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Abstract

In this work, we prove the existence and uniqueness of the solution of the
generalized Schrodinger type homogeneous model in the periodic distribu-
tional space P’. Furthermore, we prove that the solution depends conti-
nuously respect to the initial data in P’. Introducing a family of weakly con-
tinuous operators, we prove that this family is a group of operators in P’.
Then, with this family of operators, we get a fine version of the existence and
dependency continuous theorem obtained. Finally, we give some remarks de-
rived from this study.
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1. Introduction

First, we begin by commenting that [1] has proven the existence of a solution of

S
per *

the Schrodinger type equation in the Hilbert space H_,, . Also in [1] a family of

bounded operators is introduced in the Hilbert space H, and it is proved that
forms a unitary group. For the justification of the model, we suggest reviewing
the references cited in [1]. Thus motivated by these ideas we will solve the prob-
lem (Q,,,) in the topological dual of 2 P’, which is not a Banach space.

In this article, we will prove the existence and uniqueness of the solution of
(Q,,;) in P’. Furthermore, we will demonstrate that the solution depends con-
tinuously with respect to the initial data in P’, considering the weak conver-

gence in P'. And we will prove that the introduced family of operators forms a
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group of weakly continuous linear operators. Thus, with this family we will re-
write our result in a fine version.

We also want to highlight the wealth of information from Terence [2], Kato
[3], Linares and Ponce [4]. We can also cite works of existence solution using
Semigroup theory by Liu-Zheng [5], Mufloz [6], Pazy [7], Santiago [8] [9] and
Raposo [10].

Our article is organized as follows. In Section 2, we indicate the methodology
used and cite the references used. In Section 3, we put the results obtained from
our study. This section is divided into three subsections. Thus, in Subsection 3.1
we prove that the problem (Q,,,) has a unique solution and also demonstrate
that the solution depends continuously with respect to the initial data. In Sub-
section 3.2, we introduce families of weakly continuous linear operators in P’
that manage to form a group. In Subsection 3.3 we improve Theorem 3.1.

Finally, in Section 4 we give the conclusions of this study.

2. Methodology

As theoretical framework in this article we use the references [1] [11] [12] [13]
and [14] for Fourier Theory in periodic distributional space, periodic Sobolev
spaces, topological vector spaces, weakly continuous operators, group of opera-
tors and existence of solution of a distributional differential equation.

We will use this theory in the analysis of the existence and continuous depen-
dence of the solution of (Q,,,,), carrying out a series of calculations and ap-
proximations in the process.

Thus, below we will briefly give some definitions necessary for the develop-
ment (understanding) of this work. It is suggested, for an in-depth study, to refer
to the cited references.

Let be

P=C® ([—TE, n]),

per

that is, the space of the functions f:IR — € infinitely differentiable and
periodic with period 2m. It’s known that this space is a complete metric space.
Also,

P’ = {T :P — @ linear such that 3y, € P and

(T.p)= !ﬂlj—n"’" (x)p(x)dx,VpeP }

=(P).

That is, P’ is the topological dual of 2. P’ is known as the space of period-
ic distributions.

We want to summarize the properties of P’ with the following diagram:
P - U(-mn]) > P
ATy ATy ATy
s(z) - 1*(z) - s'(2)
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where the inclusions are continuous with dense image, S(Z) is the space of

Rapidly Decreasing sequences (R.D.), defined by
S(Z)= {a =(&),, & €T/ f“ || < and i |ez|[K|" < o0, ¥ 21}
k=—00 k=—0

and S'(Z) is the space of Slowly Growing sequences (S.G.), defined by

§'(2)={a=(),, @ € €/3C >0,3N € IN with || <CK[* 7k = 0}.

3. Main Results

The presentation of the results obtained has been organized in subsections and is

as follows.

3.1. Solution of the Schrédinger Equation (Q,,,)

In this subsection we will study the existence of a solution to the problem (Q,,,,)
and the continuous dependence of the solution with respect to the initial data in
P
Theorem 3.1 Let u>0, a >0, m even not multiple of four and the distri-
butional problem
ueC(R,P’)
(Quut) |OU—iudfu+iau=0eP’
u(0)=feP"
then (Q,,,) has a unique solution ueC' (IR,P’). Furthermore, the solution
depends continuously on the initial data. That is, given f,, f € P’ such that
f,—"—f implies u,(t)——>u(t), VteIR,where u, issolution of
(Q,.,) with initial data f, and wis solution of (Q,,,, ) with initial data £
Proof.- We have organized the proof as follows.

1) Suppose there exists UeC(IR,P’) satisfying (Q,,,); this will allow us to
obtain the explicit form of u. Then taking the Fourier transform to the equation

ou—iudyu+iau =0,
we get
0=0,0-iu(ik)" G+ial=0,0+iuk™i+iad,
which for each k €Z is an ODE with initial data {(k,0)= f(k)

Thus, we propose an uncoupled system of homogeneous first-order ordinary
differential equations
ieC(R,S'(Z))
(@) [80(k,t)+iuk™i(k,t)+ial(kt)=0
((k,0)= f (k) with f eS'(2),
Vk €Z and we get
G(k,t)=e ™" f (k),
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from where we obtain the explicit expression of u, candidate for solution:

+00

a(t)= 3 a0t = 3 e e k), 0

k=—0

= [( f(k)ek"tgiet )kez } : 2)
Since feP' then fe S'(Z). Thus, we affirm that
(F(k)e e | esi(z). vier. (3)
Indeed, let te IR, since f e S'(Z) then satisfies: 3C >0, AN € IN such
that ‘f(k)‘ < C|k " Vkez —{0}, using this we get
[ ()e e || (k) =[f (k)| <clw".

e—iykmt e—iat
—

=1 =1

Then,
£ —iuk™ f-iat '
(f)e e )kez es'(2).

If we define
— £ —ipk™ j—iat v
u(t): [(f(k)e e )kd} , forallte R, (4)

we have that u(t) e P’, VtelR, since we apply the inverse Fourier transform
to (F(k)e e ) esi(@).
2) We will prove that u defined in (4) is solution of (Q,,,)and U e ct ( R, P') .
Evaluating (2) at t =0, we obtain

@=[(F0), ] =[] -+
Also, the following statements are verified.
a) ou(t)=iudju(t)—iau(t) in P’, VteIR. That is, we will prove that
the following equality

Iim<w,(p>: i,u<6fu(t),(p>—ia<u(t),(p>,V(pe P

h—0

<5tu(t),go>::
is satisfied, forall te IR.
Indeed,let telR, peP and heR—-{0}, we denote

5 ::<u(t+h)—u(t),(p>.

h

Thus, we get

:%{ lim < Z": f(k)eiykm(uh)eia(t+h)¢k,¢>
— lim <Zn: f(k)ei‘"‘mte‘“‘qﬁk,(p>}
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:%{ I|m < i f(k)e—iykmte—iat (e—iykmhe—iah _1)¢k,¢>}
noo. o . —iuk™h ,—iah _
= nILrI]w< > f(k)e e [—e E 1Jﬁ,€0>
k=-n

= lim { Zn: f(k)e ktgio [ei”kmhii“h 1}@}

:Zn&(—k) (5)
= lim 2= Zn: f(k)e—i/tkmtefim e_iﬂkmhe_iah -1 A(—k)
T oo — h ¢
A . —iuk™h y—ieh
=2n z f (k)eflﬂk teildt [e “ te] I_ljé(—k).
K=o
Let h>0, we have
pink™hg-iah _q _ Ih[e—iykmse—ias] ds
0 (6)
- I;(—i,ukm —ia)e e ds,
Taking norm to equality (6) we obtain
‘e—iﬂkmhe—iah —l‘ Sj.oh{,u|k|m +|a|}‘e—iuk"‘s o195 | ds
\_;,1_/ :1
- {lu|k|m +|a|}j0“ds @)
™
= {ulk["+|a}h.
That is, from (7) we get
—ipk™h y—iah _
e - P (8)
Note that (8) is valid for he IR —{O} .
Using the inequality (8) and that f € S'(Z) we obtain
40 | A - ) —ipk™h y-ieh _
5[0l o) E——
k=—0 —
=1 =1
« S [ o1
-3 | +lal 5 Elitefacs
sC{,ukz k™" |5 5 = }
~clu g o ; o ot <
since peS(Z).
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Using the Weierstrass M-Test, the series |, is absolute and uniformly con-

vergent. Then we can take limit and get

liml, =2n z f(k)e ' ™e “o(-k)lim

k=—0
—ipk™ i

~i4k™h g -iah _1}

|

)

~(-iu)2e 3, F(k)e e g ()K"

k=—0

_.aznz f(k)e ™ e p (k).

Using (9) and that <T(m),(o> = (—1)m <T,(o(m)> = <T,go( )> for peP, TeP’

we have
im
= (-ig)2n Y F (K)o e “(— ) "cia2n 3 (k) (k)
k=—0 %’_’ T_/
=§<(/),¢&<>

W E T 0k i 8 T )

“ia Z f ( ) —kamte—iat <¢,¢k>

—I,uk t Iat<

—in S f(
k=—0

> f (ke ‘e*‘“‘<¢k,<o"“ >—ia§ f(k)e™ e (g o)

—iu
K=
=iy lim Zn: f(k)e""k t -iat <¢k 0 > i lim zn: f(k)e—iyk t o it <¢k (0>
n—>+w n n—>+ock:7n
=i lim <Zn: e e g o > ia lim <Zn: f(k)e""k ' Iat¢k1¢> (10)
n—+w n—+oo \ =
< , > Ia u t

|y<8”‘ u(t) ,go> Ia u (1),
Therefore,
(ou(t).p)=iu(07u(t).p)-ia(u(t),p), VpeP, VteR,
That is,
ou(t)=iudiu(t)—iau(t) in P', VteR.

b) ueC(IR,P"). That is, we will prove that
u(t+h)—=—u(t) when h—0,vte R

In effect,let te IR and ¢ e P, we will prove that
H., ( (t+h)—u(t),¢7>—>0, when h—0

We know thatif ¢eP then ¢eS(Z). Using (5) we have
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Ho, =21 > f(k)e ' e (e"”"mhe"“h —1)¢3(—k).
Let 0< |h| <1, from (8) we get
e e~ < " |+ < o[+ (1
Using (11) and that fe S'(Z) we obtain

e—i#kmhe—iah _1‘ |g5(—k )|

+00

> [ (ol
—

k=—0

—iat

e

=1 =1

< C/J f |k|N+m
k=—0

¢7(:5)‘

+Claf 3 K"

o) rclel £ 1" o() <=

(k)

_ Cﬂ i |J|N+m
J=—0

since peS(Z).
Using the Weierstrass M-Test we conclude that the series H , converges
absolute and uniformly. Then it is possible to take limit and obtain
: < § —iuk™t [\ —iat ~ : ~iuk™h y—iah
limH, , :an;o f(k)e™ e t(p(—k)lhm{e g —1}:0.

=0

Since te IR was taken arbitrarily, then we can conclude that

ueC(IR,P).

¢) dueC(IR,P’). Thatis, we will prove that

ou(t+h)—"—a,u(t) when h—0,vte IR.

In effect, let te IR and @< P, using item a) we have
<6tu(t+h),¢>—<8tu(t),(p>
=ig{(A7u(t+h),p)—(oTu(t), @)} —ia{(u(t+h),0)-(u(t),0)}  (12)
:iy<u(t+h),go(m)>—<u(t),¢(m)>—ia{<u(t+h),;o)—(u(t),go)}—>O

—0 -0

when h — 0, since item b) is valid with (o(r) eP for r=0,m.
From b) and c) we have that ueC'(IR,P’).
3) Now, we will prove that the solution depends continuously respect to initial

data. That is, if f —F— f we will prove that:
u, (t)——>u(t), vtelR.
We know thatif f —%—f then I:n — @) 5§ thatis
<fn—f,§>—>o when n— 4o, V&eS(2). (13)
For te IR fixed and arbitrary, we want to prove that
<un (t),l//> —)<U(t),l/l> when n — +o0, Vi eP.

Thus, let te IR be fixed and y € P, using the generalized Parseval identity,
we obtain the following equalities:
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(u, (1)) = 2n<( f, (e e y/> (14)

(u(t).p) = 27c<( ke tet) ) (15)

From (14) and (15) we obtain:

+00

(1 (0.) ~(u(0)p)=2x 3 {7, (0~ T (W)} e e (k) >0

when n— 4o, since &= (cfk )keZ €S (Z) and (13) holds. [
Corollary 3.1 The unique solution of (Q,,,,) Is

u(t)= 3 T (ke ey - (Femme=) |,
where ¢, (x)= e, xelR.

3.2. Group of Operators in P’

In this subsection, we will introduce families of operators {Ty,a (t)}teR in P',
with #£>0, >0 and m even not multiple of four; and we will prove that
these operators are continuous in the weak sense. That is, T, (t) is conti-
nuous from P’ to P’ with the weak topology of P’, which we will call the
weakly continuous operator.

Furthermore, we will prove that T, , (t) satisfies the group properties.

For simplicity, we will denote this family of operators by {T (t)}

Theorem 3.2 Let t € IR, we define:

T(t):P'> P

foT(t)f = [(f (k)e " et )kez } P,

then the following statements are satisfied:

1) T(0)=1I.

2) T(t) is @ —linear and weakly continuous Vt € IR . That is, for every
teR,if f,—"—f then T(t)f,—>T(t)f.

3) T(t+r)=T(t)oT(r), VtrelR.

4) T(t)fL>f when t—>0, VfeP'.

That is, foreach f € P’ fixed, the following is satisfied

<T (t) f,w>—><f,w>, when t — 0,V e P.

teR °

Proof.- Let f e P’ then fe S'(Z) . Then, from (3) we have
(f(k)e—i#kmte—iat) ES’(Z),
kez
taking the inverse Fourier transform, we obtain

[(f(k)e"”km‘e"“t) T eP, VvteR.
kez

=T(t)f

Thatis, T (t) is well defined forall teIR.
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1) We easily obtain:

T(0)f :[(f(k)efiﬂk“efiw)kez } -[(F), ] =[] =1 viep

2) Let te R, we will prove that T(t):P'— P’ is @ -linear. In effect, let
ae@ and (¢,1//) e P'xP', we have

T(t)(ag+w) :(efiﬂkmtefim [g+v] ()., }

(e adwp]) ]
~[alermeit) sfemei), |
“alferreita) ] o[eeota), ]
=aT (t)¢+T (t)y-

Now, for te IR we will prove that T(t):P’— P’ is weakly continuous. That
is, if f,—2— f then we will prove that T (t)f, —=—T(t)f . Note that the

case t=0 isobvious.
We know thatif f,—"—f then f —2f,thatis,

<fn,§>—><f,§>, when n >+, VEeS(Z).
That is,
<fn—f,§>—>o, when n— 40, V&eS(Z). (16)

We want to prove that:
<T(t) fn,l//>—><T (t) f,l//> when n —» 40, Vi eP.

Thus, let te IR fixed and w € P, using the generalized Parseval identity, we

obtain the following equalities

(T(0) )= <[( fk)e e | ,W>
= 27|:<( f, (k)e Mgt )kez v;>

<T(t)f,w>::<[(f(k)ekae”‘hez}v,w>
- 27c<( f(k)e"”km‘e"“‘) >

From (17) and (18) we get

<T (t) fn,l//>—<T (t) f,l//>
_ 2n{<( f(k)e e W>_<( f(k)e e w>}
_ 27:{2 f (k)™ ety - 3 f (k)eiﬂk”tei“‘&(k)}

k=—o0

(17)

(18)

<n

1
kez

=2 3 {1, (k) T (k)] e e (k) >0

k=-o0
Si=
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when n— +o0,since &:=(& )keZ €S(Z) and (16) holds, that is
<fn— f,§>—>0 when n— +o0.
3) Let t,relR —{0} , we will prove that T (t)oT(r) =T(t+ r). In effect, let

peP’,
T ()= (Bge ) ]
kez
v (19)
_ [[&(k)eiykmreiar .ei,ukmteiat] ] )
kez
Since ¢ € P’, using (3) we have that
(d(k)e™er) es'(z), wreR. (20)
kez

Then, taking the inverse Fourier transform, we get:

2

[(q;(k)e"“km'e"“r) } P, VreR.
kez
Thus, we define:

g, = [(qﬁ(k)e"“k R )ksz} eP.
That is,
g, =T (r)g. (21)
Taking the Fourier transform to g, we get:

6.~(30e e

kez '
that is,
G, (k)= g(k)e™ e, vkeZ. (22)

Using (22) in (19) and from (21) we have:

T(eer)p= (3 (e e | e

)
=[T(t)eT(r)](4), VtreR-{0}.
So we have proven,
T(t+r)=T(t)eT(r).¥t.r e R -{0}. (23)

If t=0 or r=0 then equality (23) is also true, with this we conclude the
proof of

T(t+r)=T(t)oT(r), VtrelR. (24)

4) Let f e P’, we will prove that:

T(t)f—P'—n‘ when t — 0.
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That is, we will prove that

<T(t)f,¢)>—><f,go> whent >0, VeeP.

£ il en o)
= tim 3 7 (0" ~1)(s, o)
() (e "e ™ ~1) (k)
) (k)" ~1) (k).

K
Since te R —{O} , from (8) we get

I
3

-im (£ F(0e " e .0)-( 3 1080
<

(25)

Il
3
N
a

]
—h>

—iykmte—iat -1

t

¢ < ulk[" +|al. (26)

From (26) we obtain

‘e""km‘e’"’l —4 < {ﬂ|k|m +|“|}|t|’ vteR. (27)

From (27) with 0< |t| <1, we have

et~ < k" + o (28)

+90

Then using (28) and that f € P’, we obtain
Z f(k)He—iﬂkmte—iat —1“(/3(—k)|
K=o
o E 1 oes]le] £ s |
=—o0 =—0 =]
C{yg”Jmm¢U»+MLZ|H”¢UN}<w

IA

P(2K)

since peS(Z).
Using the Weierstrass M-Test we conclude that the H, series converges ab-
solute and uniformly. So,

limH, =27 3 (k) p(—k)lim {e"e ™ 1} —0.

k=—o0

-0
Thus, we have proved

lim (T (t) f,p)=(f,p).

t—0

O
Theorem 3.3 For each f € P’ fixed and the family of operators {T (t)}

teR
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from Theorem 3.2, then the application

M:IR > P
t>T(t)f
is continuous in IR . That is,
T(t+h)f —=>T(t)f when h—0,vtelR. (29)

(is the continuity at 7).
That is, (29) tell us that for each te IR fixed, the following is satisfied

(T(t+h) f,p) > (T (t) f,y), when h—0,vy eP.

And if t=0, we have the continuity of A at 0, which is item 4) of Theorem
3.2.

Proof.- Let te R —{0} , arbitrary fixed and f eP’ then g:=T (t) feP’,
using item 4) of Theorem 3.2, we have that T(h)g—">g when h—0. That
is,

T (h)(T(t) f)—E>T(t) f when h—0,
—_

T (T ®]f

=T(h+t)f

where we use item 3) of Theorem 3.2.

O

Remark 3.1 The results obtain in Theorems 3.2 and 3.3 are also valid for the
family of operators {S(t)} _, defined as

teR

S(t):P' > P’

f>s(t)f:= [(e“’km‘e"“t fA(k))kEZ T ,

for te IR.Its proof is similar.

3.3. Version of Theorem 3.1 Using the Family {T (t)}

telR

We improve the statement of theorem 3.1, using a family of weakly continuous
Operators {T (t)}teR .

Theorem 3.4 Let f € P’ and the family of operators {T (t)}leR from Theo-
rem 3.2, defining u(t) =T (t) feP', VtelR, then ue C(IR , P') is the unique
solution of (Q,,,, ). Furthermore, u continuously depends on f. That is, given

f,,feP with f,—"—f implies u,(t)—2—>u(t), Vte R, where
u, (1)=T(t)f,, Vte R (thatis, u
f.).

Proof.- It is analogous to the proof of Theorem 3.1.

O

Corollary 3.2 Let f eP' be fixed and the family of operators {T (t)}teR
from Theorem 3.4, then 30,T (t) f, Vte R and the mapping

7:R—>P
t—>o,T(t) f =iuofT(t)f—iaT (t)f

. Is a solution of (Q,,,) with initial data
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is continuous at IR . That is,
oT(t+h)f —=—4T(t)f whenh—0, VteR. (30)
(30) tells us that for each te R fixed, it holds:
(0T (t+h) f,p)—>(3,T(t)f,¢) when h—>0, VpeP.
Proof.- Indeed,
(0T (t+h) f.o)—(aT (1) f.p)
=ip{ (T (t+h) f,0)=(O1T (1) fLp)} —icr{(T (t+h) f,0)~(T (1) )}
=ig{(T (t+h) £,0™ ) =(T(0) 1,0 )| —ia (T (t+0) f,0) (T (1) T )}

-0 -0

-0

when h — 0, due to Theorem 3.3 with = (p(J) eP,for J=0,m.

O

Corollary 3.3 Let f eP' be fixed and the family of operators {T (t)}teR
from Theorem 3.4, then the solution of (Q,,,):u(t)=T(t)f, Vte R, satisfies

ueC'(R,P’).
Proof.- It comes out as a consequence of Corollary 3.2.
O

4. Conclusions

In our study of the generalized Schrédinger type homogeneous model in the pe-
riodic distributional space P’, we have obtained the following results:

1) We prove the existence, uniqueness of the solution of the problem (Q,,,,).
Thus we also prove the continuous dependence of the solution respect to the ini-
tial data.

2) We introduce families of operators in P’: {T (t)} and we prove that

they are linear and weakly continuous in P’. FurthermotrEeR, we proved that they
form a group of weakly continuous operatorsin P’.

3) With the family of operators {T (t)}tER we improve Theorem 3.1.

4) In contrast to what was obtained in P’ with what has already been studied
in H_. , we see that the weakly continuous operators are not unitary due to the
topology of P’.

5) It is mathematically enriched, since we generate families of operators.

6) We must indicate that this technique can be applied to other evolution eq-
uationsin P’.

7) Finally, for future work we want to emphasize that the results obtained will
allow us to apply computational methods to determine the solution with a de-

gree of approximation that is required and with a lower error rate.
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