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Abstract 
In this note, we investigated existence and uniqueness of entropy solution for 
triply nonlinear degenerate parabolic problem with zero-flux boundary con-
dition. Accordingly to the case of doubly nonlinear degenerate parabolic hyper-
bolic equation, we propose a generalization of entropy formulation and prove 
existence and uniqueness result without any structure condition. 
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1. Introduction 

Let Ω be a bounded open set of 

  with a Lipschitz boundary ∂Ω and η  the 
unit normal to ∂Ω outward to Ω. We consider the triply nonlinear degenerate 
parabolic-elliptic-hyperbolic problem with zero-flux boundary condition: 

( ) ( ) ( ) ( ) ( )
( )( ) ( )
( ) ( )( ) ( )

0

div 0       in 0,

0,                             

0                             on 0

 

,

  in  
tb u f u u u Q T

b u t x b x

f u u T

+ − ∆ + = = ×Ω

= =

−∇ ⋅ = Σ = ×∂


 Ω

Ω



φ ψ

φ η

        (P) 

The particularity of this problem is its strong degeneracy. For practical reason 
and physical consideration, we suppose that [0, 1] will be the invariant domain 
of solution of (P) and that there exist two particular values of the unknown u. 
We denote by su  and cu  (with 0 1c su u< ≤ < ) such that ( )uφ  (resp ( )b u ) 
is strictly increasing only on [ ],1cu  (resp [ ] [ ]0, ,1c su u∪ ) otherwise it has a flat 
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region (see Figure 1). Then, problem (P) is of mixed elliptic parabolic hyperbol-
ic type with absorption term, and thus combines the difficulties related to non-
linear conservation laws with those related to nonlinear degenerate diffusion 
equations. We refer to Kruzkov [1] for the case of hyperbolic problem ( 0φ ≡ ) 
and Carrillo [2] for degenerate parabolic problem to inspiration. We need a notion 
of solution which is sufficient to deal with existence and uniqueness. One conse-
quence is that the notion of weak solution generally leads to non-uniqueness, 
unless φ  is strictly increasing. It is necessary to adopt an entropy formulation. 
The notion of entropy solution we use is adapted from the founding paper of [3] 
in the case where s cu u=  and 0φ = . Several authors have studied the degene-
rate equation type we consider.  

Some of these authors ([3] [4]) proved existence and uniqueness under the 
hypothesis that the convection flux f is a Lipschitz-continuous function and re-
quired that 

( ) ( )0 0, 1 0.f f= =                       (H) 

This hypothesis is necessary to obtain the solution in [0, 1] if the initial datum 

0u  belongs in [0, 1] in the sense that ( ) ( )0 0b u x b x=  and the hypothesis (H) 
is below. The main idea in the paper is to keep this hypothesis but we impose 
that initial datum 0u  belongs to [0, 1]. We suppose that the function b satisfies:  

( ) ( ) [ ]2,  such that , .b uα α α α+∃ ∈ ∈               (1.1) 

A simple choice is to take ( )0b α=  and ( )1b α= . Our assumptions on b 
and φ  do not concern the case where the structure condition 

( ) ( ) ( ) ( ).b u b v u vφ φ= ⇒ =                  (S.C) 

holds. The presence of the absorption term in the equation requires us to assume 
it to be increasing. Further, we suppose: 

( ) ( ) ( ) where  is a positif function.r sign r g r gψ =           (1.2) 

The case of triply nonlinear problems of the form (P) has been first ad-
dressed by Ouaro and Touré (see [5]) and the references therein) and Ouaro [6]. 

 

 
Figure 1. Convection and diffusion flow. 
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Well-posedness results are obtained in dimension 1= , under very general coer-
civity conditions; see also the works of Bénilan and Touré ([7] and the references 
therein). Andreianov and Wittbold investigate in [8] about the continuous depen-
dence of the solution of a degenerate elliptic-parabolic equation without structure 
condition related to b and f. They prove existence by passing to bi-monotonicity 
and penalization method as in [9]. Otherwise, in [10], Andreianov et al. obtain a 
general continuous dependence result on data for our kind of triply nonlinear 
problem with help of structure condition. They showed similar result for the de-
generate elliptic problem, which corresponds to the case of 0b ≡  and general 
non-decreasing surjective ψ . In our case the function ψ  is bounded continuous 
and strictly increasing. If (S.C) fails, the convergence of approximate solutions to 
(P) is known for a particular monotone approximation method developed by 
Ammar and Wittbold [9]. This approach leads to an existence result which by-
passes (S.C). Notice that some essential arguments of uniqueness result in this 
works are specific to the case 1= . For Neumann boundary condition also called 
zero-flux boundary condition, it is easy to prove uniqueness of solutions such that 
the boundary condition is satisfied in the sense of strong boundary trace of the 
normal component of the flux ( ) ( )( )f u uφ−∇ . Unfortunately, we are able to es-
tablish this additional solution regularity only for the stationary problem (S) asso-
ciated to (P) and only in the case of one space dimension. 

The paper is divided in three parts, in Section 2 we generalized the notion of 
entropy solution of paper [3] where c su u<  and [4] in the pure hyperbolic case. 
In Section 3, we first prove existence and after uniqueness of entropy solution. 

2. Formulation of Entropy Solution  
2.1. Definition of Entropy Solution 

We need the notion of weak solution for (P) with additional “entropy” conditions. 
Definition 2.1. A measurable function u taking values on [0, 1] is called an 

entropy solution of the initial-boundary value problem (P) if satisfying the fol-
lowing conditions: 

( ) ( )( )2 10, ;u L T Hφ ∈ Ω  and [ )( )0,Tξ ∞∀ ∈ × 

 , with 0ξ ≥  

( ) ( ) ( )( ) ( )
0 0 0

, d d d d d 0.
T T T

tb u t f u u x t u x tξ φ ξ ψ ξ
Ω Ω

− −∇ ⋅∇ + =∫ ∫ ∫ ∫ ∫    (2.1) 

( ) ( )( )2 10, ;u L T Hφ ∈ Ω  and [ ] [ ]0, ,1c sk u u∀ ∈ ∪ , [ )( )0,Tξ ∞∀ ∈ × 

 , 
with 0ξ ≥ , 

( ) ( ) ( ) ( ) ( ) ( )( ){ }

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0

1

0 0

0

d d

, d d d d

0, d 0.

T

t

T T

b u b k sign u k f u f k u x t

f k x t x x t sign u k u x t

b b k x x

ξ φ ξ

η ξ ψ ξ

ξ

Ω

−

∂Ω Ω

Ω

− + − − −∇ ⋅∇

+ ⋅ − −

+ − ≥

∫ ∫

∫ ∫ ∫ ∫

∫

    (2.2) 

Here   represents the ( )1− -dimensional Hausdorff measure and .,.  is 
the duality pairing between ( )( )( ) ( )2 1 10, ,L T H L QΩ +


 and  
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( )( ) ( )2 10, ,L T H L Q∞Ω ∩   
It is well known that the distributional derivative ( )tb u  of ( )b u  can be 

identified with an element of the space ( ) ( )( ) ( )2 1 10, ,L T H L QΩ +


. More ex-
actly, we have  

( ) ( ) ( )0
0

, d 0, d
T

tt
Q

b u t b u b x xξ ξ ξ
Ω

= −∫ ∫ ∫              (2.3) 

for all ( )( )2 10, ;L T Hξ ∈ Ω  with ( )t L Qξ ∞∈  and ( ), 0T xξ = . 
We obtain notions of entropy sub-solution and entropy super-solution re-

spectively if we replace (2.2) by one of the following inequalities 

( ) ( )( ) ( ) ( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( )

0

1

0 0

0

d d

, d d d d

0, d 0

T

t

T T

b u b k sign u k f u f k u x t

f k x t x x t sign u k u x t

b b k x x

ξ φ ξ

η ξ ψ ξ

ξ

+

Ω

+ − +

Ω

+

+

Ω

Ω

− + − − −∇ ⋅∇

+ ⋅ − −

+ − ≥

∫ ∫

∫ ∫ ∫ ∫

∫

  (2.4) 

( ) ( )( ) ( ) ( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( )

0

1

0 0

0

d d

, d d d d

0, d 0.

T

t

T T

b u b k sign u k f u f k u x t

f k x t x x t sign u k u x t

b b k x x

ξ φ ξ

η ξ ψ ξ

ξ

− −

Ω

− − −

Ω Ω

−

Ω

− + − − −∇ ⋅∇

+ ⋅ − −

+ − ≥

∫ ∫

∫ ∫ ∫ ∫

∫

  (2.5) 

Remark 2.2.  
Obviously, a function u is an entropy solution if and only if u is entropy 

sub-solution and entropy super-solution simultaneously. 
Our notion of entropy solution coincide with the Definition of [3] in the case

s cu u= , 0ψ ≡  and assumption (S.C) is trivially satisfied. 
Notice that if u satisfy (2.2), then use (1.1) and (H), we have also u verify (2.1). 
Let us stress that, if (H) is satisfy, in particular, the zero-flux boundary condi-

tion ( ) ( )( ) 0f u uφ η−∇ ⋅ =  is verified literally in the weak sense (see for exem-
ple [3] and [11]). A forthcoming work is to envisage envisage (P) if assumption 
(H) is dropped. We expect that the boundary condition should be relaxed. 

2.2. Dissipative Property 

We propose here an essential property of entropy solutions, based on the idea of 
J. Carrillo [2].  

Proposition 2.3. Let [ [( )0,Tξ ∞∈ × 

 , 0ξ ≥ . Then for all [ ],1sk u∈ , for 
all D∈ 

  for all entropy solution u of (P), we have 

( ) ( ) ( ) ( ) ( ) ( )( ){ }

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

0

1

0 0

0 0

, d d d d

10, d lim .

T

t

T T

Q A

b u b k sign u k f u f k u D

f k D x t x x t sign u k u x t

b b k x x u u D
σ
φ

σ

ξ φ ξ

η ξ ψ ξ

ξ φ φ ξ
σ

Ω

−

Ω Ω

→
Ω ∩

− + − − −∇ − ⋅∇

+ − ⋅ − −

+ − ≥ ∇ ⋅ ∇ −

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

  (2.6) 
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where ( ) ( ) ( ){ },  such that A t x Q u kσ
φ σ φ φ σ= ∈ − < − < . 

Proof. The ingredient of the proof of Proposition 2.7 can from firstly, for all 
[ ] [ ]0, ,1c su u u∈ ∪  and for all [ ],1sk u∈ , one has:  

( ) ( ) ( )( ) ( ) ( )( )sign u k sign b u b k sign u kφ φ− = − = − . 

Secondly, ( ) 0uφ∇ =  N  a.e. on the set  
( ) ( ) [ ]{ },  such that , 0, ct x Q u t x u∈ ∈ .  
Taking as test function in (2.1) ( ) ( )( )sign u kσ φ φ ξ−  with  

[ [( )0,C Tξ ∞∈ × 

  and signσ  is the approximation of sign  function, using 
Chain rule (see [12]) and passing to the limit 0σ → . For more details see [3]. 
▄  

3. Existence and Uniqueness Result  
3.1. Existence of Entropy Solution 

The main result of this subsection is the following theorem:  
Theorem 3.1. Assume that (1.1), (1.2), (H) holds. Then there exists an entro-

py solution u for (P).  

3.1.1. Bi-Monotonicity Approach  
Because of we are not in the case where (S.C) holds, we use the particular mul-
ti-step approximation approach of Ammar and Wittbold (see [9]). 

Theorem 3.2. Let ( )( ) *3, 0 , ,
, , , n

l l m n l m n
b uφ ψ

∈
, a sequences converging to  

( )0, , ,b uφ ψ  in the following sense:  

,, ,  converge pointwise to , ,  as , ,l l m nb b l m nφ ψ φ ψ → +∞        (3.1) 

[ ]0 00,1  converge a.e to nu u∈                    (3.2) 

( ) ( ) ( )1
0 0 converge to  in .n

lb u b u L Ω                (3.3) 

There exists a weak solution ,
l
m nu  of ( ) ,P l

m n  the analogue of (P) with cor-
responding data ( ), 0, , , n

l l m nb uφ ψ .  
Proof. We consider the particular multi-step approximation approach of 

Ammar and Witt bold [9]. We replace b by 1:lb b Id
l

= + , φ  by 1:l Id
l

φ φ= +  

and ψ , by ,
1 1:m n Id Id
n m

ψ ψ + −= + − . Hence 1 1, , ,l l l lb bφ φ− −  are Lipschitz con-

tinuous on .  
We obtain the following equation: 

( ) ( ) ( ) ( ) ( ), , , , ,div 0 in 0,l l l l
l m n m n l m n m n m nt

b u f u u u Q Tφ ψ+ −∆ + = = ×Ω  

Take ( ), ,
l l
m n l m nv b u= , hence lb  is invertible, one puts the problem into the 

doubly non-linear framework then we obtain the following problem 

( ) ( )  ( ) ( ), , , , ,div 0 inl l l l
m n m n l m n m n m nt

v f v v v Qφ ψ+ −∆ + =

   

where 1
lf f b−= ° ;  1

l lbφ φ −= °  and 1
, ,m n m n lbψ ψ −= ° . Using classical methods (cf. 

Andreianov and Gazibo [3]), one shows that there exists a weak solution ,
l
m nu  
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for the corresponding problem ( ) ,P l
m n . ▄  

Theorem 3.3. Let ,
l
m nu  be the weak solution of ( ) ,P l

m n  the analogue of (P) 
with corresponding data ( ), 0, , , n

l l m nb uφ ψ . Then ,
l
m nu  is also entropy solution of 

( ) ,P l
m n  in the sense of Definition 2.1 and converge to u entropy solution of (P) 

in L∞  weakly star up to a subsequence. Furthermore:  

( ) ( ) ( )1
,  in l

l m nu u L Qφ φ→                    (3.4) 

( ) ( ) ( )1
,  in l

l m nb u b u L Q→                    (3.5) 

( ) ( ) ( )1
, ,  in .l

m n m nu u L Qψ ψ→                  (3.6) 

3.1.2. A priori Estimates 
Lemma 3.4. Let ( )( ) *3, 0 , ,

, , , n
l l m n l m n

b uφ ψ
∈

, be a sequence of data satisfying the as 
sumption of theorem 3.2. Assume that the corresponding data ( )0, , ,b uφ ψ  ve-
rifies (1.1), (1.2), (H). Let ,

l
m nu  be an entropy solution of ( ) ,P l

m n  then there ex-
ist 0L > such that: 

,0 1l
m nu≤ ≤                         (3.7) 

( )
( )( )2 1, 0, ;

l
l m n L T H

u Lφ
Ω

≤                    (3.8) 

( )
( )2,

l
l m n L Q

u Lφ ≤                      (3.9) 

( ) ( )
( )1, , , .l l

l m n m n m n L Q
u u Lφ ψ ≤                  (3.10) 

Proof. Since ,
l
m nu  is entropy solution, it is also entropy subsolution and en-

tropy super solution of ( ) ,P l
m n . Take 0k =  in (2.5) and ( ) ( ),t x tξ ξ=  and (H) 

and (1.2) then  

( ) ( )( ) ( ) ( )( )0
,0

0 0 d d 0
T l

l m n l l n l tb u b b u b x tξ
− −

Ω

  − − − ≥    ∫ ∫      (3.11) 

Let us introduce the function 

( ) ( ) ( )( ) ( ) ( )( ) ( )0
, 0 0 d  if 0,l

l m n l l n lH t b u b b u b x t T
− −

Ω

 = − − − ∈ 
 ∫  

Since (1.1), we have , 0l
m nu ≥ . In the same way, ,

l
m nu  satisfy (2.4), take now 

1k = , we prove that , 1l
m nu ≤  i.e. 

,0 1l
m nu≤ ≤                             (3.12) 

We use the test function ( ),
l

l m nuφ  in the weak formulation of ( ) ,P l
m n . The 

duality product between ( ) ( )( ) ( )2 1
, 0, ;l

l m nu L T H L Qφ ∞∈ Ω ∩  and  

( ) ( ) ( )( ) ( )2 1 1
, 0, ,l

t l m nb u L T H L Q∂ ∈ Ω +


 is treated via the standard chain rule 

argument 

( ) ( ) ( ) ( )( ) ( )

( ) ( )

, , , , ,
0 0

, , ,
0

, d d d

d d 0.

t t
l l l l l

l m n l m n m n l m n l m nt

t
l l

m n m n l m n

b u u t f u u u x t

u u x t

φ φ φ

ψ φ

Ω

Ω

− −∇ ⋅∇

+ =

∫ ∫ ∫

∫ ∫
 (3.13) 
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Take ( ) ( ) ( )
0

d
z

l l lB z s b sφ= ∫ . Since ( ) ( ) ( )l l lB z b z zφ≤ , we obtain the in-
equality  

( )( ) ( ) ( ) ( ) ( ) ( )2 0 0
, , , , ,

0

,. .
T

l l l l
l m n m n m n l m n l m n l n l nB u t u u C u b u uψ φ φ φ

Ω Ω Ω

+ + ∇ ≤∫ ∫ ∫ ∫  

with some 0C >  independent of n. Note that the functions ,l lb φ  are locally 
uniformly bounded because they are monotone and converge pointwise to ,b φ  
respectively.  

Therefore the right-hand side of the above inequality is bounded uniformly in 
l , thanks to (3.12) and the uniform bounds on the data 0

nu  in ( )L∞ Ω . The 
uniform estimate of the left-hand side follows. We then estimate ( ),

l
l m nuφ  in 

( )2L Q  by the Poincaré inequality and ( ) ( ) 1, ,
l l

l m n m n L
u uφ ψ  follows. ▄ 

Lemma 3.5. Let ,
l
m nu  be the weak solution of ( ) ,P l

m n  the analogue of (P) 
with corresponding data ( ), 0, , , n

l l m nb uφ ψ . For 0τ > , we have 

( )( ) ( )( ) ( ), ,
0

, ,
T

l l
l m n l m nu t x u t x

τ

φ τ φ ω τ
−

Ω

+ − ≤∫ ∫            (3.14) 

Proof. Let 0τ > , Multiplying the first equation of ( ) ,P l
m n  by  

( ) ( )1H Lξ ∞∈ Ω ∩ Ω  and integer in ( ) ( ), 0,t t Tτ+ ⊂  we get: 

( )( ) ( )( )( ) ( ) ( )( )

( )

, , , ,

,

, ,

0.

t
l l l l

l m n l m n m n l m n
t

t
l
m n

t

b u x t b u x t f u u

u

τ

τ

τ ξ φ ξ

ψ ξ

+

Ω Ω

+

Ω

+ − + −∇ ⋅∇

+ =

∫ ∫ ∫

∫ ∫
 

Take now ( )( ) ( )( ), ,, ,l l
l m n l m nu t x u t xξ φ τ φ= + −  and integrate in t. By Fubini 

theorem and estimates of Lemma 3.4, it appear a factor τ  in the right hand 
side and we get 

( )( )( ) ( )( )( )
( )

, ,
0,

, ,l l
l m n l m n

Q T

h b u t x h u t x C
τ

τ τ
τ

φ τ
= − ×Ω

≤∫ ∫        (3.15) 

with ( )( ) ( ) ( ), , ,h g t x g t x g t xτ τ+ − . Here C is a constant independent of  
, ,l m n . Take 1

l lbφ φ −= °  which is continuous function, let w  the modulus of 
continuity of φ  on [ ]0,1  and W  be its inverse and set ( ) ( )W r rW r=  and 
w be the inverse of W, notice that ( )0 0w = . Denote by ( )( ), ,l

l m ns b u t xτ= +  
and ( )( ), ,l

l m nr b u t x= . Then 

( ) ( ) ( ) ( )( )( )

( ) ( )( )1

Q Q

Q

s r w W s r

Q w W s r
Q

τ τ

τ

τ
τ

φ φ φ φ

φ φ

− = −

 
≤ −  

 

∫ ∫ ∫ ∫

∫ ∫
 

Since 

( ) ( ) ( )s r w s rφ φ− ≤ −   

we have: 

( ) ( )( )W s r s rφ φ− ≤ −   
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( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

( )( )( ) ( )( )( ), ,, , .l l
l m n l m n

W s r W s r s r

s r s r

h b u t x h u t xτ τ

φ φ φ φ φ φ

φ φ

φ

− = − −

≤ − −

=

  

Therefore (3.15) implies  

( )( )( ) ( )( ) ( )( )( )

( )

, , ,
1, , ,

1

l l l
l m n m n l m n

Q Q

h u t x Q w h u t x h u t x
Q

Q w Cw C
Q

τ τ

τ τ τ τ
τ

τ
τ

φ φ

τ τ

 
≤   

 
 

= ≤  
 

∫ ∫ ∫ ∫
 (3.16) 

the left-hand side of (3.16) tends to zero as 0→τ , we deduce (3.14). ▄ 
The proof of Theorem 3.1 is a direct consequence of Theorem 3.2 and Theo-

rem 3.3.  
Since, we have establish the proof of theorem 3.2, let us demonstrate Theorem 

3.3.  
Proof of Theorem 3.3. There exists a function ,

k
m nu  constructed by means of 

the nonlinear semigroup theory (see, e.g., [3] [13]), such that ( ),
,

m n k k
k m nv b u=  is 

the unique integral solution to the abstract evolution problem associated with 
( ) ,

k
m nP  (here and below, we refer to Andreianov and Gazibo [3], Ammar and 

Wittbold [9], Ammar and Redwane [14] for details). One then shows that ,
k
m nu  

coincides with the unique entropy solution of ( ) ,
k
m nP , the existence of this en-

tropy solution being already shown. Further, the whole set ( ), , ,

k
m n k m n

u  verifies 
the uniform a priori estimates of Lemma 3.4 and 3.5. We then pass to the limit 
in ,

k
m nu  in the following order: first k → +∞ , then ,n m→ +∞ → +∞ .  

While letting k → +∞ , we use the fact that 1
,m nψ −  is Lipschitz continuous. 

The fundamental estimates for the semigroup solutions permit to show that 

( ), ,m n m nuψ  are uniformly continuous on ( )0,T  with values in ( )1L Ω ; thus 
we get the strong precompactness of ( ) ( )1

,
k
m n k

u L Q∈ . Thus, up to a subsequence, 

,
k
m nu  converge to ,m nu  which is an entropy solution of problem ( ) ,P l

m n  cor-
responding to the data ( ), 0, , ,m nb uψ φ . Finally, we use the inequalities  

1, , , 1m n m n m nu u u+ +≤ ≤  which follow readily form the comparison principle (this 
come from uniqueness of ( ) ,

k
m nP ). The monotonicity argument yields the strong 

convergence of ,m nu . Passing to the limit in ,m nu  we conclude that the limit u 
is an entropy solution of the original problem (P) (one can use Lemma 3.6 and 
3.7 of [3]). ▄ 

3.2. Uniqueness of Entropy Solution in One Space Dimension 
3.2.1. Stationary Problem 
Let us stress that to our knowledge the problem of uniqueness is still open in 
multiple space dimensions. The definition of strong traces of the solution with 
respect to the lateral boundary of the domain Ω is possible if for example the 
diffusion term ( )uφ  is such that ( ) ( )f u uφ−∇  is continuous up to the boun-
dary ∂Ω . If there existed “sufficiently many” solutions (in the sense of [3], [4], 

https://doi.org/10.4236/jamp.2023.114063


M. Karimou Gazibo 
 

 

DOI: 10.4236/jamp.2023.114063 941 Journal of Applied Mathematics and Physics 
 

see Definition 3.9 below) having this regularity, uniqueness would follow. Un-
fortunate, we could obtain this regularity for this moment only for the stationary 
problem associate to (P) and in one space dimension. 

Now, we consider the stationary problem associated to (P) 

( ) ( ) ( ) ( )
( ) ( )( )

div     in

0                          on 
tb u f u u u s

f u u

+ − ∆ + = Ω


−∇ ⋅ = ∂Ω

φ ψ

φ η
           (S) 

where ( )s L∞∈ Ω .  
Remark 3.6. 
1) If, we suppose that ( )( )b uψ+  is bijective, then performing a change of 

the unknown one puts the problem into the doubly nonlinear framework in the 
form ( ) ( )( )divu f u u sφ+ −∇ = . Existence and uniqueness follows (see [3]). 

2) If ( )b u  independent of t and u is solution of (S) it is also solution of (P) 
with source term ( )s b u− . Then, we can deduce from Definition 2.1 and Prop-
osition 2.3 their equivalent form for the stationary problem. 

Definition 3.7. A measurable function u taking values in [0, 1] is an entropy 
solution of (S) if u is a weak solution of (S) and ( ) ( )1u Hφ ∈ Ω  and for all 

( )ξ
+∞∈ 

 , [ ] [ ]0, ,1c sk u u∀ ∈ ∪ , 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

1d d

d 0.

sign u k f u f k u x f k y x

sign u k b u u s x

φ ξ η ξ

ψ ξ

−

Ω ∂Ω

Ω

− − −∇ ⋅∇ + ⋅

− − + − ≥

∫ ∫

∫


 (3.17) 

Proposition 3.7. Let ( )ξ ∞∈ 

 ; then for all [ ],1sk u∈ , for all D∈ 

 , for 
all entropy solution u of (S), we have: 

( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

1

0

d d

1d lim .
A

sign u k f u f k u D x f k D x

sign u k b u u s x u u D
σ
φ

σ

φ ξ η ξ

ψ ξ φ φ ξ
σ

−

Ω ∂Ω

→
Ω Ω∩

− − −∇ + ⋅∇ + −

− − + − ≥ ∇ ∇ −

∫ ∫

∫ ∫



 (3.18) 

In the next subsection, we give a Definition of so called “trace regular entropy 
solution” 

3.2.2. Trace Regular Entropy Solution 
Definition 3.8. An entropy solution is called trace regular solution of (P) if 

the normal component of the total flux ( ) ( )( )f u uφ η−∇ ⋅ , has 1L  strong trace 
( ) ( )( )f u uγ φ−∇  at boundary of Lipschitz domain i.e.: for ( )Lξ ∞∈ ∂Ω  

( ) ( )( ) ( ) ( ) ( )( ) ( )
1

0
0

1lim , d d 0.f u u x f u u x x
σ

ξ φ η γ φ η σ τ
σ→

∂Ω

−∇ ⋅ − −∇ ⋅ =∫ ∫  (3.19)  

The difficulty is that the regularized zero-flux boundary condition does not 
permit control over the tangential derivatives (with respect to ∂Ω ) of the solu-
tion. Thus, boundary flux traces of solution seem hard to obtain and we need the 
concepts of domains with Lipschitz deformable boundaries and traces (see [15], 
[16] for more details). 

Remark 3.9. Notice that if the normal component of the flux  
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( ) ( )( )f u uφ η−∇ ⋅  is continuous function then it satisfy (3.19). 
From now on, we will suppose that ( ),a bΩ =  is a bounded interval of  . 

We have this property 
Proposition 3.10. For all [ ]0,1s∈ , the problem (S) admits a solution u such 

that ( ) ( )( )yf u uφ−  is continuous up the boundary, i.e.,  
( ) ( )( ) [ ]( ),yf u u a bφ− ∈ .  

Moreover, ( ) ( )yf u uφ−  is zero at y a=  and y b= . 
Since ψ  is bijective, the proof of Proposition 3.11 is identical to the proof of 

Proposition 4.8 of [3]. 
The main result of this section is the following theorem: 
Theorem 3.11. Suppose that ( ),a bΩ =  is a bounded interval of  , then (P) 

admits a unique ( )b u  such that u is entropy solution of (P).  

3.2.3. Abstract Evolution Problem 
We present now the problem (P) under the abstract form of an evolution equa-
tion governed by an accretive operator, in order to apply classical results of the 
nonlinear semigroup theory (see, e.g., [17]). 

Let us define the (possibly multivalued) operator , ,
b
fA φ ψ  by it resolvent 

( ) ( ) ( ) ( ){ }, ,, \   entropy solution of S ,  with .b
fu z A u u z s b u uφ ψ ψ∈ = = − −  

Consider the abstract equation: 

( ) ( ) ( )( ), , 00, 0b
ftb u A u b u t bφ ψ+ = =                (E) 

For an operator ( ) ( )1 1:A L LΩ → Ω , denote by ( )R A  its range, by ( )D A  
its domain and by ( )R A , ( )D A  their closures in ( )1L Ω  respectively 

Let us stress that for ( ), ,
b
fu D A∈ φ ψ , ( ) ( ) [ ]( )0 ,yf u u a b− ∈φ due to Propo-

sition 3.11.  
Recall (cf. [17]) that an operator A is accretive if 

( )1
ˆ ˆ, 0

L Ω
 − − ≥ β β α α  for 

all ( ) ( )ˆ ˆ, , , A∈β α β α , where for ( )1, L∈ Ωβ α  the bracket [ ] ( )1.,.
L Ω

 is defined 

by [ ] ( ) ( )
[ ]

1

0

,
L

sign
Ω

Ω =

= +∫ ∫
β

β α β α α . 

If A is accretive and ( ) ( )1R I A L+ = Ωλ  for some 0>λ , then A is m- 
accretive. 

Proposition 3.13. Let ( ) , ,, b
fu z A∈ φ ψ , ( ) , ,ˆ ˆ, b

fu z A∈ φ ψ . Then for ( )+∞∈ Ωξ  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )( )

[ ]
( )1

ˆ

ˆ ˆd d

ˆ ˆ ˆ d

ˆ ˆ ˆ ˆ ˆd d , .[ ]
yy y

L
u u

b u b u y u u y

sign u u f u f u u u y

sign u u s s y s s y u u s s

Ω Ω

Ω

Ω
Ω =

− + −

+ − − − + ⋅

≤ − − + − = − −

∫ ∫

∫

∫ ∫

ξ ψ ψ ξ

φ φ ξ

ξ ξ

     (3.20) 

Proof. (Sketched) The proof of Proposition 3.13 is actually contained in the 
proof of Theorem 3.17 below, due to Remark 2.2. Actually a simpler argument 
applies, because both ( ) ( )ˆ ˆ

yf u u−φ  and ( ) ( )yf u u−φ  have strong trace in 
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the context of the stationary problem (S). ▄  
Somewhat abusively, we will write [ ]( )1  ; 0,1L Ω  for the set of all measurable 

functions from [a, b] to [0, 1]. 
Proposition 3.14. The following properties hold true. 
1) , ,

b
fA φ ψ  is accretive in ( )1L Ω . 

2) For all λ  sufficiently small, ( ), ,
b
fR I A+ φ ψλ  contains [ ]( )1 ; 0,1L Ω . 

3) ( ) [ ]( )1
, , ; 0,1b

fD A L= Ωφ ψ . 

Proof. 
1) Let ( ) , ,, b

fu z A∈ φ ψ , ( ) , ,ˆ ˆ, b
fu z A∈ φ ψ . Applying Proposition 3.13 with 1=ξ  

in (3.20) and the standard properties of the bracket (see [17]), we get 

( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )

11 1

1

11 1

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ, .

LL L

L

LL L

b u b u u u u u s s

u u b u b u u u z z

b u b u u u u u z z

ΩΩ Ω

Ω

ΩΩ Ω

− + − ≤ − −

≤ − − + − + −  

≤ − + − + − −

ψ ψ

ψ ψ

ψ ψ

 

We deduce that [ ] ( )1ˆ ˆ, 0
L

u u z z
Ω

− − ≥ , so that , ,
b
fA φ ψ  is accretive. 

2) For 0>λ , consider the problem 

( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )
( )

 in ,
         S

0                       on

y y

y

b u f u u u s

f u u y







+ − + = Ω

− ⋅ = ∂Ω

λ λ λ λ

λ

λ λ

λ φ ψ

λ φ η
 

Notice that the notion of solution for ( )S λ  is like the Definition 3.7. Let 

[ ]( )1 ; 0,1s L∈ Ω  and 0>λ  then, there exists uλ  entropy solution of ( )S λ  

(see Proposition 3.11) such that 
( ) ( )

, ,, b
f

s b u u
u A
 
  


− −


∈λ λ

λ φ ψ

ψ
λ

. 

Hence ( ), ,
b
fs R I A∈ + φ ψλ  and therefore ( ) [ ]( )1

, , ; 0,1b
fR I A L+ ⊃ Ωφ ψλ   

which was to be shown. 
3) Let [ ] [ ]( ), ; 0,1PC a b  be the set of piecewise constant functions from [a, b] 

to [0, 1]. Then [ ] [ ]( ), ; 0,1PC a b  is dense in [ ] [ ]( )1 , ; 0,1L a b . Take  
[ ] [ ]( ), ; 0,1s PC a b∈ , ( ),i ii a b

i
s s= ∑ 1  where the ( ),i ia b  are disjoint intervals. 

There exists ( ),nu L a b∞∈  entropy solution of ( )1 nS , i.e., we have  
( ) ( )( )( ) , ,, b

n n n fu n s b u u A− − ∈ φ ψψ . For [ ] [ ]0, ,1c sk u u∈ ∪ , for all ( )0
∞∈ ξ . 

We get 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )
[ ],

1 d

1d d 0

b

n n y n y
a

b

n n n
a a b

sign u k f u f k u y
n

sign u k s b u u y f k y
n

− − − ∂ ⋅∂

+ − − − + ⋅ ≥

∫

∫ ∫

φ ξ

ψ ξ η ξ σ
  (3.21) 

For every i, one can construct n
iξ  such that ( ),i i

n
i a b→ξ 1 , as n →∞ , supp

( ),n
i i ia b⊂ξ , 32n

y i L
n∞∂ ≤ξ  and 1n

i ≡ξ  in ( ),i i
i n i na b+ −δ δ  with  

32
i i i
n

b a
n

−
=δ . Take ik c=  and n

iξ  in (3.21). 
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( ) ( )

( ) ( ) ( ) ( )( )

( )1 2
2

d

1 d

2 1| .

i
i n

i
i n

i
i n

i
i n

b
n n ia

b n
n i n i y n y ia

n n
y i y n y iL L L

L

b u u c y

sign u c f u f c u y
n

b a f u
n n

∞

−

+

−

+

+ −

≤ − − − ∂ ∂

≤ − ∂⋅ ⋅+ ∂ ∂

∫

∫

δ

δ

δ

δ

ψ

φ ξ

ξ φ ξ

 

Then, for all i
n>δ δ , nu g→  a.e. on ( ),i ii

a b+ −


δ δ . We conclude by 
the Lebesgue theorem that nu g→  in [ ]( )1 ,L a b . In conclusion, ( ), ,

b
fD A φ ψ  

is dense in [ ] [ ]( ), ; 0,1PC a b  and therefore, it is also dense in [ ]( )1 ; 0,1L Ω . ▄ 

3.2.4. Integral Solution and Uniqueness 
Now, we can exploit the notion of integral solution (see, e.g., [7] [17]).  

Definition 3.15. Suppose that ( )1
0u L∈ Ω  function 

 ( ) [ ] [ ] [ ]( )( )10, ; , ; ,b v T L a b∈ α α  is an integral solution of (E) if 

( )( ) ( ) ( )0 , ,0,. .  and for all , b
fb v b u z A= ∈ φ ψ   

( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )1 1 10 0ˆ ˆ .
L L L

b v t b v t v t u b u b u
Ω

− + − ≤ −ψ ψ   

In particular, the integral solution is unique.  
Theorem 3.17. Let [ ],a bΩ = . Let v be an entropy solution of (P) and u be an 

entropy solution of (S). Then 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1

d
d

d   in 0, .

L L
b v t b u v u

t
sign v u b u s x T

Ω Ω

Ω

− + −

′≤ − −∫ 

ψ ψ
           (3.22) 

In particular, ( )b v  is an integral solution of (E). 
Proof of Theorem 3.17 We adopt the doubling of variables of Kruzkhov [1] in 

the sense of [3] [18]. We compare regular solution and entropy solution. Keep in 
mind that by the result of [19] an entropy solution v of (S) is automatically 
time-continuous with values in [ ]( )1 ; 0,1L Ω . We consider ( ),v v t x=  an entropy 
solution of (P) and ( )u u y=  an entropy solution of (S). Consider nonnegative 
function ( ), ,t x y=ξ ξ  having the property that ( ) [ )( ).,., 0,y T∞∈ ×Ωξ  for 
each y∈Ω , ( ) ( )0, ,.t x ∞∈ Ωξ  for each ( ) [ ), 0,t x T∈ ×Ω . As in [3], we denote 

( ) [ ]{ }; , 0,x cx v t x uΩ = ∈Ω ∈ , ( ) [ ]{ }; 0,y cy u y uΩ = ∈Ω ∈  and c
xΩ , c

yΩ  their 
complementaries in Ω . To simplify the notations, take [ ] ( ) ( )xv f v v= − φ , 

[ ] ( ) ( )yu f u u= − φ  and ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ, r r sw r w s w w wΦ = −φ φ φ . 
In (2.6), take ( ), ,t x y=ξ ξ , ( )k u y= , ( )yD u= φ  and integrate over c

yΩ . 
We get 

( ) ( ) ( ) [ ] [ ]( ){ }

[ ] ( ) ( ) ( )

( ) ( ) ( )

0

0
0

0
0 0

d d d

d d d 0, ,

1d d d lim ,

c
y

c c
y y

c c
y y

T

t x

T

x

T T

x A

b v b u sign v u v u x t y

u x t y b b u x y

sign v u v x t y v u

ΩΩ

∈∂Ω ΩΩ Ω

→
ΩΩ Ω ∈Ω∩

− + − − ⋅

+ ⋅ + −

− − ≥ Φ

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

 



σ
φ

σ

ξ ξ

η ξ σ ξ

ψ ξ ξ
σ

    (3.23) 

https://doi.org/10.4236/jamp.2023.114063


M. Karimou Gazibo 
 

 

DOI: 10.4236/jamp.2023.114063 945 Journal of Applied Mathematics and Physics 
 

In the same way, in (2.2) take ( ), ,t x y=ξ ξ , ( )k u y= , integrate over yΩ , 
and use the fact that ( ) 0yu =φ  in yΩ . We get 

( ) ( ) ( ) [ ] [ ]( ){ }

[ ] ( ) ( ) ( )

( ) ( )

0

0

0

0 0, ,

d d d 0.

y

y y

y

t x

x

T

T

T

b v b u sign v u v u

u x b b u x y

sign v u v x t y

Ω Ω

Ω ∈∂Ω Ω Ω

Ω Ω

− + − − ⋅

+ ⋅ + −

− − ≥

∫ ∫

∫ ∫

∫

∫ ∫

∫ ∫

∫

∫

 



ξ ξ

η ξ ξ

ψ ξ

        (3.24) 

Since c
x xΩ = Ω ∪Ω , by adding (3.23) to (3.24) we obtain 

( ) ( ) ( ) [ ] [ ]( ){ }

[ ] ( ) ( ) ( )

( ) ( ) ( )
0

0

0

0

0
0

d d d

d d d 0, , d d

1lim ,
c
y

t x

T

x

T

x

A

T

T

b v b u sign v u v u x t y

u x t y b b u x y x y

sign v u v v u

Ω Ω

Ω ∈∂Ω Ω Ω

→
Ω Ω Ω ∈Ω∩

− + − − ⋅

+ ⋅ + −

− − ≥ Φ

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫

∫

∫ ∫

 



σ
φ

σ

ξ ξ

η ξ σ ξ

ψ ξ ξ
σ

      (3.25) 

In (3.18), take ( ), ,t x y=ξ ξ , ( ),k v t x= , ( )xD v= φ  and integrate over  
( )0, c

xT ×Ω  

( ) [ ] [ ]( )

[ ] ( ) ( ) ( )

( ) ( ) ( )( ) ( )

0

0

0
0 0

0

d d d

d d d d d

1lim ,

c
x

c
x

c c
x x

T

y

T

y

T T

y

T

A

sign v u v u y x t

v y x t sign v u u x t

sign v u b u s y u v

ΩΩ

∈∂Ω Ω ΩΩ

→
ΩΩ Ω ∈Ω∩

− − ⋅

+ ⋅ + −

+ − − ≥ Φ

∫

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

 



σ
φ

σ

ξ

η ξ σ ψ ξ

ξ ξ
σ

     (3.26) 

Since ( )u y  is entropy solution, then take in (3.17) ( ), ,t x y=ξ ξ , integrate 
over and use the fact that in ( ) 0xv =φ  in ( )0, xT ×Ω . 

( ) [ ] [ ]( )

[ ] ( ) ( ) ( )

( ) ( ) ( )( )

0

0 0

0

d d d

d d d d d d

d d d 0.

x

x

x

T

y

T T

y

T

sign v u v u y x t

v y x t sign v u u y x t

sign v u b u s y x t y

Ω Ω

Ω ∈∂Ω Ω Ω

Ω Ω

− − ⋅

+ ⋅ + −

+ − − ≥

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

 



ξ

η ξ σ ψ ξ

ξ

     (3.27) 

By adding (3.26) to (3.27), we obtain 

( ) [ ] [ ]( )

[ ] ( ) ( ) ( )

( ) ( )( ) ( )

0

0 0

0
0 0

d d d

d d d d d d

1lim , .
c
x

T

y

T T

y

T T

y A

sign v u v u y x t

v y x t sign v u u y x t

sign v u b u s u v

ΩΩ

Ω ∈∂Ω Ω Ω

→
Ω Ω Ω ∈Ω∩

− − ⋅

+ ⋅ + −

+ − − ≥ Φ

∫ ∫∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

 



σ
φ

σ

ξ

η ξ σ ψ ξ

ξ ξ
σ

     (3.28) 
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Now, sum (3.25) and (3.28) to obtain 

( ) ( ) ( ) ( )

( ) [ ] [ ]( ) ( )

[ ] ( ) [ ] ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )

0
0

0

0 0

0 0

2

0
0

d d d 0, , d d

d d d

d d d d d d

d d

1lim d d d 0.
c c
x y

T

t

T

x y

T T

x y

T T

T

x y
A

b v b u y x t b b u x y x y

sign v u v u y x t

u x t y v y y t

sign v u b u s y v u x t

v u y x t

Ω Ω Ω Ω

Ω Ω

∈∂ΩΩ Ω ∈∂Ω

Ω Ω Ω Ω

→
Ω ×Ω ∩

− + −

+ − − ⋅ +

+ ⋅ + ⋅

+ − − − −

≥ − ≥

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫∫

 

 

σ
φ

σ

ξ ξ

ξ ξ

η ξ σ η ξ σ

ξ ψ ψ ξ

φ φ ξ
σ

    (3.29) 

Next, following the idea of [3] we consider the test function  

( ) ( ) ( ), , ,nt x y t x y=ξ θ ρ , where ( )0 0,T∞∈θ , 0≥θ , ( ) ( ),n nx y = ∆ρ δ  and 

( ) ( )
11

2
a bx y

n b a n b a
  +

∆ = − − +  − − 
. Then, ( )n ∈ Ω×Ωρ  and  

( )
|

, 0n x y
Ω×∂Ω

=ρ .  

Due to this choice [ ] ( )
0

d d d 0
T

n
x y

v y y t
∈Ω ∈∂Ω

⋅ =∫ ∫ ∫  η ρ θ σ . 

By Proposition 3.11, ( ) ( )( ) [ ]( )0 ,yf u u a b− ∈φ . Therefore we have  

[ ] ( ) 0u x⋅ → η  when x y→ , i.e., as n →∞ . We conclude that  

[ ] ( )
0

lim d d d 0.
T

nn
x y

u x y t
→∞

∈∂Ω ∈Ω

⋅ =∫ ∫ ∫  η ρ θ σ  

It remains to study the limit, as n →∞  

( ) [ ] [ ]( ) ( ) ( )( )
0

d d d
T

n n nx y
I sign v u v u y x t

Ω Ω

− − ⋅ += ∫ ∫ ∫  θ ρ ρ  

We use the change of variable ( ) ( ), ,x y x z  with  

( ) 1 a bz n x y x
b a b a

+
= − − +

− −
, 

( ) [ ] [ ]( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

1

1 0
1

01

2

2 , , , , ,

n

T

T

n

b

n n n
a

I sign v u v u z
b a

sign v t x u x z p t x q x z z t
b a

− Ω

−

′= − − ⋅
−

′= − −
−

∫ ∫

∫ ∫

∫

∫

  δ θ

δ θ
  

where ( ) ( ), :nu x z u y= , ( ) [ ], :p t x v=   and [ ]:nq u=  . 
For z given, ( ).,nu z  converges to ( ).u  in 1L  and ( ).,nq z  converges to 
( ) ( ) ( ). : xq f u u= −φ  in 1L . From Lemma 4.14 of [3], we deduce that for all 
[ ]1,1z∈ −  

( ) ( )( ) ( ) ( ): , , , , d d d d : ,n n n n
Q Q

K z sign v t x z h t x z x t sign v h x t K→∞= → =∫ ∫   

where :n nv v u= − , :n nh p q= −  and :h p q= − . 
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Then ( ).nK  converges to constK =  independently of z. Moreover, from 
the definition of nK  one finds easily the uniform L∞  bound  

( ) ( )( )1 12n L Q LK p T q
Ω

≤ + , for n large enough. Hence by the Lebesgue theo-
rem, 

( ) ( ) ( )1 1

1 1
lim 0.nn

K z z K z
− −→∞

′ ′= =∫ ∫δ δ  

We have shown that the limit of nI  equals zero. The passage to the limit in 
other terms in (3.29) is straightforward. Finally (3.29) gives for n →∞  

( )( ) ( )( ) ( ) ( ) ( )

( ) ( )( )
0 0

0

, d d

0.

T T

T

b v t x b u y t x t v u

sign v u b u s

Ω Ω

Ω

′− − −

+ − − ≥

∫ ∫ ∫ ∫

∫ ∫

θ ψ ψ θ

θ
 

Hence 

( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1

d
d

d  in 0, .

L
b v t b u

t
sign v u b u s v u x T

Ω

Ω

−

  ′≤ − − − − ∫ ψ ψ
 

Thus, ( )b v  is an integral solution of (E).  
Now, the claim of Theorem 3.12 is a direct consequence of the fact that if u is 

the entropy solution then ( )b u  is an integral solution, and of Corollary 3.16. 
▄ 
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