sought-after unified theory combining all 
fundamental fields of nature.  

Apart from precise continuous QG formulation, there are also approximate 
semi-classical theories [6] [10] [12] [13] [14] [34] [35] [52] [53] [54] [62] [72] 
assuming constructing computable algorithms and some discretization of space-
time. A comprehensive review of discrete and continuous theories was provided 
by Hamber [34]. 

The author’s contribution to Quantum Spacetime research includes the de-
velopment since 2017 of Atomic Spacetime theory [10] [12] [13] [14] based on 
finite Atomic AString Functions and Atomic Solitons where using Atomization 
Theorems [14] spacetime and other fields are composed of flexible overlapping 
“solitonic atoms” resembling quanta also leading to the fields unification idea 
based on Atomic Solitons. 

In summary, the outcome of the century-long QG journey can be summarized 
as a “work-in-progress”, with a few supporting citations: “Even though the pre-
dictions of both quantum theory and general relativity have been supported by 
rigorous and repeated empirical evidence, their abstract formalisms contradict 
each other and they have proven extremely difficult to incorporate into one con-
sistent, cohesive model.” [8] “So, where we are after 70 years of research? There 
are well-developed tentative theories, in particular, strings and loops, and several 
other intriguing ideas. There is no consensus, no established theory…” [6].  
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1.2. Brief Review of Generalized Thermodynamics as a  
Theory-of-Everything 

This work offers a novel approach to build the QG model based on the unifica-
tion framework of Generalized Thermodynamics (GT) [17] [18] [19] [40] [41] 
[42] [43] [44] [65]. Evolved from Classical Thermodynamics in some kind of 
Theory-Of-Everything, GT formulates the universal laws of nature and provides 
the framework for uniting fields in many physical theories dealing with in-
ter-connected phenomena/fields like thermo-elasticity, thermo-electricity, elec-
tromagnetism, and quantum field theory. Classical Thermodynamics originated 
from the science of heat and thermal processes in XIX century by pioneering 
works of R. Clausius, L. Boltzmann, and W. Gibbs who formulated the first and 
second laws of thermodynamics introduced the core notion of entropy, reversi-
ble and irreversible processes, and corresponding variational principles [17] [18] 
[19] [40] [41] [42] [43] [44] [65]. Comprehensive reviews of thermodynamics 
are provided by Tolman [18], Lavenda [19], de Groot and Mazur [65], Veinik 
[17], and Eu [40]. Thermodynamical models have also been used for special and 
general relativity, with comprehensive reviews and theories of relativistic ther-
modynamics to cosmological models provided by Tolman [18]. For quantum 
gravity and black holes, thermodynamics has been used by Bekenstein [43], and 
Hawking [6] [36] [37] which resulted in the discovery of the black hole radiation 
effect using the concepts of black hole temperature and entropy. It is strongly 
impacted [6] not only quantum gravity studies but also leads to novel concepts 
of black hole information paradox and the “holographic principle”.  

In the late XX century, by the efforts of Onsager [66], Glansdorff, Prigogine 
[41], de Groot, Mazur [65], Lavenda [19], and Veinik [17] amongst others, clas-
sical Thermodynamics has evolved into Generalized Thermodynamics (GT) 
beyond the scope of thermal problems trying to formulate the universal laws ap-
plicable for all physical theories. GT assumes the separation of phenomena/fields 
into extensors, intensials, and energy [4] [17] [18] [19] [39] [66]. Along with 
energy, extensors (eq an electric charge, spin, momentum, mass) follow the laws 
of conservation, unlike intensials which define the intensity of fields (eq velocity, 
temperature, voltage, stress). Intensials depend on extensors via state laws [17] 
[18] [19] where the intensity of one field may depend on extensors of other fields, 
with the postulate that the state of a system is fully defined by the set of con-
servable extensors and energy. The evolution of a system in time leads to ther-
modynamic flows which obey Onsager’s reciprocity principle discovered in the 
1950s and express symmetric cross-influence between flows and thermodynamic 
forces [17] [18] [19] [40] [65] [66]. The principle of minimum entropy produc-
tion [17] [18] [19], generalized in GT into the principle of least dissipation of 
energy [17] [18] [19] [65], leads to variational principles including Lagrangian 
formulations widely used in quantum field theories [2] [3] [4] [5] [6] [15] [16] 
[24] [50] [55] [64] [65].  

A significant contribution to GT has been done by A. Veinik in the 1960s- 
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1990s summarizing many of his books in the final book [17] frequently cited in 
this paper. Apart from systematic descriptions of GT theories with seven generic 
laws, he pioneered some ideas of applicability of GT not only to conventional 
fields but also to spacetime itself proposing the candidates for intensials, exten-
sors, and energy of space and time following conservation laws [17]. 

1.3. Quantum Gravity Unification Idea Based on Generalized  
Thermodynamics 

The efforts of many scientists have expanded Classical Thermodynamics from 
the theory of heat to Generalized Thermodynamics as a “Theory-of-Everything” 
[15] [16] [17] [48] which provides the generic framework for the unification of 
multiple fields. Namely in this way, the GT is used in this work for uniting GR 
with QM into the GT variant of Quantum Gravity (GTQG). GT offers a rela-
tively simple and intuitive framework that treats a quantum field (a field de-
scribed by a QM wave function) in the typical GT way of conservable exten-
sors and related intensials as any other GT field. Despite being probabilistic 
and uncertain, the quantum field possesses energy altering the fabric of space-
time hence it can be injected into Einstein’s GR equation via stress-energy 
tensor. On the other side, strongly curved spacetimes should alter the quantum 
energy distributions, probabilistic wave-particle positions, trajectories, and re-
sults of quantum experiments. So, on the fundamental level, spacetime and 
quantum phenomena are deeply connected, hence should be suitable for GT un-
ification principles.  

The theory described here involves the identification of GT intensials and ex-
tensors, addressing the QM background problem by rewriting QM equations in 
curved space, and formulating the GT state, energy laws, and variational prin-
ciples leading to modified Einstein’s and Schrödinger equations. According to 
GT state and Onsager’s reciprocity relations [17] [18] [19] [66], if two pheno-
mena/fields are connected, there must be some cross-reference terms in energy 
and state equations as well as a common principle to derive linked equations. 
In application to QG where quantum and spacetime fields affect each other, it 
means that independent schematic equations QM = 0 and GR = 0 can be re-
placed by unified QG equations  

0, 0.QM QMGR GRQM GR+ = + =                 (1) 

The cross-influence terms QMGR and GRQM reflect the connections between 
the theories. As described later, after addressing the QM background problem, 
GT suggests the following structure of the QG equations:  

( )
2

T , ,
2

V SQE g E
m µνψ ψ ψ ψ− ∇ ∇ + + =
               (2) 

( )( )1 ,
2

.R Rg k T QSE gµν µν µν µν µν ψ− = +               (3) 

The first equation is a modification of the time-independent Schrödinger eq-
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uation of QM while the second one is a modification of Einstein’s GR equation. 
They describe a common quantum spacetime field where GR affects QM via ad-
ditional curved spacetime quantum energy ( ),SQE gµνψ  while QM affects GR 
via additional quantum stress-energy tensor ( ),QSE gµν µν ψ . These equations 
are obtained from the one Lagrangian variational principle making QM and GR 
connected: 

( ) ( ) ( )( )4, d , ; 0.GR QML g g x g g Lµν µν µνψ ψ δ= − + =∫          (4) 

This theory as a symbiosis of GT, GR, and QM may supplement QG research 
streams described above with GT field unification ideas. Based on Lagrangian 
formulation, it seems close to covariant QG [6] [27]-[35] and quantum field 
theories [15] [16] [47] [50] [55] [64] [65]. But regarding final equations, it seems 
related to canonical QG leading to some simplified variants of Wheeler-DeWitt 
equations [11] [34] [35] and Euclidean Quantum Gravity equations [34] [36] 
[37]. But instead of dealing with “canonical” Hamiltonians and path integrals, 
which become very complicated in curved spacetime, we use simpler Lagran-
gians leading to easy-to-comprehend combinations of familiar QM and GR 
functions especially simple in a stationary case. 

The main goal of this work is to describe the challenging procedure of deriv-
ing simplified time-independent QG equations from the GT unification frame-
work and provide an overview of potential applications of the theory to interpret 
the quantum nature of spacetime, quantum vacuum spacetime fluctuations [22] 
[23], quantum fields shifting towards high spacetime densities, atoms ionization 
near black holes, and black hole singularity [20] [25] [36] [37]. 

2. Generalized Thermodynamics 

Generalized Thermodynamics (GT) [17] [18] [19] [40] [41] [42] [43] [44] [65] 
developed by L. Onsager, I. Prigogine, A. Veinik, and others as an extension of 
Classical Thermodynamics formulates the most common laws of nature and pro-
vides the framework for uniting fields in many physical theories like thermo- 
elasticity, thermo-electricity, electromagnetism, and, as some kind of Theory- 
of-Everything, can be used for Quantum Mechanics (QM) and General Relativi-
ty (GR) too. In GT, the state of a body/system is completely defined by a set of 
extensors , 1, ,iE i n=  —conservable quantities, charges, or degrees of freedom 
(mass, momentum, spin, electric charge, etc.) as well as energy ( )iU E  as a 
universal measure of interactions between different fields. Due to fundamental 
laws of energy and extensors conservation, during an exchange, the energy and 
extensors of a system composed of m parts are conserved and follow the rule of 
addition: 

1 ,i i imE E E= + +                        (5) 

1 .mU U U= + +                        (6) 

Examples are conservation laws for momentum, mass, spin, electric charge, 
and energy. Supplying a portion of extensor d iE  to the body changes its energy 

https://doi.org/10.4236/jamp.2023.114066


S. Yu. Eremenko 
 

 

DOI: 10.4236/jamp.2023.114066 996 Journal of Applied Mathematics and Physics 
 

(summation on indices assumed): 

[ ] [ ]
;d d d ; .i i i i i

i i i

U U JoulesU E P E P P
E E E
∂ ∂

= = = =
∂ ∂

            (7) 

iP  are intensials [17], or intensities (velocity, pressure, temperature, voltage...), 
the units of which are determined by dividing the units of energy (Joules) and 
corresponding extensor (7). Body intensials ( )i jP E  also depend on extensors 

jE  via the state law [17] 

( )d d d ,i
i j ij k j

j

P
P E a E E

E
∂

= =
∂

                   (8) 

with examples being the GR T kµν µνε=  and elasticity theory ij ijkl kldσ ε= . State 
coefficients ( )ij ka E  are symmetric expressing the principle that fields symme-
trically affect each other: 

( ) ( )
2

.ij k ji k
i j

Ua E a E
E E
∂

= =
∂ ∂

                   (9) 

For ideal systems [17] [18] [19] with constant ija , the Equations (6)-(8) be-
come linear and lead to a familiar quadratic form for energy, which can be ex-
pressed either via extensors or intensials:  

( )21; ; 2 ;
2i ij j i ij j ii i ij i jP a E E c P U a E a E E= = = +  

( )21 2 .
2 ii i ij i jU c P c PP= +                     (10) 

The examples are kinetic 2
iU mv=  and elastic energies ijkl ij klU d ε ε= . 

According to the law of transfer [17] [18] [19], the gradients jPδ  of inten-
sials between a body and environment create a flow/flux of matter/extensor iJ  
typically measured in relation to time: 

( )d d d ; .i
i i i ij k j

E
E t J t J b P P

t
δ

∂
= = =

∂
               (11) 

Balancing the influx and outflow of an extensor with changes in intensials 
produces different [17] dynamic equations between flows iJ  and thermody-
namical forces j jX P= ∆  often expressed via Laplacians: 

; ; ; .i i
i ij j i j j ij j

P E
J b X J X P b P

t t
ρ ρ
∂ ∂

= = = ∆ = ∆
∂ ∂

           (12) 

Examples are heat conductivity, electro-magnetism, diffusion, and quantum 
mechanics. As per Onsager’s reciprocity relations [17] [18] [19] [66], the resis-
tance, capacity, or conductivity coefficients ijb , constant for linear systems, are 
also symmetric which reflects the mutual balance of forces: 

( ) ( ).ij k ji kb P b P=                        (13) 

This law important for QG tells that changes of one extensor, for example, 
deformations of spacetime, would engage other extensors, like momenta of a 
quantum particle, and the opposite. Together with state law (8), this reciprocity 
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law (13) makes the fields and theories interconnected. 
According to the law of dissipation-screening [17] [19], during the transfer of 

extensor d iE  caused by some gradient of intensials d iP , it is released (usually 
as heat) the energy of dissipation:  

d d d d .d i i iQ E P J t= − = −                      (14) 

The tendency of nature’s processes to minimize the wastage of energy  
mindQ →  and to move in the direction of the least resistance leads to the 

well-known least-action principle [17] [19]. It minimizes some action A typically 
expressed via Lagrangian energy L P K= −  as a difference between potential P 
and kinetic K energies of a system with n fields:  

( ) ( ) ( )( ) ( )1d d ; 0.i i n i iA L P V t P P L Pδ= = + + =∫           (15) 

i  are energy densities over some spacetime volume d dV t . The variational 
equation 

( ) ( ) ( ) ( )1 d d 0i i n i
i k k

k k k

L P P P
L P P P V t

P P P
δ δ δ

δ δ δ
δ δ δ

 
= = + + =  

 
∫ 

 
    (16) 

produces the system of differential equations of transfer (12) and connects mul-
tiple fields: 

( ) ( )1 0; 0.i n i i
ij j

k k

P P P b P
P P t

δ δ
ρ

δ δ
∂

+ + = − ∆ =
∂



 
           (17) 

Examples are GR derived from the Einstein-Hilbert principle [1] [2] [21] [75], 
classical mechanics, and quantum field theories [15] [16] [47] [50] [55] [64] [65]. 
These GT laws offer a unified framework for linking field theories, including GR 
and QM. 

3. Generalized Thermodynamics for Quantum Mechanics  
and General Relativity 

QM is governed by the Schrödinger equation [3] [4] [9] for a complex wave 
function ( ), , ,x y z tψ  of a moving particle in flat static spacetime under the in-
fluence of some energy potential ( ), ,V x y z : 

( ) ( ) ( ) ( )
2

2, , ,
, , , , , , , , .

2
x y z t

i x y z t V x y z x y z t
t m

ψ
ψ ψ

∂
= − ∇ +

∂


      (18) 

Time-independent ( ) ( ) ( ), , , , ,x y z t x y z f yψ ψ=  eigenvalue equation for 
quantized energy E is [3] [4] [9]:  

( ) ( ) ( ) ( )
2

2 , , , , , , , , .
2

x y z V x y z x y z E x y z
m

ψ ψ ψ− ∇ + =
         (19) 

GR describes the shape/metric gµν  of spacetime curved by stress-energy Tµν  
and cosmological expansion with Einstein’s curvature tensor µνε  expressible 
via Ricci tensor Rµν  and its invariant R: 

4

8 1Λ ; .
2

Gg T R Rg
cµν µν µν µν µν µνε επ

+ = = −            (20) 
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GT, as a universal framework for connected physical fields, can be used to 
build a unified QG theory. But it possesses some challenges. QM and GR equa-
tions describe two different things: the probabilistic position of a quantum par-
ticle in static flat spacetime and the shape of the dynamic GR spacetime. This is 
the essence of the background problem [24] [25]—QM does not know what 
curved space is, while GR does not know what wave function is. Also, Schrödin-
ger Equation (19), with potential energy PE and kinetic energy KE, is the ma-
nifestation of the law of energy conservation:  

( ) ( ) ( ) ( )
2

T; ;
2

E PE KE PE V KE
m

ψ ψ ψ ψ ψ ψ ψ= + = = − ∇ ∇
 .   (21) 

But Einstein’s GR Equation (20) is not related to energies and expresses dif-
ferent GT state law (8) connecting stress-energy and curvature tensors. To apply 
GT to the QM and GR unification problem, a deeper analysis is required.  

First of all, we need to realize that QM and GR describe connected fields af-
fecting each other. The peculiarity of a quantum phenomenon is that it intro-
duces a probabilistic degree of freedom. Due to the uncertainty principle [3] [4] 
[9], we do not know the exact location of a particle that becomes a wave-particle 
represented by a superposition of quantum states. Nevertheless, any quantum 
system (hydrogen atom, particle-in-the-box, quantum vacuum) has energy and 
hence can alter spacetime via Einstein’s stress-energy tensor. Also, the minimal 
energy of a quantum system is nonzero and defined by ground-state energy [3] 
[4] [9] which also can exert some pressure onto spacetime, especially with a vast 
amount of energy in the quantum vacuum of the universe [1] [23] [24]. Despite 
QM being the probabilistic theory, the quantum energy field is real and can af-
fect spacetime while curved spacetime can also affect the probabilistic trajecto-
ries of quantum particles moving along the curved geodesics. So, QM and GR 
describe connected fields for which GT is well applicable.  

Let us denote ,QM QME P  to be extensors and intensials for QM, and ,GR GRE P  
for GR. Extensors should obey the conservation law (11) by being able to add to 
each other: 

1 2 1 2, .QM QM QM GR GR GRE E E E E E= + + = + +            (22) 

Total energy (4) of quantum spacetime field ( ),QM GRU E E  should be fully 
defined by the set of extensors and variation of extensors d ,dQM GRE E  should 
alter the energy: 

( ), ; d d d ; , .QM GR QM QM GR GR QM GR
QM GR

U UU U E E U P E P E P P
E E
∂ ∂

= = + = =
∂ ∂

 (23) 

Here, ( ),QM QM GRP E E  and ( ),GR QM GRP E E  are intensials which also should 
be fully defined by the set of extensors, or in the differential form (8): 

d d d , d d d .QM QMQM QM QMGR GR GR GRQM QM GRGR GRP A E A E P A E A E= + = +    (24) 

In inverse form (10), this state equation can be rewritten as 
d d d , d d d ;QM QM QM QMGR GR GR GRQM QM GRGR GRE B P B P E B P B P= + = +  
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1.B A−=                           (25) 

In this case, the total quantum spacetime energy (23) can be expressed in 
terms of intensials: 

( ), ; d d d .QM GR QM GR
QM GR

U UU U P P U P P
P P
∂ ∂

= = +
∂ ∂

           (26) 

For QM, there are two related candidates for conservable extensors QME — 
momentum p of a quantum wave-particle and energy E itself. Momentum p ob-
eys the law of conservation (22) but does not explicitly reflect the specificity of a 
probabilistic quantum phenomenon of energy quantization. Instead, we can use 
some conservable quantum energy QME E=  and wave function–related factor 
ψ  noting that they appear as cofactors in energy Equation (19). Because of 
units [ ] 3 2mψ −= , we can use [ ]QMP α ψ=  where α  is some scaling factor 
[ ] 3 2ma =  which does not affect QM Equations (18), (19), so we can often omit 
α . 

For GR, the candidates for extensors that obey the law of summation (22) 

1 2 3L L L L= + + +   

 , would be some lengths L  or displacements along curved 
geodesics. But they are not convenient to represent curved/deformed spacetime 
expressed in tensors (20). Instead, by analogy with close elasticity theory, it is 
possible to use some relative measures like metric ( )ng xµν  widely used in GR, 
or more complex tensors related to deformations, like curvature tensor µνε  
used by Einstein in GR equations in conjunction with stress-energy tensor Tµν : 

( ) ( )4

8 1, ; .
2ij ij

GkT k R g R g g
cµν µν µν µν µνε επ

= = = −         (27) 

This makes GR equations similar to the elasticity theory where deformations 

ijε  are also some complex derivatives of displacements iu  linearly related to 
stresses ijσ : 

dd d d1 , .
2 d d d d

ji k k
ij ij ijkl kl

j i i j

uu u u
D

x x x x
ε σ ε

 
= + + =  

 
           (28) 

Deformations µνε  are always expressible via metric tensor gµν  (27), so ener-
gy variation equations can be expressed via gµν  widely used in GR. 

In summary, GR has the extensors GRE µνε=  and intensials GRP Tµν= , while 
the QM extensor is some energy QME E=  and the intensial is the wave func-
tion QMP ψ= :  

, ; , .GR GR QM QME P T E E Pµν µνε ψ= = = =             (29) 

Identifying the extensors and intensials allows for applying the GT unification 
framework (5)-(17). 

Matching GR and QM Equations (18)-(20) to GT Equations (5)-(17) yields 
the conclusion that QM expresses some energy conservation law (5) while GR 
expresses a different GT state Equation (25) d dGR GRGR GRE B P= , GRGRB k= . This 
is why linking QM and GR is so challenging. To unite two theories presumably 
describing connected fields, we have to express the equations in common terms 
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of energies. Following (24)-(26) and separating full energy (23) into QM-only, 
GR-only, and mixed part 

( ) ( ) ( ) ( ), , ,QM GR QM QM GR GR QMGR QM GRU U P P U P U P U P P= = + +     (30) 

suggests that GR fields can be injected into the QM Schrödinger equation via 
some additional spacetime quantum energy ( ),QMGRSQE U µνψ ε=  which can 
be expressed either via deformations µνε , related stress-energy T kµν µνε=  or  

metric tensor ( ( ) ( )1
2ij ijR g R g gµν µν µνε = − ): 

( ) ( ) ( )( ), ijE KE PE SQE gµνψ ψ ψ ψ ε= + + , 

( )
2

T , .
2

E V SQE g
m µνψ ψ ψ ψ= − ∇ ∇ + +
               (31) 

Concrete expressions will be obtained later after reformulating QM in curved 
spacetime. 

From the other side, the QM wave function can be injected into GR via the 
GT state Equation (25) 

( ), ,GRQM GRGR GRGRd B T d B dT B kµν µν µνε ψ ψ= + =           (32) 

yielding the following expressions:  

( )( ),k T QSE gµν µν µν µνε ψ= + ; ( ),g kTµν µν µν µνε γ ψ+ = ; 

.QSE kµν µνγ = −                      (33) 

QM effect onto spacetime can be expressed either via additional quantum 
stress-energy tensor QSEµν  or via additional quantum spacetime deformation 

µνγ . Physically it means that the quantum field can assert some additional 
pressure QSEµν  onto spacetime causing it to curve more ( ),gµν µνγ ψ  similar 
to the cosmological expansion Λgµν  pressure often included in GR: 

( )Λ , .g g kTµν µν µν µν µνε γ ψ+ + =                 (34) 

Concrete expressions for these factors will be obtained in the next sections. 
Let us note that incorporating external fields via GT state equations is often 

used in other theories [17] [18] [19] [40], for example, in thermo-elasticity stud-
ying deformations of materials under temperature gradient:  

( ).ij ijkl kl klD Tσ ε α ∆= −                      (35) 

Exactly in the same way, Einstein introduced the cosmological expansion fac-
tor [1] [2] [26]: 

Λ .g kTµν µν µνε + =                        (36) 

In summary, GT suggests the following form of united QG equations: 

( )
2

T , ,
2

V SQE g E
m µνψ ψ ψ ψ− ∇ ∇ + + =
  

( )( )1 , .
2

R Rg k T QSE gµν µν µν µν µν µνε ψ= − = +            (37) 
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It describes a united quantum spacetime field where GR affects QM via addi-
tional curved spacetime energy ( ),SQE gµνψ  while QM affects GR via addi-
tional pressure ( ),QSE gµν µν ψ . Assuming that QM and GR describe the related 
phenomena, GT suggests the cross-influence factors between QM and GR. In-
jecting scalar QM functions into GR can be done by modifying state equations 
while injecting GR spacetime field into QM can be achieved by reformulating 
QM equations in curved coordinates. Let us note that GT mainly provides a ge-
neric framework to understand how the theories can be united. Concrete ex-
pressions can be obtained after a detailed analysis of field equations and varia-
tional principles described hereafter.  

4. Lagrangian Quantum Gravity Formulation 

GT provides some guidance on how QM and GR can be united by incorporating 
curved spacetime-related energy terms into the QM Schrödinger equation and 
wave-function-related deformation terms into GR state equations. To obtain 
concrete expressions, we have to apply more detailed variational equations de-
rived from GT Lagrangian least-action principles (15)-(17). 

If we introduce QM and GR symbolic operators as  

( ) ( ) ( ) ( )
2

T ;
2

QM V E GR g g kT g
m µν µν µν µν µνψ ψ ψ ψ ε= − ∇ ∇ + − = −
 , (38) 

the pair of standard classical QM and GR Equations (19), (20) can be rewritten 
in schematic form:  

( ) ( )0; 0QM GR gµνψ = = .                  (39) 

These are independent equations. But this is not an adequate description of 
physical quantum spacetime reality where quantum and spacetime fields affect each 
other. Instead, one can propose some connected equations with cross-reference 
terms: 

( ) ( ) ( ) ( ), 0, , 0.QM QMGR g GRQM g GR gµν µν µνψ ψ ψ+ = + =     (40) 

Following GT framework (22)-(37), to incorporate a scalar QM wave function 
into GR tensor fields, it is necessary to bring both equations to the same ener-
getic form expressing some generic guiding principle. The Lagrangian least- 
action principle formulated in scalar energies (15) is specifically designed for 
this. If we denote Lagrangians for QM and GR as QML , GRL , assume they de-
pend on both intensities QMP ψ= , ( )GRP gµν µνε=  and can be split into spe-
cific and cross-reference terms, the total quantum spacetime Lagrangian can be 
written as 

( ) ( ) ( ), .QM GR QMGRL L L g L gµν µνψ ψ= + +               (41) 

As per the least-action principle (16), its variation should be zero yielding the 
pair of equations: 

0;QM QMGR QMGRGRL L LLL g
g g µν
µν µν

δ δ δδδ δψ δ
δψ δψ δ δ

  
= + + + =       
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0, 0.QM QMGR QMGRGRL L LL
g gµν µν

δ δ δδ
δψ δψ δ δ

+ = + =              (42) 

Comparing them to (40) leads to the following schematic equations: 
0, 0;QM QMGR GRQM GR+ = + =  

, , , .QM QMGR QMGRGRL L LL
QM QMGR GR GRQM

g gµν µν

δ δ δδ
δψ δψ δ δ

= = = =     (43) 

This unification idea stays true even if the clear split (41) is not achievable, eq 
when total energy is:  

( ) ( ), .QM GRL L g L gµν µνψ= +                  (44) 

Here we have got:  

0; 0, 0,QM QM QM QMGR GRL L L LL LL g
g g g gµν
µν µν µν µν

δ δ δ δδ δδ δψ δ
δψ δ δ δψ δ δ

  
= + + = = + =       

 (45) 

and a final pair of connected equations become: 

( ) ( ) ( ), 0, , 0.QM g GRQM g GR gµν µν µνψ ψ= + =          (46) 

Let us note that Lagrangians GRL  and QML  are well-known or can be de-
rived. For GR, it is known as Einstein-Hilbert action [2] [21] [75] with Ricci sca-
lar R and metric tensor determinant g: 

( ) 41 d ; 0.
2GR GRL g R g x L

kµν δ= − =∫                (47) 

For QM, the generic Lagrangian is known as Dirac-Feynman path-integral [3] 
[4] [25], but for the time-independent QM Equation (19), it can be simplified to 
the form 

( ) ( )
2 2 2

2

2 2 2QML V E
m

ψ ψψ ψ= ∇ + −
 .               (48) 

It is extendable to the desired mixed form ( ),QML gµνψ  after rewriting QM 
equations in curved space. Let us note that Lagrangian (48) is easier to rewrite in 
curved spacetime than Dirac-Feynman’s path integral defined in complex space 
with a time dimension. Later it will be shown how to derive standard GR and 
QM equations from Lagrangians (47), (48). But to build a unified QG theory, it 
is possible to extend them with cross-reference terms which can be found after 
solving the QM “background problem” discussed next. 

5. Addressing the Background Problem of Quantum  
Mechanics 

QM is governed by the Schrödinger equation for a wave function ( ), , ,x y z tψ  
in flat static spacetime under the influence of energy potential ( ), ,V x y z : 

( ) ( ) ( ) ( )
2

2, , ,
, , , , , , , , .

2
x y z t

i x y z t V x y z x y z t
t m

ψ
ψ ψ

∂
= − ∇ +

∂


      (49) 

But static spacetime is not an adequate description of physical reality. In 
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strong gravitational fields, the spacetime is curved, and all QM wave particles 
should be moving by the shortest path along geodesics in curved space , ,x y z    
rather than along the straight lines in flat spacetime , ,x y z  prescribed by the 
Schrödinger Equation (49). Actually, in QM a path is uncertain [3] [4] [11] [36], 
and we can only think about the probability of a movement along a path; never-
theless, QM contains derivatives over unphysical flat coordinates and needs to 
be improved.  

5.1. One-Dimensional QM Equations in Curved Space 

For a more adequate description, the QM equations have to be reformulated in 
curved coordinates:  

( ) ( ) ( ) ( )
2

T, , ,
, , , , , , , , ;

2
x y z t

i x y z t V x y z x y z t
t m

ψ
ψ ψ

∂
= − ∇ ∇ +

∂



  

 

 

      








 

T , , ,
x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 


  

                     (50) 

or in the 1D case 

( ) ( ) ( ) ( )
22

2

, ,
, .

2
x t x t

i V x x t
t m x

ψ ψ
ψ

∂ ∂
= − +

∂ ∂

 

 



 







             (51) 

For an internal observer/experimenter in curved space x , the QM equations 
would describe the wavy distributions ( )xψ   of particle locations 0x x=   in a 
double-slit QM experiment, quantized energy levels in a hydrogen atom with 
function ( ) ( )exp m

n n nA kψ ρ ρ ρ= −   , or eigenvalue modes for quantum par-
ticles-in-the-box solution [3] [4] [9]: 

( ) ( )( ), sin 2 e , .ni t
n n nx t A k x L k n Lωψ −= − = π

 



             (52) 

In all of these equations, the background coordinates ,x ρ  are curved, a 
length L  is flexible—because according to GR spacetime and a ruler are flexi-
ble too.  

Let us examine the 1D model of strongly curved space with known density 
( )xρ  and metric of space ( ) ( )2g x xρ= , for example, from Schwarzschild 

metric near a black hole ( )
1

1 ,s
r

rg r r x
r

−
 = − = 
 

,  

( ) ( ) ( ) ( ) ( )22 2 2d ; d d d ; d d .
d

B B

A A
x x x g x x L x x xx

x
x xρ ρ ρ= = = = =∫ ∫



    (53) 

It allows transforming the curved QM equations and solutions (50)-(52) into 
flat spacetime x, which is required to match QM with other theories including 
GR. What were the straight lines or sinusoidal waves (52) in curved space would 
become squashed and stretched in flat spacetime, as shown in Figure 1. This is 
how GR affects QM—it defines background coordinates ( )x x  where quantum 
mechanical and other physical fields are evolving. If spacetime is strongly un-
even, it will affect the positions and trajectories of particles and the results of 
quantum physics experiments. This is a more adequate description of a dynamic 
spacetime reality rather than a flat QM Equation (49). 
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(a) 

 
(b) 

 
(c) 

Figure 1. Three wavefunctions modes for particle-in-the-box (a) Flat 
spacetime; (b) Schwarzschild metric function; (c) Curved spacetime shifts 
pulses closer to denser spacetime zones.  
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Assuming that the spacetime density and metric (53) are known, let us rewrite 
the 1D curved QM Equation (51) for wave function ( ) ( )( )x x xψ ψ=   meas-
ured in static flat spacetime:  

( ) ( ) ( ) ( )
2 2

2
2 2

d d d d d d d; .
d d d d dd d

x x x x
x x x

x
x x xx

ψ ψ ψ ψ ψ ψρ ρ ρ ρ′= = = +


  

    (54) 

Assuming for now that within the boundaries of a quantum system the metric 
change ( ) ~ 0xρ′  and time dilation effects can be ignored t t=  yields the 
following equation: 

( ) ( ) ( )
2 2

2
2 2

d d 1 , .
d d

g x x
g xx x

ψ ψ ρ≈ =


               (55) 

Injected into (51), it leads to  

( )( )
( )

( )( ) ( )( ) ( )( )
22

2

,1 .
2

t
i

x x x x
V

m g x x
x x x x

t
ψ ψ

ψ
∂ ∂

= − +
∂ ∂

 



 




     (56) 

Denoting scalars as ( )( ) ( ) ( )( ) ( ),x x xV V x xxψ ψ= =   yields 1D QMGR eq-
uation notably including GR metric function ( )g x : 

( )
( )

( ) ( ) ( )
22

2

, ,1 ,
2

x t x t
i V x x t

t m g x x
ψ ψ

ψ
∂ ∂

= − +
∂ ∂



 .        (57) 

Time-independent equation [3] [4] [9] can be obtained using typical substitu-
tion ( ) ( ) ( ),x t x f tψ ψ=  leading to the eigenvalue problem for total energy E: 

( )
( ) ( ) ( ) ( )

22

2
1 .

2
x

V x x E x
m g x x

ψ
ψ ψ

∂
− + =

∂
            (58) 

This equation generalizes Schrödinger Equation (49) which becomes classical 
at ( ) 1g x = . It describes the effect of gravity and curved spacetime on the QM 
field, for example, for particle-in-the-box solutions (52). 

5.2. Metric Mass and Metric Wave Function 

Interestingly, metric ( )g x  becomes a cofactor of mass m allowing us to intro-
duce a metric mass function ( ) ( )m x mg x=  and relevant QMGR equation: 

( ) ( ) ( )
( )

( ) ( ) ( )
22

2

, ,
; , .

2
x t x t

m x mg x i V x x t
t m x x

ψ ψ
ψ

∂ ∂
= = − +

∂ ∂






     (59) 

This mass becomes similar to variable relativistic mass from special relativity 
[1] [2]. It implies that at very dense spacetimes near black holes, the quantum 
wave-particles become “heavy” and hard-to-move, quantum wave-particle dis-
tribution effects become less pronounced, and particles are mostly localized ra-
ther than distributed, as shown in Figure 1. At ( )mg x →∞  wave function 
( )xψ  disappears from the QM Equation (58). But for low-density vacuum-like 

states ( )mg x m , quantum effects play a major role and particles behave like 
distributed wave clouds. This leads to another effect of gravity on QM. If for a 
hypothetical particle-in-very-long-box quantum experiment (52) the metric 
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( )g x  changes from low ( ) 00g x g= =  to high ( ) 0g x L ng= =  level, the wave 
function would be wobblier at low g and more concentrated at high g implying a 
higher probability of finding a quantum particle at those locations (Figure 1). It 
seems like the wave function “gravitates” to higher-density spaces. As described 
later, it means the classic quantum double-slit experiment [3] [4] [5] [9] [25] 
between strong gravitational fields should show a tendency of probabilistic wave 
patterns to concentrate closer to heavier mass, which hopefully can be confirmed 
experimentally. 

Another interesting expression can be obtained by multiplying the QMGR 
Equation (57) by ( )g x : 

( ) ( ) ( ) ( ) ( ) ( )
22

2

, ,
, .

2
g x x t x t

i V x g x x t
t m x
ψ ψ

ψ
∂ ∂

= − +
∂ ∂



         (60) 

It leads to the appearance of a new function gψ  which unites QM wave 
function ( ),x tψ  with unitless GR metric function ( )g x  in one conglome-
rate: 

( ) ( ) ( ), ,g x t g x x tψ ψ= .                    (61) 

This metric wave function becomes “the bridge” between GR and QM linking 
the two theories together. For uniform spacetime g const= , it becomes the or-
dinary quantum wave function ( ),x tψ  while for uniform quantum field  

1ψ =  it becomes the ordinary metric function. There is another useful implica-
tion of metric wave function ( ),g x tψ —it gives a hint about how the QM wave 
function may be incorporated into Einstein’s GR Equation (34) which explicitly 
contains metric tensor gµν . 

5.3. Quantum Mechanical Spacetime Variation Energy 

QMGR Equation (60) can be also rewritten in the supplementary form assuming, 
like in covariant QG models [6] [27]-[35], ( ) ( )1g x g xδ= + : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22

2

, , ,
,

2
, 0.

x t x t g x x t
i V x x t i

t m x t
V x g x x t

ψ ψ δ ψ
ψ

δ ψ

∂ ∂ ∂
+ − +

∂ ∂ ∂
− =



 

      (62) 

The first term expresses the standard QM Schrödinger operator while the 
second one expresses the effect of “spacetime background” change gδ  to QM, 
or schematically: 

( ) ( ), 0QM QMGR gψ ψ+ = .                   (63) 

This exactly matches the representations (40) and (43) from GT and Lagran-
gian principles. Because the QM Schrödinger equation, especially in the form 
(58), manifests the law of energy conservation [3] [4] [9], it can be expressed in 
the form matching the GT representations (31), (37): 

QM Kinetic Energy QM Potential Energy QM Space Variation Energy
QM Full Energy;

+ +
=

 

( ) ( ) ( ), ijKE PE SQE g Eψ ψ ψ ψ+ + = ,              (64) 
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The third term shows how curving of space adds extra space quantization 
energy ( ), ijSQE gψ  to QM supporting GT ideas (30), (40). This term can be 
easily understood intuitively—QM energy equations for a wave function in 

, , ,x y z t  have to be modified because , , ,x y z t  is not static anymore. Uneven 
spacetime should alter both quantum energy level distributions and concentra-
tions of energies at certain spots (Figure 1), and additional energy is required to 
account for those effects. As described later, it also means that space quantiza-
tion energy ( ), ijSQE gψ  near a black hole may be so dominant that it may sig-
nificantly shift the quantized energy levels at atoms forcing some external elec-
trons to escape and leaving atoms ionized hypothetically contributing to known 
Hawking’s radiation effect [20] [36] [37]. In summary, in super-strong gravita-
tional fields, the distributions of quantum energy states may be significantly al-
tered [25]. 

5.4. Einstein’s Relativity and Equivalence Principles for Quantum  
Mechanics 

Concerning the additional energy seemingly appearing after switching from flat 
to curved spacetime coordinates, it seems important to reiterate Einstein’s rela-
tivity principle. Additional energy term (64) is not just magically appearing in 
QM—it always exists because spacetime is curved and holds energy which needs 
to be accounted for in all equations dealing with spacetime. The curved QM eq-
uation is the reality while the classical QM equation with missing spacetime 
energy only approximates this reality. The energy statement (64) should be con-
sidered more fundamental while ignoring of spacetime energy variation term 
should be treated as a simplification of the real picture. This is similar to New-
ton’s and Einstein’s gravity laws. Einstein’s law does not add energy, it always 
exists in curved spacetime. It is just when we ignore this energy, we come up 
with simplified Newtonian solutions.  

In every curved coordinate system, the QM Schrödinger equation has the 
same form (50), and this is another manifestation of Einstein’s relativity and the 
equivalence principle [1] [2]. For an internal observer, even near a black hole, 
the particle-in-the-box or double-slit quantum experiments would look the same 
and produce the same wave patterns in local coordinates. But external observers 
may notice the heavy concentration of quantum fields at denser spacetimes, 
slowness of time, and stretching of space because space itself is a dynamic fabric. 
This is reflected in curved QM equations.  

It is also tempting to recall the famous John Wheeler’s saying “Spacetime tells 
matter how to move; matter tells spacetime how to curve” [1]. This wisdom 
should be relevant not only to macro-matter but also to probabilistic QM wave- 
particle trajectories along the least-resistance geodesics, as well as to the results 
of quantum experiments in curved spacetime. So, spacetime should tell quantum 
wave-particles where to concentrate, especially near black holes. Quantum fluc-
tuations also make spacetime wobbly. 
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6. Quantum Mechanical Background Problem in  
Three-Dimensional Space 

The background problem of QM, when Schrödinger Equation (49) is formulated 
in flat static spacetime and does not account for the curvature of real space, can 
also be resolved in the 3D case (curvature of time is excluded for now) with the 
following procedure.  

6.1. Quantum Mechanical Equations in Curved 3D Space 

When particles are moved and distances are measured along the shortest paths 
of curved geodesics , ,x y z   , QM Equation (50) becomes 

( ) ( ) ( ) ( )
2

T, , ,
, , , , , , , , ;

2
x y z t

i x y z t V x y z x y z t
t m

ψ
ψ ψ

∂
= − ∇ ∇ +

∂



  

 

 

      








 

T , , .
x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 


  

                       (65) 

In differential geometry [1] [2], curved coordinates  
( ) ( ) ( ), , , , , , , ,x x y z y x y z z x y z    are related to flat coordinates , ,x y z  via Jaco-

bian matrix [ ]J , and back via transpose matrix TJ   : 

[ ] T

d d d d d
d d d , d d .
d d d d d

x x x x y x z x x x x
y y x y y y z y J y y J y
z z x z y z z z z z z

∂ ∂ ∂ ∂ ∂ ∂           
            = ∂ ∂ ∂ ∂ ∂ ∂ = =           
          ∂ ∂ ∂ ∂ ∂ ∂           

    

    

    

 (66) 

Derivation of the scalar function ( ), ,x y zψ     from (65) (ignoring presumably 
small second-order spacetime derivatives ij kJ x∂ ∂  within a quantum system) 
leads to 

[ ] [ ] [ ] [ ]1 1T T T T T T; ; .J J J G G J Jψ ψ ψ ψ ψ− −     ∇ = ∇ ∇ ∇ ≈ ∇ ∇ = ∇ ∇ =     
   (67) 

Here, [ ] 1G −  is the inverse metric tensor matrix (3 × 3) well-known as the 
multiplication of Jacobians [2] transforming flat to curved coordinates. This 
tensor is the inverse of the curvature tensor [ ]G  from 3D GR equations which 
do the opposite transformation. Noting (67) brings QM Equation (65) to the 
form:  

( ) [ ] ( ) ( ) ( )
2

1T, , ,
, , , , , , , , ;

2
x y z t

i G x y z t V x y z x y z t
t m

ψ
ψ ψ−∂

= − ∇ ∇ +
∂







 

T , , .
x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

                     (68) 

Because [ ] 1G −  is a matrix/tensor, [ ] 1T G −∇ ∇  cannot generally be brought 
to the form ψ∆  with Laplacian T∆ = ∇ ∇  appearing in classical 3D QM equa-
tions. But, similar to GR tensor equations, this seems correctly reflect the curved 
spacetime reality when spacetime derivatives may alter the perfection of Lapla-
cian and Hamiltonian operators unknown in GR. 
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6.2. Metric Mass Tensor and Quantum Spacetime Variation  
Energy 

Similar to the 1D case (59), it is possible to introduce metric mass tensor and re-
levant equation: 

[ ];m m G=  

( ) [ ] ( ) ( ) ( )
2

1T, , ,
, , , , , , , , .

2
x y z t

i m x y z t V x y
t

z x y z t
ψ

ψ ψ−∂
= − ∇ ∇ +

∂








  (69) 

It implies that at dense spacetime areas, the mass becomes “heavier” and 
harder to move, quantum wave-particle distribution effects become less pro-
nounced, and wave-particles are mostly localized rather than distributed. At 
m →∞ , [ ] 1 ~ 0m −

  wave function ( )xψ  disappears from Equation (69) im-
plying that quantum effects in strong gravitational fields become negligible.  

Assuming [ ] [ ]1 1G I Gδ− −= + , with I being the identity matrix, brings QMGR 
Equation (68) to the schematic forms (43), (63) with additional terms reflecting 
the effect of curved space onto QM fields: 

[ ]
2 2

1T T 0;
2 2

i V G
t m m
ψ ψ ψ δ ψ−   ∂

+ ∇ ∇ − + ∇ ∇ =   ∂   

 

  

( ) ( ), 0ijQM QMGR gψ ψ+ = .                  (70) 

As we can see, 3D Equations (65)-(70) mostly correlate with simpler 1D 
QMGR interpretations (57)-(63) making them quite representative. 

6.3. Deriving Quantum Mechanical Equations from QM  
Lagrangian 

Let us note that classical time-independent Schrödinger equations can be for-
mally obtained from Lagrangian variational principle with the following func-
tional including energy density ( )QM ψ : 

( ) ( )3d ; 0;QM QM QML x Lψ δ ψ= =∫  

( ) ( )
2

T 2 2.
2QM V E

m
ψ ψ ψ ψ ψ= ∇ ∇ + −



               (71) 

Indeed, the QM equation follows from ( ) 0QMLδ ψ =  with transformations: 

( )
2

3

2
T 3

2 d
2

2 d .
2

QML V E x
m

V E x
m

δ ψ δ ψ ψδψ ψδψ

ψ ψ ψ δψ

 
= ∇ ∇ + − 

 
 

= − ∇ ∇ + − 
 

∫

∫





         (72) 

Lagrangian for curved space yielding (65) has the same form expressed via 
curved coordinates: 

( ) ( )
2

T 2 2 3d ; 0.
2QM QML V E x L

m
ψ ψ ψ ψ ψ δ ψ

 
= ∇ ∇ + − = 

 
∫




      (73) 

After noting (67) and ignoring ij kJ x∂ ∂ , it can be transferred to flat space: 
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( ) ( ) ( ) 3, , det d ;QM QML G G G xψ ψ= ∫  

( ) [ ]( )
2

1T 2 2, .
2QM G G V E

m
ψ ψ ψ ψ ψ−≈ ∇ ∇ + −



           (74) 

Important to notice the appearance of the determinant ( )det G  of metric ten-
sor making the integral invariant against coordinates’ transformations as well as 
complex scalar [ ] 1T Gψ ψ−∇ ∇  linking together GR metric tensor and QM wave 
function ψ . Lagrangian density should have units of energy over some volume 

3J mQM  =   which is correctly reflected in (74) noting that due to QM norma-
lization of the wave function 2 3d 1xψ =∫  , 2 3mψ −  =   and 2 3J mVψ  =  . 

Typically, Lagrangian should be considered in the spacetime of certain di-
mensionality, eq 3D for (74). For typical GR 4D spacetime, it needs to be inte-
grated over 4D volume with the inclusion of typical GR term g−  providing 
invariance [2] [4] over 4D coordinate transformations: 

( ) ( ) 4, , d ;QM QML G G g xψ ψ= −∫  

( ) [ ]( )
2

1T 2 2, .
2QM G G V E

m
ψ ψ ψ ψ ψ−= ∇ ∇ + −



           (75) 

6.4. Spatially Isotropic Equations and Metric Wave Function 

In a special case of spatially isotropic space with metric [ ] 1G I g− = , where I is 
the identity matrix, is the 3D equations become simpler: 

( ) ( )
2

T 2 2, ;
2QM G V E

mg
ψ ψ ψ ψ ψ= ∇ ∇ + −



  

( )2 2
T T, .

2 2
g

i V i Vg
t mg t m

ψψ ψ ψ ψ ψ
∂∂

= − ∇ ∇ + = − ∇ ∇ +
∂ ∂

 

      (76) 

Similar to the 1D case (61), the metric wave function gψ  expresses the con-
nection between GR and QM. 

In summary, QM “background problem” can be solved for both 1D and 3D 
models by introducing curved spacetime which links QM to GR. 

7. Introducing Quantum Mechanical Wave Function into  
General Relativity Equations 

Addressing the QM background problem by introducing curved coordinates is 
only the first step toward unifying QM and GR. It was done by many authors 
before [11] [16] [25] but it does not complete the united QG theory. It only ex-
plains how the curved GR spacetime affects QM equations. But assuming that 
quantum spacetime is one inseparable field, we need to explore the opposite— 
how QM affects GR. Here, the universal GT concepts (4)-(37) become useful. 
GT, via state law, Onsager reciprocity principle, and energy Equations (8)-(26) 
states that if two connected fields are defined by two sets of extensors (23), there 
must be cross-influence terms and additional energies (30) reflecting those rela-
tions. It means if the GR field affects QM, the QM field should affect the GR 
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field too. GR field has been introduced into GM (67) via inverse metric tensor 
[ ] 1G −  while the QM field should be introduced into GR via a scalar term (33) 
related to the scalar wave function. From GT (33), (37), we know the structure of 
the desired equation:  

( )( )1 , .
2

R Rg k T QSE gµν µν µν µν µν µνε ψ= − = +            (77) 

Now the goal is to obtain concrete expressions for quantum stress-energy 
tensor ( ),QSE gµν µν ψ  reflecting the effect of QM fields on spacetime. Lagran-
gian formulations (41)-(45) can help with that. 

7.1. Deriving General Relativity Equations from Einstein-Hilbert  
Lagrangian 

First, let us evaluate how classic GR equations can be obtained from the Lagran-
gian variational principle, and the theory of this has been well-known [2] [21] [75] 
since 1915. This principle minimizes the action S, or Lagrangian GRL T V= −  
traditionally defined as a difference between kinetic T and potential energy V. 
For GR it has been known as the Einstein-Hilbert action [2] [21] [75]: 

( ) 41 d ; 0.
2GR GRL g R g x L

kµν δ= − =∫                 (78) 

Here, 4
8 Gk
c
π

= , R—Ricci scalar, ( )detg gµν= —the determinant of matrix 

components of the metric tensor gµν  from GR Equation (20). Extending this 

action with some external Lagrangian density T  

( ) 41 d ; 0
2GR T GRL g R g x L

kµν δ = + − = 
 ∫              (79) 

allows obtaining all GR equations by following a well-known procedure [2] [21] 
[75] for finding GRL  variations for the metric tensor gµν : 

41 1 d
2 2

T T
GR

g gL LR RL g g x
k kg g g gg g

µν
µν µν µν µν

δ δδδδ δ
δ δ δ δ

 − −
= + + + − 

− −  
∫ (80) 

Considering Ricci and metric tensor properties [2] [21] [75] 

1 1;
2

gR R g
g ggµν µνµν µν

δδ
δ δ

−
= = −

−
              (81) 

and introducing stress-energy tensor  

: 2 ,T
TT g

gµν µν µν
δ
δ

= −


                    (82) 

from variation 0GRLδ =  it is possible to obtain the desired Einstein’s GR equa-
tion [75]: 

4

1 8; .
2

GR Rg kT k
cµν µν µν
π

− = =                (83) 

This known procedure suggests the way how an external field (electromagnet-

https://doi.org/10.4236/jamp.2023.114066


S. Yu. Eremenko 
 

 

DOI: 10.4236/jamp.2023.114066 1012 Journal of Applied Mathematics and Physics 
 

ic, quantum, cosmological, etc.), with some Lagrangian density T  can be in-
jected into GR equations. Namely in this way by adding a constant k−Λ  into 
(79), Einstein introduced the cosmological expansion factor: 

4
1 8Λ .
2

GR Rg g T
cµν µν µν µν
π

− + =                   (84) 

7.2. Adding Quantum Lagrangian to Einstein-Hilbert Functional 

Einstein-Hilbert least-action principle, also discussed in §4, suggests a way how 
to inject the QM field into GR equations. We need to get QM Lagrangian density

( ),QM gµνψ  (75) and add it to Einstein-Hilbert functional (79): 

( ) 41 2Λ d ; 0.
2 T QML R g x L

k
δ = − + + − = 

 ∫             (85) 

Let us note that in Quantum Field Theory [15] [16] [47] [50] [55] [64] [65], 
the external to GR Lagrangians em  are typically inserted with a minus sign, eq 

2 emR k − , but they are negative as well 0em < , so the overall sign would be 
positive. So, in (85) we would safely assume that QM  is positively defined in 
(75). 

Following GT procedure §4, we can represent the total Lagrangian of a quan-
tum spacetime field as the sum of GR and QM parts: 

( ) ( ) ( ), , .GR QML g L g L gµν µν µνψ ψ= +                (86) 

This Lagrangian depends on two field variables , gµνψ . Variation regarding 
ψ  should yield the curved QM Schrodinger equitation while variation for gµν  
the desired GR equation with some addition reflecting Quantum Gravity: 

0, 0, 0;QM QM QM QMGR GRL L L LL L
L g

g g g g
µν

µν µν µν µν

δ δ δ δδ δ
δ δψ δ

δψ δψδ δ δ δ
   

= + + = = + =   
   

(87) 

( ) ( ) ( ), 0, , 0;QM g GR g GRQM gµν µν µνψ ψ= + =           (88) 

, , .QM QMGRL LL
QM GR GRQM

g gµν µν

δ δδ
δψ δ δ

= = =            (89) 

( )GRL gµν  is Einstein-Hilbert action (79) while ( ),QML gµνψ  has been ob-
tained in QM (75): 

( ) ( ) 4, , dQM QML g g g xµν µνψ ψ= −∫ ; 

( ) ( )2: , .QM V E gµνψ ψ= − + ϒ                  (90) 

QM  is the invariant Lagrangian energy density properly measured in Joules 
over volume (due to wave function normalization rule 2d 1Vψ =∫ , 2ψ  has in-
verse units of volume).  

7.3. Deriving Quantum Gravity Equations and the Quantum  
Stress-Energy Tensor 

So, to accommodate QM, Einstein-Hilbert functional can be extended in the 
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following way: 

( ) ( ) ( )

[ ]( )

2 2

2
1T 4

1,
2

d .
2

TL g R g g V E
k

G g x
m

µν µν µνψ ψ ψ

ψ ψ−

    = + + −     
 

+ ∇ ∇ −    

∫





         (91) 

The last scalar term explicitly depends on both spacetime gµν  and wave 
function ψ : 

( ) [ ]( )
2

1T, .
2

g G
mµν ψ ψ ψ−ϒ = ∇ ∇
             (92) 

Variation of it regarding ψ  according to QM formulation (72) yields the 
curved derivative:  

( ) [ ]( )
2

1T, .
2

g const G
mµνδ ψ ψ δψ−ϒ = = − ∇ ∇
             (93) 

Let us now vary the full ( ),L gµνψ  (91) in terms of ψ  at g constµν = : 

( )

[ ] [ ]
2

1T 4

,

2 d .
2

QML g L

V E G g x
m

µνδ ψ δ
δψ δψ

δψ δψ

ψ ψ ψ δψ− 
 
 

=

= − − ∇ ∇ −∫


   (94) 

Demanding 0QMLδ
δψ

=  as per (87) yields the desired curved QM equation: 

[ ]
2

1T

2
G V E

m
ψ ψ ψ−∇ ∇ + =

 .           (95) 

Next, let us vary ( ),L gµνψ  in terms of gµν  at constψ = . As per (80)-(84), 
it yields the desired GR equation accounting for QM: 

( )( )1 , ,
2

R Rg k T QSE gµν µν µν µν µν ψ− = +             (96) 

( ), : 2 ,QM
QMQSE g g

gµν µν µν µν

δ
ψ

δ
= −


               (97) 

( ) ( )2: , ,QM V E gµνψ ψ= − + ϒ                (98) 

( ) [ ]( )
2

1T, :
2

g G
mµν ψ ψ ψ−ϒ = ∇ ∇
 .              (99) 

Quantum stress-energy tensor ( ),QSE gµν µν ψ  is introduced in the same way  

as Einstein did for the stress-energy tensor : 2 T
TT g

gµν µν µν
δ
δ

= −


  (82) defined  

by some external factors with known Lagrangian density T . Interestingly, the 
new GR Equation (96) can be rewritten in terms of additional spacetime curva-
tures added to Einstein’s cosmological constant Λ: 

4

1 8Λ 2 ; .
2

QM QM GR Rg g k T k
k g cµν µν µν µν µν

δ
δ

    π
− + + = − =   

   

 
    (100) 
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It means quantum effects may act as some expansions and contractions of 
spacetime. Also, interesting to observe the appearance of 2ψ  which in QM 
reflects the probability density of finding a quantum particle at a certain loca-
tion [3] [4] [9]. QG Equations (96)-(99) also include two external factors—one 
is Einstein’s stress-energy tensor Tµν  defining the “background” metric of 
spacetime (for example near a black hole) and another one is QM potential 
( ), ,V x y z  affecting quantum wave-particles distribution (for example, inside a 

hydrogen atom). The QG Equation (95) also includes quantized/discrete energy 
E typically calculated in classical QM which now needs to be altered to account 
for curved spacetime. It means that on the fundamental level, spacetime may 
have some discrete component, as discussed later. Scalar quantum spacetime 
factor ( ),gµν ψϒ  uniting GR metric tensor and QM wave function shows that 
dense spacetimes at large gµν  act as an additional metric mass mgµν  and 
suppress quantum effects. 

8. Main Quantum Gravity Model Equations 

In summary, derived from the unification principles of Generalized Thermody-
namics and common variational principle, the following pair of QG equations 
unite Schrödinger’s and Einstein’s equations: 

[ ]
2

1T

2
G V E

m
ψ ψ ψ−∇ ∇ + =

 ,                (101) 

( )( )1 Λ , .
2

R Rg g k T QSE gµν µν µν µν µν µν ψ− + = +          (102) 

These equations obtained using the unification framework of General Ther-
modynamics, and logically to be called GTQG equations, are the main result of 
this work. GR curved spacetime is included in QM via space components of the 
inverse metric tensor [ ] 1G −  while QM included in GR via additional quantum 
stress-energy tensor ( ),QSE gµν µν ψ  making two theories connected. The ex-
tensions of these equations for time dependency and other factors are discussed 
in §10. The next chapters provide interpretations of these GTQG equations. 

9. One-Dimensional Quantum Gravity Equations 

1D GTQG equations, for example, describing simple quantum particle-in-the- 
box QM model [3] [4] [9] in 1D curved space ( )x x  with metric  

( )2 2d dg x xx = , allows evaluating QG equations in the simplest forms. Curved 
QM Equation (101), also discussed in §5, becomes:  

( )
( ) ( ) ( ) ( )

22

2
1 .

2
x

V x x E x
m g x x

ψ
ψ ψ

∂
− + =

∂
             (103) 

For GR Equations (102), (96)-(99), we have:  

( ) ( ) 22

,
2

x
g

mg x
ψ

ψ
∂ 

ϒ =  ∂ 



; ( ) ( ) ( )( ) 2, ,QM g g V x Eψ ψ ψ= ϒ + − .  (104) 
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So, the additional stress that a quantum wave particle with mass m exerts on 
spacetime would be: 

( )

( ) ( )( ) ( )2

, : 2

,
, 2 .

QM
QM

QM

QSE g g
g

g
g g V x E

g

µν µν µν

δ
ψ

δ
δ ψ

ψ ψ
δ

= −

= ϒ + − −





    (105) 

Let us note that in curved space, we need to be mindful of what x, V, and ψ  
mean in these equations. As described in §5, for an internal observer in curved 
space ( )x x , the curved QM Equation (51) is formulated for the “local” wave 
function ( )xψ   influenced by some local external factor ( )V x . But when we 
translate QM functions like (52) into flat spacetime x, where we would like to 
unite QM with GR or other theories, we need to treat these functions as complex  

ones ( )( ) ( )V xx x V= , ( )( ) ( )x xxψ ψ=  along with derivatives 
( )2

2

x
x

ψ∂
∂





. This 

leads to (104), but we should understand that ( )( )V x x  and ( )( )x xψ   may 

also depend on metric function ( )g x  which is hidden in ( )x x . Hence, we 

should not assume that the derivative QM

gµν

δ
δ


 in (105) would only depend on 

( ),g ψϒ .  

Quantum stress-energy tensor ( ),QSE gµν ψ  (105) depends on probability 
density 2ψ  of finding a particle at a certain location, the squared speed of 
charge of the wave function ( )ψϒ  like some kinetic energy, external QM po-
tential ( )V x , discrete quantum energy levels E, and other terms. The higher 
mass and density of space ( )g x , the less pronounced the quantum effects be-
cause ( )g x  acts as an additional metric mass ( )mg x  making a particle “heavi-
er”. The lower metric mass ( )mg x , the more distinct quantum fluctuations 
which are especially significant for quantum vacuum states discussed later. 

10. More Generic Quantum Gravity Model Equations 

Main GTQG Equations (96)-(102) have been obtained for time-independent 
QM equations with the assumption that metric change can be ignored within the 
boundaries of a quantum system. While it is sufficient to build a common basic 
QG theory, let us evaluate how they can be generalized.  

The first enhancement would be to account for the variability of metric gµν  
within the size of a quantum system when second derivatives in curved space 

2 2
ixψ∂ ∂  need to be translated into flat derivatives with Jacobian d di ij jJ xx =  

and metric i ig
x

x
x

x
µν

µ ν

∂ ∂
=
∂ ∂
 

 transformations. This will bring desired curved QM 

equation to the typical form:  

( )H V Eψ ψ ψ+ =                     (106) 

with Hamiltonian H operator provided, for example, in paper [25] with a com-
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plex mix of second and first derivatives multiplied by metric tensor and its de-
rivatives: 

( ) ( )2
kl k l lkmn mn l kH A g x x B g g x xµν µν= ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + .       (107) 

For example, for the 1D case with metric function ( )2 2d dg x xx = , the curved 
QM equation looks like  

( ) ( ) ( )
2

2 .
2 2

g V x x E x
m g g

ψ ψ ψ ψ
′′ ′ ′ 

− − + = 
 



            (108) 

These generalizations would only be important for hypothetical metric fields 
quickly changing within the boundaries of a quantum system. They would alter 

the simple expression for scalar [ ]( )
2

1T

2
G

m
ψ ψ−ϒ = ∇ ∇

 . But generic Lagran-

gian presentation (98) would have the same form. 
For time-dependent QM equations with the accounting of gravitational time 

charge d dt tt g=  and complex wave function (18), the Lagrangian would in-
clude temporal components: 

( )
*

* * * , ;
2

:QM
t

V g
ig t t µν

ψ ψψ ψ ψ ψ ψ
 ∂ ∂

+ − + ϒ ∂ ∂
=





  

( ) [ ]
2

1* T *, .
2

g G
mµν ψ ψ ψ−ϒ = ∇ ∇
                (109) 

Another improvement for future research would be to replace QM Lagrangian 
(98) with Feynman’s path integral [3] [11] [21] [25] [36] [37] in complex space 
which needs to be generalized for curved spacetime. Logically, it should lead to 
known covariant [27] [28] [29] [30] [31] [35] and canonical [11] [24] [25] [34] 
[35] [36] [37] QG formulations which should be evaluated in future research re-
garding GT concepts important in this theory. 

11. Curved Spacetime Effect on Quantum Fields 

Quantum Gravity GTQG Equations (101), (102) link together quantum and 
spacetime fields into connected unity of quantum spacetime pioneered in the 
1930s. Let us evaluate how within this model the strong gravitational fields affect 
some known QM models and what known effects and predictions this theory 
may support.  

11.1. Particle-in-the-Box 

This simple well-known 1D QM model also analyzed in §5 describes an uncer-
tain position of a quantum particle inside an impenetrable box of size L. In 
curved coordinates ,x t , it is described by QM Equation (51): 

( ) ( )22

2 .
2

, ,x t x t
t x

i
m

ψ ψ∂ ∂
= −

∂ ∂

 

 









                (110) 

The solution (52) is the superposition of eigenvalue modes with quantized 
energy nE  [3] [25]: 
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( ) ( ) ( ); sin e ,, ,
2

, ni
n n

t
n n

n

Ld A kx t x t x t x ωψ ψ ψ − 
≡ = − 



 
 
 

∑ 

  

   



 

nk n L= π  ; 
2 2 2

22n
nE

mL
π

=




.                   (111) 

In these equations, the local background coordinates ( )x x  and length 𝐿𝐿� 
are flexible—because spacetime and a ruler are flexible too. If the box is located 

near a black hole with known metric 
1

( ) 1 ,s
r

rg r r x
r

−
 = − = 
 

 from Schwarzschild  

GR solution [1] [2] [9], the background coordinates ( )x x  can be directly ex-
pressed via flat coordinates via ( )d dxx xρ= , ( ) ( )2g x xρ= . So, what were the 
straight lines or sinusoidal waves in curved space, would become squashed and 
stretched (Figure 1) from the viewpoint of an external observer in flat spacetime. 
Injecting curved metric into ( )g x  and omitting second-order terms  

( ) ~ 0xρ′  would lead to the equation where mass and metric become cofactors 
( ) ( )m x mg x= : 

( ) ( ) ( )
( )

( )22

2

, ,
; .

2
x t x t

m x mg x i
t m x x

ψ ψ∂ ∂
= = −

∂ ∂







        (112) 

Existence of this metric mass ( )mg x  (§5) implies that at very dense space-
times near black holes, the quantum wave-particles become “heavy” and hard- 
to-move, quantum wave-particle distribution effects become less pronounced, 
and wave-particles are mostly localized rather than distributed, as shown in 
Figure 1. At ( )mg x →∞  wave function ( )xψ  disappears from equations. 
But for low-density vacuum-like states ( )mg x m , quantum effects play a 
major role, and particles behave like distributed QM wave clouds. This leads to 
another effect of gravity on QM. Considering a hypothetical very long box where 
space metric ( )g x  changes from low ( ) 00g x g= =  to high  
( ) 0g x L ng= =  level, the wave function would be wobblier at low g and more 

concentrated at high g (Figure 1). It implies a higher probability of finding a 
quantum particle at those locations. It seems like the wave function “gravitates” 
toward higher-density spaces/heavier masses. It means not only matter “attracts” 
to heavy masses but also probabilistic QM wave-particle distributions evolved in 
curved spacetimes; this is the result of spacetime derivatives in QM equations 
and Einstein’s concept that spacetime is curved. Intuitively, it is more probable 
and energetically economical for a quantum particle to move along the shortest 
part of curved geodesics rather than along a straight line in curved space.  

Let us note that in this particles-in-the-box model, we ignore the presumably 
little effect of the QM field on GR spacetime assuming strong gravitational fields. 
If this is not the case, we should be finding Lagrangian (104) from QM par-
ticle-in-the-box equations, inject it into GR via quantum stress-energy tensor 

( ),QSE gµν ψ  (97) and obtain a pair of GTQG equations to be solved simulta-
neously.  

In summary, even the simplest model confirms known effects and yields in-
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teresting insights into the effect of gravity on the probabilistic quantum fields. 

11.2. Quantum Hydrogen Atom in Curved Spacetime 

A hydrogen atom is another classic QM model [3] [9] yielding curved radial 
Schrödinger equation (65): 

( ) ( ) ( ) ( ) ( )
2 2

2

0

, ;
2 4

eV E Vr r r r r
rm

ψ ψ ψ
ε

− ∇ + = = −
π

    





  

2 2
2

1 r
r r r

ψ∂ ∂ ∇ =  ∂ ∂ 


  

 .                    (113) 

In curved Schwarzschild spacetime metric ( )2 2d dg r rr = , ( )
1

1 s
r

rg r
r

−
 = − 
 

, 

the second space derivative would inevitably lead to the appearance of mg  
factor instead of the electron’s reduced mass m: 

( ) ( ) ( ) ( ) ( )
2

2 .
2

r V r r E r
mg r

ψ ψ ψ− ∇ + =
             (114) 

Due to the similarity of models, all the insights of the particle-in-the-box QM 
model would apply to the hydrogen atom too. So, in a vicinity of a black hole, an 
electron mass mg  in the atom would appear heavier and harder to move in 
comparison with the same atom far away. Also, the atom’s orbitals would be 
shifted/gravitated towards a black hole, in agreement with the paper [25]. For 
atoms with many electrons, it is possible to hypothesize that some external elec-
tron layers may be torn apart leaving some atoms ionized, and probably this ef-
fect is known to specialists. Also, the presence of a black hole would shift wave 
function modes ( ) ( )exp m

n n nA kψ ρ ρ ρ= −    and break their spherical symmetry 
confirming the findings in [25]. 

11.3. Quantum Double-Slit-Experiment Interpretation 

Discussed above sensitivity of a wave function to high-density spaces and the 
existence of metric mass mg  and metric wave function gψ  cofactors (§5.2) 
should also affect the results of the quantum double-slit experiment [3] [4] [9], 
from which QM ideas had originated in the 1920s. This experiment performed 
in a strong gradient of gravitational fields, eq in a presence of a very heavy mass 
from one side/slit, should show the tendency of probabilistic wave patterns to 
concentrate closer to heavier mass, and most likely this effect is known to phy-
sicists. 

11.4. Quantum Ground State and Gaussians 

Quantum Ground State function [3] [4] [9] expresses the minimal energy state of a 
quantum system, for example in the 1D form of the symmetric Gaussian function 

( ) ( )2
0 expx axψ = − . In highly curved spacetime ( )xx , it may not be symmetric-

al but squashed towards the higher spacetime density ( ) ( )2
0 expx xaψ = −  . This is 

also related to other QM models where Gaussians are often used [3] [4] [9] for 
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both probability distributions and localized quantum states. 

11.5. Quantum Wave Function Collapse/Localization 

In 1986, R. Penrose [63] [64] suggested the wave function collapse [3] [4] [9] in 
quantum mechanics might be of quantum gravitational origin. According to [6], 
this idea implies re-thinking the basis of QM and GR but offers the prospects of 
an experimental test. Interestingly, it can be interpreted in the proposed GTQG 
model (96)-(102) in the following way. A particle wave function “collapse” into a 
certain position 0=x x  implies probability density ( )2 4

0 d 1xψ − =∫ x x  at some 
moment of measurement. 2ψ  included in Lagrangian density (98)  

( ) ( )2 ,QM V E gµνψ ψ= − + ϒ  yields quantum stress-energy tensor ( ),QSE gµν ψ  
which creates an additional point-like (localized/collapsed) warp of spacetime. 
So, based on GR concepts, one can say that a collapsed quantum particle just 
“falls” into this spacetime warp. It means a wave function collapse can be asso-
ciated with spacetime localization [12] [13] [14] [63] correlating with R. Pe-
nrose’s arguments [63].  

12. Quantum Effect on Spacetime 

Quantum Gravity GTQG Equations (96)-(102) are based on the Generalized 
Thermodynamics idea of mutual influence between QM and GR fields. It means 
not only spacetime affects QM equations and experiments but also QM affects 
spacetime. This is reflected in the appearance of an extra term (96) in the Eins-
tein-Hilbert least-action principle in the form of the Lagrangian energy density 
component QM : 

( ) 41 2Λ d ; 0.
2 T QML R g x L

k
δ = − + + − = 

 ∫             (115) 

It is related to the quantum field energy (98) in curved space  

( ) ( ) ( ) [ ]( )
2

12 T: , ; , :
2QM V E g g G

mµν µνψ ψ ψ ψ ψ−= − + ϒ ϒ = ∇ ∇


    (116) 

and leads to quantum stress-energy ( ),QSE gµν µν ψ  added to Einstein’s stress- 
energy tensor Tµν : 

( )( ) 4

1 8Λ , , .
2

GR Rg g k T QSE g k
cµν µν µν µν µν µν ψ
π

− + = + =      (117) 

The following paragraphs describe some particular cases of Quantum effects 
on spacetime interpreted within the proposed GTQG model. 

12.1. Energy Density Estimations 

Some estimations of how strongly QM affects GR can be done by comparing 
energy-based addition QM  against Lagrangian T  density defining primary 
spacetime field in (115). To affect the fabric of spacetime for massive objects like 
the Sun, the mass of a quantum particle should be at least comparable  

~T QM  , and it is hardly reachable for microscopic quantum systems. Also, as 
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was discussed in §5, 11, due to metric mass ( )mg x , strong gravitational fields 
make quantum particles harder to move hence altering the fabric of spacetime. 
The higher the density of space ( )g x  and the closer a quantum particle is to a 
big mass, the less pronounced quantum effects would be, and the less wobbly 
would be the quantum spacetime. 

12.2. Spacetime Quantum Fluctuation Interpretations 

To make some quantum influence on spacetime, we should have ~T QM   in 
(115), and this seems achievable for sub-atomic particles and especially for va-
cuum states ~ 0T . Let us first evaluate cases where QM  is comparable with 

T . As per QG Equations (85), (96)-(99) with ignoring L gµν∂ ∂ , we would 
have 

( )( ) ( )1 Λ ,
2 T QMR Rg g k T QSE g k g gµν µν µν µν µν µν µν µνψ− + = + ≈ +  . (118) 

Transferring the terms of gµν  into the left part would yield additional terms 
to the cosmological constant Λ: 

1 Λ 0.
2

QMTR Rg g
k kµν µν µν

 
− + − − ≈ 

 


            (119) 

The cosmological term Λgµν  was introduced by Einstein (with the famous 
“biggest blunder” story [1] [2]) to compensate for and later to explain the ex-
pansion of the universe, which evolved to modern interpretations of anti-gravity 
and “dark energy” [1] [20]. From (119) it looks like the quantum energy density 

QM  acts as an additional expansion/contraction factor making spacetime 
“breathing”. Vibrations in quantum energy QM  would make spacetime wob-
ble as well, and the higher QM  in comparison with some static background 

T , the more pronounced would be the “quantum breathing”. It is well-known 
that quantum spacetime fluctuations are related to quantum ground states and 
virtual particles seemingly permeating space and popping in and out of existence 
[22] [23] [74]. Interestingly, Lagrangian (98) includes both positive and negative 
terms related to quantum potential energy ( )V x± , full energy ( ) 2 0E ψ− <   

and ϒ -energy related to wave function speed-of-change ( )
2

2
0

2
x

m
ψ ′ >  

 . 

Depending on the relationships between them, we can get either negative QM  
leading to spacetime expansion or positive QM  for spacetime contraction:  

( ) ( ) ( ) ( )
2

22: , ; , ~ .
2QM V E g g x

mgµν µνψ ψ ψ ψ ′= − + ϒ ϒ   


       (120) 

Also, the wave function appears in square 2ψ  which in QM expresses the 
probability of finding a particle at a certain location [3] [9]. So, quantum space-
time fluctuations depend on the relationships between energies, wave function 
amplitudes, and gradients. In QM, energy E, as the solution of the QM eigenva-
lue problem, is discrete meaning the effect on spacetime would be discrete too. It 
does not necessarily mean the spacetime itself is discrete; it means in this GTQG 
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model it can be represented as some superposition of functions with a discrete 
spectrum. 

12.3. Quantum Vacuum States Interpretation 

Including the quantum degree of freedom into GTQG Equations (96)-(102) al-
lows interpreting low-density spacetimes close to vacuum states [22] [23] [74]. 
Spacetime can be affected by quantum stress-energy tensor ( ),QSE gµν µν ψ  
even without the presence of matter-related stress-energy tensor 0Tµν = :  

( ) 4
1 8, , .
2

GR Rg kQSE g k
cµν µν µν µν ψ
π

− = =            (121) 

Quantum oscillations in quantum energy density QM , which as discussed 
can be positive or negative, and can cause pressure QSEµν  onto the spacetime 
making it “breathing” with expansions and contractions (§12.2). In QM, the mi-
nimal energy of a quantum system is nonzero but defined by “ground state” 
energy [3] [4] [9] which would create “background states” of spacetime making 
it the dynamic continuum on the fundamental level. It correlates well with 
well-known “quantum vacuum states” and “zero-point field” physical concepts 
[22] [23] [74] which assume the vacuum is not truly empty but a dynamic con-
tinuum of virtual particles popping in and out of existence and holding some 
energy hence creating some pressure onto spacetime.  

After further research, this GTQG model may also provide some interpreta-
tion of the following problem from “Unsolved problem in physics” [7] [73]: 
“Why does the zero-point energy of the vacuum not cause a large cosmological 
constant? What cancels it out?”. The answer to why the zero-point-energy field 
does not significantly expand the spacetime may be related to the abovemen-
tioned fact that Lagrangian (98) includes both positive and negative terms 
canceling each other on average, as discussed later as well. 

12.4. Notes on Discrete or Continuous Spacetime 

From the positions of this GTQG model, it is also interesting to interpret the 
fundamental question of whether spacetime is truly “quantized/discrete”, like a 
chain of “balls” connected by “springs” in the popular Harmonic Oscillator 
model [3], or it is continuous like a liquid. From one side, Lagrangian  

( ) ( )2 ,QM V E gµνψ ψ= − + ϒ  explicitly contains quantized energy nE  with  

discrete values (eq 
2 2 2

22n
nE

mL
π

=




 for a quantum particle-in-the-box). But from  

the other side, those discrete values are multiplied by smooth continuous wave 
functions 2ψ  and ( ),gµν ψϒ  making the overall factor QM  continuous, but 
as a superposition of modes with a discrete spectrum. As a result, total spacetime 
deformations would not be truly discrete but rather continuous like a packet of 
ocean waves with definite “dense” areas. It means the spacetime can be consi-
dered both continuous and discrete: continuous in terms of the absence of “an-
gles” and “rigid balls” but discrete in terms of a spectrum of superpositions— 
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more like a superposition of “vibrating strings” with certain frequencies, as 
string theory suggests [15] [16] [47] [50] [55] [64] [65]. A similar discrete- 
continuous quantum spacetime model is discussed in the author’s Atomic 
Spacetime research [10] [12] [13] [14]. 

12.5. Quantization for Confinements 

Let us notice that the Schrödinger Equation (49) by itself does not lead to the 
quantization of full energy E. As well-known from eigenvalue problems of ma-
thematical physics [3] [4] [9], the eigenvalue frequencies ω appear only for cer-
tain boundary conditions, but for free-moving body 0ω = . It means a QM sys-
tem must be confined, like a particle-the-box or hydrogen atom, to produce 
some spectrum of discrete energies. For an unconfined spacetime continuum, 
energy quantization seems not applicable. Only when spacetime/matter gets 
“locked”, does the quantum energy gets quantized producing spacetime defor-
mations described by QG Equations (96)-(102) which include smooth mat-
ter-related Tµν  and quantum-related terms QSEµν . 

12.6. Is Spacetime Quantum in Nature? 

From the positions of GTQG theory, this frequently debated question [20] [21] 
[63] can be interpreted in the following way. The shape of spacetime is defined 
by many factors (117)—matter-related stress-energy Tµν , cosmological dark- 
energy expansion Λgµν  and quantum stress-energy QSEµν . A quantum com-
ponent is only one of many factors which may temporarily prevail. When we 
consider quantum vacuum states with no physical matter ~ 0Tµν , quantum 
component QSEµν  may become dominant, and we can consider space as hav-
ing some quantum properties like probabilistic uncertainty, wave-particle beha-
vior, superposition of states, quantization of energies, etc. So, one can say that 
vacuum space could be quantum-in-nature. But when matter appears, the factor 
Tµν  starts competing with QSEµν  and may quickly suppress quantum effects. 
Due to the core factor mgµν  (§5.2) the higher density of space, the less pro-
nounced quantum effects, and the more quantum wave-particles become just 
particles. Thus, dense spacetime ceases to have quantum properties. All these in-
fluences happen on the background of dark-matter cosmological factor Λgµν  
which looks like a constant pressure not having much to do with quantum un-
certainties. So, it is quite an exaggeration that spacetime is always quantum- 
in-nature—all depends on the balance of three factors— Tµν , QSEµν  and Λ in 
the GTQM model.  

12.7. Black Hole Singularity Problem Interpretation 

Another outcome of the proposed GTQM theory may confirm the well-known 
idea that quantum effects may prevent singularity for Ricci scalar R →∞  at the 
center of a black hole which in the standard GR model leads to equation [1] [2]  

4
8 GR T
c
π

= − . In GTQG model (96)-(99), the Ricci scalar is surrounded by  
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other terms with the inclusion of a quantum part QM  which, unlike T , can 
be negative: 

1 Λ
2

QMTR g
k k µν

 
− + − − + 
 




                 (123) 

It implies that the growing energy of a compression T  at the center of a 
black hole may not be spent entirely on the growth of R but also the increase of 
quantum energy QM  which would act as a “damping factor”. Let us recall that 

QM  (98) exclusively contains potential energy V used in QM to represent ex-
ternal energy potential. Rather than producing unphysical infinity R →∞ , it 
may lead to very high QM  and V which may cause some quantum fluctuation 
releasing/distributing the concentrated energy of a black hole center because in 
QM the particles become distributed wave-particle clouds. Also, in Quantum 
Gravity where GR affects QM and QM affects GR, the infinite energies/extensors 
would be prohibited by the GT law of dissipation (14) which would release the 
energy of dissipation into the heat d ddQ T S= . It seems to correlate well with 
Bekenstein [43] and Hawking [6] [36] [37] black hole radiation models, with 
further research required. 

In summary of this chapter, we can see that the proposed GTQM model 
upholds the known effects and provides some insights into the influence of 
quantum effects on the fabric of spacetime with easy-to-interpret additions to 
Einstein’s GR equations. 

13. Conclusions and Future Research Directions 

This paper proposes a novel approach and model to build equations of Quantum 
Gravity (QG) based on Generalized Thermodynamics (GT) which evolve from 
Classical Thermodynamics into some kind of Theory-of-Everything providing a 
common framework for uniting fields from different interrelated physical theo-
ries including Quantum Mechanics (QM) and General Relativity (GR). After de-
fining GT extensors, intensials, energy, and state equations, GT suggests cross- 
reference terms and modified equations of QM and GR making two theories 
linked together. GR metric tensor introduced into stationary QM Schrödinger 
equations via curved coordinates which addresses the “background problem” 
and yields an additional quantum spacetime variation term. Then quantum La-
grangian is added to Einstein-Hilbert functional yielding additional quantum 
stress-energy tensor into Einstein’s GR equation. Obtained from one variational 
principle, two theories are linked by a common quantum spacetime field. 

Obtained GTQM model yields easy-to-interpret factors like metric mass and 
metric wave function pointing that at dense spacetimes near black holes, the 
quantum wave-particles become “heavy” and hard-to-move, quantum wave par-
ticle distribution effects become less pronounced, and wave-particles are mostly 
localized rather than distributed. But for low-density vacuum-like states quan-
tum effects play a major role and particles behave like distributed wave clouds. 
The theory and model uphold and provide interpretations for some known 
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Quantum Gravity effects of shifting of QM wave-particles towards high space-
time densities, diminishing quantum effects for high metric mass densities, re-
searched for QM models including particle-in-the-box, hydrogen atom, the 
quantum double-slit experiment, and wave function collapse. Analyzing quan-
tum effects of spacetime, the concepts of spacetime quantum fluctuations, quan-
tum vacuum states, and discrete-continuous spacetime are also discussed. The 
GTQR model offers the interpretation for some important problems like the 
quantum nature of spacetime, black hole singularity, and zero-point fields.  

Further research directions should include whether the Generalized Thermo-
dynamics approach can be expanded for more complex canonical, covariant, 
quantum field, string, and loop quantum gravity models. Including temporal 
components in the GTQM model would make the model more generic. It seems 
important to clarify which Quantum Gravity stream this research belongs to. 
Reviewed interpretations of mutual influence quantum and spacetime fields 
would be interesting to research in more detail.  

This theory may contribute not only to Quantum Gravity research but also 
extend Generalized Thermodynamics as a kind of “Theory-of-Everything” to-
ward important quantum spacetime concepts and beyond. 
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