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Abstract 
The paper concerns the formulation of a Lagrangian function compliant with 
classical, quantum and relativistic outcomes. The literature Lagrangians are 
reported with modified local Lorentz transformations, or with potentials in-
ferred directly from the relativistic metric or with geometrical meaning. In 
this paper the Lagrangian is formulated via the concept of quantum uncer-
tainty only, which allows a non-deterministic approach. This theoretical frame 
is proven useful to merge without additional hypotheses quantum and relati-
vistic outcomes in a straightforward way. 
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1. Introduction 

The present paper proposes a possible theoretical frame to define and implement 
the Lagrange equation. Various theoretical models are reported in the literature 
to formulate Lagrangians with modified local Lorentz transformations [1], or 
with potentials formulated directly from the relativistic metric [2] or with geo-
metrical meaning [3]. Considering for simplicity but without loss of generality a 
one-dimensional frame, the standard Lagrange equation is defined by 

L L
t x x
∂ ∂ ∂

=
∂ ∂ ∂

;                        (1.1) 

as it is known 

x
L p
x
∂

=
∂

, x
L F
x
∂

=
∂

.                     (1.2) 

These equations are deterministic, as the notations ∂  signify infinitesimal 
ranges of the respective generalized dynamical variables: in fact, besides the mere 
mathematical features of the definitions (1.1) and (1.2), via L the local coordi-
nates x and t are defined as a function of which xp  and xF  are calculated. 
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This implies in turn the physical meaning of all these dynamical variables. 
Just this conclusion, clearly unphysical because it violates the Heisenberg 

principle, emphasizes the crucial reason of the difficulty of unifying relativity 
and quantum physics [4]. In fact, the relativity is basically classical physics cru-
cially enriched by four fundamental concepts [5]: 4-dimensional geometry of 
non-Euclidean space time, equivalence principle, finite and invariant light speed 
in vacuum, covariance principle. However, the mathematical tool to implement 
and quantify these ideas, the space time metrics, is deterministic: the tensor cal-
culus describes the space time as a classical entity whose local geometry, flat or 
curved by the presence of mass, is exactly knowable as a function of coordinates, 
momenta and energy. The conceptual difficulty of merging the quantum non- 
locality and non-reality on the one side with the relativistic determinism on the 
other side is evident. As long as the specific physical problems do not involve 
quantum constraints, e.g. the perihelion precession of planets or the light beam 
bending, everything works well: it’s worth the same idea that the macroscopic 
stability of a building is successfully calculable without caring about the Schrödin-
ger equation and its conceptual basis. In fact, however, the E.P.R. paradox [6] 
that should demonstrate the incompleteness of the quantum mechanics, has in-
stead evidenced just the incompleteness of the general relativity: the concept of 
entanglement able to explain interactions at superluminal distances demon-
strated that quantum ideas are required to save the validity of one of the founda-
tions of relativity, i.e. the finite limit value of light speed. 

Moreover, it is shown in [7] [8] that the metric of the special relativity allows 
calculating the Lorentz transformation properties of the three classical compo-
nents of the angular momentum; it is crucial the fact that this further conflict of 
the relativistic mathematical frame with the requirements of quantum physics is 
not due to the lucid reasoning exposed in the quoted textbooks, but to the unjus-
tified application of the relativistic metrics outside the appropriate frame of clas-
sical physics. 

Now consider in this respect finite coordinate and momentum component ranges 

2 1x x xδ = −  and 2 1x x xp p pδ = −  requiring that any coordinate 1 2x x x≤ ≤  
and any corresponding momentum 1 2x x xp p p≤ ≤  in the respective ranges 
should be equivalently and indistinguishably considered in calculating the al-
lowed states of a physical system; in turn it means accrediting physical meaning 
to the whole ranges of values, and not to the random local dynamical variables 
they enclose. The agnosticism of the quantum uncertainty removes the link be-
tween an arbitrary x in its allowed range and the corresponding xp  and xF  in 
its allowed range. 

All of this means excluding 0xδ →  for 2 1x x→ , because this limit would 
admit the physical meaning of local conjugate dynamical variables. These con-
siderations hold of course for (1.1) and (1.2). Appears thus appropriate the idea 
of a “quantum Lagrangian” inherently incorporating itself the requirements of 
the physical context it implements, in particular the features of a non-local and 
non-real quantum frame. In other words, it appears sensible to modify the 
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starting point (1.1) in order that the probabilistic character of the quantum 
world becomes since the beginning compliant with the appropriate formulation 
of its descriptive tool. 

Previous papers [4] have evidenced that introducing the concept of quantum 
uncertainty helps not only to solve quantum problems but also to find relativistic 
results in a straightforward and simple way. 

All of this suggests that (1.1) and (1.2), despite their huge classical importance, 
are actually improvable to overcome the conceptual gap between classical phys-
ics, relativity and quantum world. 

The Lagrangian is the basic foundation of the standard model [9]; clearly, the 
idea of formulating quantum problems simply implementing a form of (1.2) and 
(1.1) modified since the beginning according to the quantum uncertainty ap-
pears reasonable and rational. The present paper aims to highlight how to dem-
onstrate the physical validity of these introductory premises and implement a 
non-deterministic Lagrangian to solve quantum and relativistic problems. 

2. Preliminary Considerations 

Redraft now (1.1) according to the uncertainty equation 

xp x n tδ δ δεδ= =                       (2.1) 

writing instead  

L L
t x x
δ δ δ
δ δ δ

=


, x
L p
x

δ
δ

=


, x
L F
x

δ
δ

=                 (2.2) 

and then waiving the limits δ → ∂ . Several papers have shown that (2.1) are 
direct corollary of the operative definition of space time [10] 

3

2

G length
timec

=
                         (2.3) 

and allow merging relativity and quantum physics; here the crucial point is to 
replace the deterministic metrics with the non-local and non-real character of 
(2.1) [4]. Seemingly (2.2) is a replica of (1.2) simply with different notation. In-
stead, replacing ∂  with δ  introduces a huge conceptual gap between (2.2) 
and (1.1): the former symbol implies local values of any function ( )f x  at x 
and dx x+ , the latter waives in fact the coordinates being both x and x xδ+  
arbitrary and unknown along with 0xδ ≠  itself. 

Are here remined only a few remarks on (2.1) to justify some algebraic steps 
introduced below; further details about this agnostic theoretical background and 
its implications for quantum systems are reported in [11] [12]. Here it is worth 
remarking that: 1) the ranges of dynamical variables concerned in (2.1) are arbi-
trary and unknown, 2) the concept of derivative is replaced by that of mere ratio 
of ranges, 3) any approach based on (2.1) necessarily assumes a space time con-
ceptual frame and 4) actually (2.1) is not linked to a specific reference system 
where are defined all ranges. The last item is so crucial to deserve being shortly 
sketched here for completeness. Regard the range sizes as multiple of the respec-
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tive Planck units, e.g. let be * 3
xx n G cδ =   and * 3

pp n c Gδ =  ; then  
* *

x x pp x n nδ δ =   [4]: the starred symbols are arbitrary real numbers, n of (2.1) is 
arbitrary integer with the meaning of number of allowed quantum states. An 
analogous result holds for tδεδ , as it is immediate to verify, so (2.1) reads with 
obvious meaning of symbols 

* * * *
x p tn n n n nε= = .                     (2.4) 

This means that formulating any physical problem after having replaced sys-
tematically the local dynamical variables via the corresponding uncertainty 
ranges, the resulting equations bypass by definition the necessity of specifying 
the reference system. The relevance of this statement in relativity is self-evident, 
likewise the quantization introduced by n. In effect, let xp x nδ δ =   and  

xp x nδ δ′ ′ ′=   be defined in different inertial reference system in relative con-
stant motion. As n and n′  symbolize sequences of integers, and not a specific 
number, it appears that the primed and unprimed products of conjugate va-
riables are actually indistinguishable; in both reference systems, the products in 
(2.1) yield sequences of numbers, 1,2,n =   and 1,2,n′ =  , arbitrary and 
unknowable by definition. So just the quantization justifies why different refer-
ence systems become in fact indistinguishable. Even the concept of derivative 
takes in the present model the mere meaning of ratio of uncertainty ranges; pre-
vious papers have addressed this subtle point [4], which is further explained in 
the following as it is essential to emphasize the validity of this statement. Here it 
is worth considering that the classical concept of local velocity d dv x t=  im-
plies that both differentials dx  and dt  must tend concurrently to zero to de-
fine v somewhere in the space time. According to (2.1), instead, v is definable via 
two separate and independent uncertainty ranges xδ  and tδ  about which 
nothing is known: in fact the classical requirement of their concurrent tending to 
any value, e.g. both to zero, would imply introducing deterministic information 
and thus would violate their total agnosticism compelled by the quantum uncer-
tainty. For this reason x tδ δ  is mere ratio of two independent ranges, which 
does not exclude that both range sizes can be arbitrarily small although anyway 
finite. So the usual differential ( )d df f x x= ∂ ∂  reads ( )f f x xδ δ δ δ=  in the 
present model, which holds at the first order approximation for xδ  in prin-
ciple finite and fulfilling (2.1). 

Consider now that (2.1) implies 

x
x

xv
p t
δε δ
δ δ

= =  i.e. x
x

x a
t p t t
δ δε δ δ
δ δ δ δ

= = ,           (2.5) 

being xa  acceleration by dimensional reasons; also  

( ) ( ) ( )2 2 1 1, ,
2 2 1 1, ,x t x t

x x x

x xx
x v x t v x t v

t t t

δ δδ δ
δ δ

δ δ δ

 
 ≡ = − = − =
 
 

 ,(2.6) 

where ( )xδ δ  is the change of range size xδ  during a given time lapse tδ  at 
which are defined both 

2 2,x txδ  and 
1 1,x txδ . Note that xδ   is the change rate 
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of xδ , whereas xv  is the velocity component of the particle concerned by ε  
and xp ; the fact that in (2.6) xv xδ δ=  , is due to the total delocalization of m in 

xδ  whatever the size of this latter might be. So the change ( )xδ δ  of xδ  re-
quires changing xv  of m by xvδ  for the particle to fit entirely the new con-
finement range; as the rate at which moves the confined particle is c≤ , it fol-
lows that x cδ ≤  as well. This has to do with the finite velocity with which 
propagates any perturbation/interaction throughout the space time described by 
(2.1). It follows from the second (2.5) 

x
x

x

F
a

t p m
δ δε
δ δ

= =                      (2.7) 

being m a constant mass and xa  acceleration. Moreover, it is also true that (2.1) 
implies 

x
x

p n t F
t x

δ δ
δ δ

= =
 ;                    (2.8) 

i.e. according to (2.5) just this property of all variable delocalization range is 
equivalent in general to the rising of a force field xF  within xδ , whose partic-
ular physical meaning does not need being specified. In other words, the fact 
that the force is mere consequence of the stretching/shrinking of the space time 
delocalization range is nothing else but the generalization of the Einstein con-
cept of space time curvature responsible of and appearing as the gravity: here 
however, owing to the form of (2.1), the concept of force is relatable according 
to (2.8) to any physical reason that implies modification rate, not necessarily just 
curvature, of the space time uncertainty ranges. The Einstein intuition is found 
here as a corollary of the quantum uncertainty along with the equivalence prin-
ciple [4]. So, (2.7) yields 

x
x x

F
t p m t v
δ δε δ δε
δ δ δ δ

   
= =   

   
                 (2.9) 

that in turn reads with the help of (2.6) 

x
x

F
t v t x
δ δε δ δε
δ δ δ δ

= =


, x xp m vδ δ= , x xp mv= .         (2.10) 

On the one hand (2.8) reads 

x
x

p UF
t x

δ δ
δ δ

= = − , xvn xU x n n
x x x

δδδ δ
δ δ δ

= = =





  ;       (2.11) 

on the other hand, it is reasonable to expect that xF  is related to the change of 
kinetic energy of m, i.e. ( )2 2kin x x xv p mvδε δ δ= =  according to (2.5) and (2.10). 
So kin x x xv T v mvδε δ δ δ= = . Hence 

x

L L L
t v t x x
δ δ δ δ δ
δ δ δ δ δ

= =


, ( ) ( )xL T v U xδ= − .           (2.12) 

This result merges (2.10) and (2.11) and is therefore the sought Lagrange equ-
ation compliant with the non-deterministic definition (2.12) of L; moreover 
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x
x

L L p
v x
δ δ
δ δ

= =


,                     (2.13) 

which is just the expected result in agreement with (2.10). 
In summary the Lagrange Equations (2.12) are related to (2.1); is significant 

that xp  is no longer a local value, as stated in the introduction, since now 

1 2x x xp p p≤ ≤ . The fact that the uncertainty ranges can be unknowably infi-
nitely large or infinitely small does not prevent approaching the same result of 
the classical approach via deterministic derivatives; yet these latter are mere 
extrapolation of a more general approach fulfilling the Heisenberg principle. 

Three quantum and relativistic final remarks deserve attention, already con-
cerned in [4] and sketched here. 

-Note first why the uncertainty implies itself as a corollary the quantum indis-
tinguishability of identical particles: (2.1) does not concern explicitly the particle 
but its phase space. The properties of the latter determine that of the former, not 
vice versa. So once having assessed motivation and usefulness of neglecting the 
local dynamical variables, systematically replaced by their corresponding ranges 
in describing any fundamental physical law like the Lagrangian, the attempt to 
distinguish two identical quantum particles about which nothing is known be-
comes intuitively unphysical. 

-Also note why (2.1) imply the existence of an upper limit of velocity in the 
space time. Write the first (2.5) as x xv pδε δ δ= = ⋅v p ; so any finite δε  should 
yield 0xvδε →  for xv →∞  and thus 0xpδ →  too. But this is a contradic-
tion, because it would imply a local value xp  corresponding to the matching 
value of 2 1x xp p→ ; clearly the single value xp  cannot correspond to the range 
of values 2 1x xv vε ε−  about which no specific hypothesis is admissible with-
out appropriate information about 1ε  and 2ε . Is instead admissible  

2 1xp c cε ε= − , with 1ε  and 2ε  arbitrary along with xp  arbitrary as well. 
So, the finite c prevents the determinism of a single xp . 

-In the previous equations xpδ  has been expressed as xm vδ  in (2.9) and, 
whatever xvδ  might be, via n xδ  in (2.8) owing to (2.1). Note now that  

( ) ( ) xx t x t vδ δ δ δ ε= =  , having taken 1n =  for simplicity: is it possible 
to merge these results? Write identically 

( ) 2 x x
x x

v v
p c mc v mc

c c
δ

δ δ δ ε= = =               (2.14) 

being ε  an energy by dimensional reasons; so one finds 

2
x

x
v

p
c

δ εδ  =  
 

                     (2.15) 

that in general is compliant with the form 

2
x

x
v

p
c
ε

= .                       (2.16) 

This is the well-known relativistic form of momentum obtained without spe-
cial hypotheses. Of course this result is sensible because of the existence of a fi-
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nite velocity c required according to the previous point. 
-The scalar δ⋅v p , although concerned here as x xv pδ  for brevity, corres-

ponds actually to any number of physical dimensions possible in the space time 
here symbolized generically by the subscript x: thus all considerations about (2.1) 
are by definition compatible with theories requiring extra dimensions [13]. The 
fact that xδ  could be for example a radial distance or the component of any 
range size δ x  or any extra dimension range δ s , agrees with the actual idea of 
truly generalized dynamical variables characterizing the Lagrange Equation 
(2.2). 

It is worth emphasizing eventually that the present approach is not relativistic, 
likewise the previous ones e.g. [4], but typically quantum: it does not implement 
the metric, but the Equation (2.1) as a conceptual basis. 

This statement makes sense reminding the purposes that historically moti-
vated the birth of quantum and relativistic theories: simplifying this statement as 
much as possible, the former aimed to explain why the electron does not fall into 
the nucleus, the latter to find a covariant physics. Whether or not (2.1) surrogate 
the premises of relativity, it is a subtle point already checked in previous papers 
and still in progress; even this model attempts to verify the chance of obtaining 
contextually relativistic results in a mere quantum frame. This expectation, legi-
timated by the previous four points 1) to 4) emphasizing the intrinsic features of 
(2.1), is in fact confirmed by the next results. 

3. Generalization of the Equation (2.12) 

To simplify the notations, the components xv  and xp  of v  and p  will be 
shortened simply as v and p in the following. 

The Lagrange Equation (2.12) has been obtained via (2.1) only, yet with the 
help of some classical simplifications, i.e. to regard m independent of v and to 
assume explicitly ( )T T v=  and ( )U U xδ= . In fact these assumptions are also 
introduced in the standard derivations of the classical Lagrangian for a conserv-
ative field: i.e. in the current literature 0xδ →  is local generalized coordinate, 

d dx t x tδ δ →  is local generalized velocity. In effect, it is confirmed below that 
the previous definitions of generalized coordinate ranges and velocities still hold 
in the present model without requiring specific hypotheses; with such agnostic 
premises any consequent model results intuitively as general as possible. In 
principle, nothing hinders to think ( ),U U x vδ= ; for example consider that 
actually in relativity the rest mass is a constant by definition whereas the dy-
namic mass depends on v, as 

dyn
mm
β

= , 
2

21 v
c

β = − , m const= .               (3.1) 

Even this result has been obtained in the frame of a physical model based on 
(2.1) [4]. 

This section aims thus to generalize significantly via (2.1) the meaning of the 
result (2.12) itself with the help of the definition (2.5) of generalized velocity. 
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Define then 

( )kL f v= , xv
t

δ
δ

= ,                     (3.2) 

being k an arbitrary exponent. It is necessary to calculate in agreement with (2.6) 
the ratios 

L
t v
δ δ
δ δ

 
 
 

, L
x

δ
δ

                       (3.3) 

and demonstrate that 

L L
t v x
δ δ δ
δ δ δ

  = 
 

, v xδ δ=  .                  (3.4) 

Calculate foremost 

1k
k

L L f kv Y
v f v

δ δ δ
δ δ δ

−= = :                   (3.5) 

the first (3.3) yields directly 

1k
k

L L f Ykv
t v t f tv
δ δ δ δ δ δ
δ δ δ δ δδ

−   = =  
   

,              (3.6) 

whereas the second (3.3) yields implementing v of (3.2) and (2.16) 

1L L v v v YY
x v v x v t t

δ δ δ δ δ
δ δ δ δ δ

= = = , YY v
v

δ δ= .          (3.7) 

In turn, since in general for any function f holds ( )f f constδ δ≡ + , (3.7) 
reads with the help of (3.5) 

( )( ) ( )( ) ( )( )log log1log
v const mvL Y v Y Y

x t t t
δ δδ δ

δ δ δ δ
+

= = = , ( )logconst m= .(3.8) 

Merge now (3.6) and (3.8). By subtracting side by side 

L Y
t v t
δ δ δ
δ δ δ

  = 
 

, 
( )( )log mvL Y

x t
δδ

δ δ
=              (3.9) 

the result is 

( ) ( )( )0 0log logL L Y Y mv m v
t v x t t
δ δ δ δ δ
δ δ δ δ δ

  − = − − 
 

         (3.10) 

because of course ( )0 0 0m vδ = . Hence 

0

log 0L L Y Y p
t v x t t p
δ δ δ δ δ
δ δ δ δ δ

   − = − =  
   

             (3.11) 

because the right hand side reads, according to the second (3.7), 

0 0 0

log log log 0Y Y p Y v p
t Y p t v p
δ δ δ

δ δ
        

− = − =                   
, 

0 0 0

Y v p
Y v p

= = . (3.12) 

The result is thus, whatever f and the exponent k of (3.5) might be, 

0L L L L
t v x t x x
δ δ δ δ δ δ
δ δ δ δ δ δ

   − = − =   
   

.              (3.13) 
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Since (3.2) involves kv  only, with v defined by the uncertainty ranges xδ  
and tδ  only, one infers through (2.4) that L holds regardless of the reference 
system where is defined v. 

It is possible to think at this point that the physical worth of the definition (2.2) 
of L effectively rests on the generality of (3.2). To demonstrate in fact this con-
clusion, let us start from a known result [7]: let the Lagrangian of a free neutral 
particle be 

L ζβ= − , 2

22 1

1 v
c

β
 

= − 
 

,                  (3.14) 

being ζ  an appropriate constant energy in agreement with (2.15), and check 
how this function fits (3.4) in the conceptual frame so far introduced. In effect 
the previous definitions (3.2) and (3.5) imply 

( )kL f vζ= , f β= − , 2k = , ( ), xv v x t
t

δδ δ
δ

= = ,       (3.15) 

so that the given value of k yields now in particular 

( ) ( )
1

22
2k

k

L f vY kv v
f cv v

δ δ δβ ζζ
δ βδ δ

−= = − = ;          (3.16) 

then trivial calculations yield 

( )
2

vL Y
t v t tc

δ βδ δ δ ζ
δ δ δ δ

  = = 
 

,                (3.17) 

being 

( )
3

1v v
t t

δ β δ
δ δβ

= .                    (3.18) 

Let the constant ζ  be for example 2
0m c , according to (2.16), or any possi-

ble generalization of it depending on the specific physical problem. If so, since Y 
is momentum owing to (3.12), then (3.16) reads 

2
0 0

2 2

m v m c v vY momentum
c c

ε
β β

= = = = , 
2

0m c
ε

β
= : 

these equations are well known outcomes of special relativity. Examine now two 
corollaries of (3.16). 

-On the one hand (3.16) reads ( ) 1k kL Y v kvδ δ −= , so that (3.7) yields 

( )logL Y v
x t

δ δ
δ δ

= ; 

thus, likewise to (3.8), (3.11) and (3.12), 

0 0

logL Y mv Y L
x t m v t t v

δ δ δ δ
δ δ δ δ δ

   = = =   
  

              (3.19) 

that of course is again the Lagrange equation. In turn it also follows 

( ) ( ) 0
0 0

log log logx v vL Y v Yv v Yv
t v v

δδ δ δ
δ

 
= = =  

 
; 
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this result is interesting because it has an entropic form. The energy ratio 

0L Yvδ  equals logS w w− =  if the ratio 0v v  has probabilistic meaning for 
the number of allowed quantum states pertinent to the given value of the ratio, 
for example putting 0v c= . This last result holds regardless of specific f and k, 
as it depends on the resulting generalized momentum Y only; so the arbitrary 
constant 0v  allows regarding 0 BYv k T=  and write L TSδ = −  summing over 
all states of the system. Then  

0 0L L L E U Lδ = − = − −  yields 

0E U TS L= − + : 

i.e. the generalized Lagrangian is compatible with the Helmholtz free energy, 
with 0 0L =  in particular, or with the Gibbs free energy putting 0L PV= . 

-On the other hand L x Y tδ δ δ δ=  of (3.19) fits (2.1), noting that L is any-
way an energy whereas Y is anyway a momentum; therefore L t Y xδ δ δ δ=  is 
nothing else but (2.1). Thus just (3.19) also yields, owing to (3.18), 

0
0 02 dyn dyn

m x xL v m m x t
tt

δ δ βδ δ δ δ
β βδβ δ

= = = , 0
xx δδ
β

= , 0t tδ βδ= , 0
dyn

m
m

β
= : (3.20) 

i.e., if at the right hand side of the first equation the product 0 0x tδ δ  space 
and time ranges is independent of v, then xδ  is the Lorentz contraction of the 
proper space range size 0xδ  where one confined particle is at rest, whereas tδ  
is the time dilation of the proper time range size 0tδ  of the particle at rest. 
Eventually, as it also appears that 

0 0x t x t x tδ δ δ δ δ δ′ ′= = ,                  (3.21) 

one infers that x tδ δ  must be invariant in different reference systems in reci-
procal motion; indeed, even the primed quantities are also referable to the same 
proper length and time. 

A further remark about the force xL x maδ δ = ; it is sensible to expect that 
this force is someway deducible from the definition of Y; indeed, since by defini-
tion x xF p tδ δ= , (3.14) and (3.16) yield 

02x x
L Y vF m a
x t tc

δ δ ζ δ
δ δ δ β

 
= = = = 

 
, 

2 21
x

va
t v c

δ
δ

=
−

. 

In effect also this result is well known; it is concerned in [7] in particular for 

xa const=  and does not need further comments here; it is worth emphasizing 
that after having integrated the right hand side as a function of the left hand side 

a xv a t= , the further integral over time of the velocity av  tends to c at increas-
ing tδ . 

This last relativistic result is once more crucial to confirm the validity of the 
approach so far followed. 

4. Discussion 

In principle, the uncertainty ranges can be understood thinking to the confi-
dence intervals unavoidably inherent any measurement process. Reasonably 
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these intervals, and not the random outcomes of the single measurements, are 
reliable starting points to infer physical information; this simple analogy and the 
fact that the standard wave formalism is also obtainable as a byproduct of (2.1) 
[4], are enough to realize why the chance to infer contextually both quantum 
and relativistic results is greatly simplified implementing the concept of uncer-
tainty in its most agnostic form. Equation (2.1) have been tested in various 
quantum problems [11] [12]. 

An example is so short to deserve being mentioned explicitly here. Infer the 
unique component uM = ⋅M u  of quantum angular momentum merely know-
ing its classical definition ( )× ⋅r p u : write ( )δ δ× ⋅r p u , which reads  

( ) wuM p wδ δ δ δ δ δ= ⋅× = ⋅ = ±u r p w p  with wpδ δ δ δ= ⋅p w w  and  
δ δ= ×w u r . So (2.1) imply uM l= ±   with 0l =  or l integer=  depending 
on whether δ δ⊥w p  or not. 

The values of l  agree with the fact that here the quantum numbers of wave 
mechanics take the physical meaning of numbers of allowed quantum states of 
the angular momentum component, if any. This is the only possible result; 
changing u  to find a further component uM ′  would trivially meaning repeating 
the same, unique information. 

The chance of obtaining contextually a wide variety of quantum and relativis-
tic results, already asserted in [4], is confirmed here through the consistency of 
(2.2) with that concept of Lagrangian and helps understanding why (2.1) in-
ferred from (2.3) have actual physical meaning, rather than the deterministic lo-
cal values of the dynamical variables falling in these intervals. 

It is instructive to verify now the results obtainable introducing in the con-
ceptual frame so far outlined a different Lagrangian function L′  defined now 
by 2 2 21 v cβ = −  instead of the well known one of (3.14). Repeating the steps 
(3.15) to (3.18), the previous definitions (3.2), (3.5) and (3.7) imply now 

L fζ′ ′ ′= − , 2f β′ = , 2k = ,                 (4.1) 

being again ζ ′  an appropriate constant energy; so (3.16) becomes 
2

1
2 2

12 2k
k

L fY kv v v
f v v c

δ δ δβζ ζ
δ δ δ

−′ ′
′ ′ ′= = − =

′
.           (4.2) 

Then on the one hand 

2

2L Y v
t v t tc
δ δ δ ζ δ
δ δ δ δ

′ ′ ′  = = 
 

,                  (4.3) 

whereas on the other hand, by calculating L xδ δ′  similarly to (3.7) and (3.8), 
(4.2) yields now 

2 2

2 2 1L v v v
x x tc c

δ δ ζζ δ
δ δ δ
′ ′

′= =                  (4.4) 

whence, comparing (4.3) and (4.4), one infers recalling (2.6) 

L L L
t v t x x
δ δ δ δ δ
δ δ δ δ δ

′ ′ ′   = =   
   

.                 (4.5) 
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There is new information in (4.4) with respect to (3.14) of the free neutral 
particle, as it results rewriting the first equality as 

( ) ( )2

2 2 2

2 vL v v
x x x xc c c

δ δδ δ ζ ζζ
δ δ δ δ

⋅′ ′ ′
′= = =

v v
; 

the last term can be rewritten as follows 

( )L
x x

δ ζδ
δ δ

′ ⋅′
=

A v
, ( )02c

ζζ
′

′ = +A v v , 0 0⋅ =v v . 

Then owing to (4.5) and to the Helmholtz decomposition theorem of vector 
calculus, which states that a 3D field rapidly decaying is equivalent to the sum of 
an irrotational and a solenoidal field, the right hand side can be also rewritten 
for sake of generality as 

( )L
x x

δ ζ ϕδ
δ δ

′ ⋅ −′
=

A v
, 

x t v
δϕ δ δϕ
δ δ δ

 =  
 

,              (4.6) 

being ϕ  an appropriate scalar function fulfilling the second condition: insert-
ing the first (4.6) in (4.5) is still fulfilled (3.26) thanks to the second condition in 
agreement with (3.29). It indicates that the new choice (4.1) of the Lagrangian 
function is compatible with the new L′ , i.e. L ζ ϕ′ ′= ⋅ −A v . As the Lagrange 
equations are linear in L it is possible to write 

( )
2 2 2

2 2 2

1 2 1 2

1 1 1tot
v v vL L L
c c c

ζ ζ ζ ζ ζ ζ ϕ
     

′ ′ ′ ′= + = − + − = − + ⋅ −     
     

A v . (4.7) 

This result is well known to be the Lagrangian of a charged particle in an elec-
tromagnetic field [7]. 

Eventually note that the Lagrange equation can be inferred uniquely via quan-
tum considerations. Equation (2.1) imply inherently 

xp n x n L
t t x x

δ δ ω δ
δ δ δ δ

= = =
  , 1

t
ω

δ
= ; 

this result confirms (3.19) and yields in turn 

x
x x

x p
L n v p

t
δ δ

δ ω δ
δ

= = =  i.e. x
x

Lv
p
δ
δ

= . 

Hence, owing to (2.6) and (2.5), 

( )
x

x x
x x

FL L L Lv a
t t p t mv t m x m m x
δ δ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ

= = = = = =


, 

being m a constant mass, whence via (2.6)  

xFL L
t x m x
δ δ δ
δ δ δ

= =


, x
L mv
x

δ
δ

=


, x
L F
x

δ
δ

= .             (4.8) 

This generalized Lδ  can be reasonably handled with (3.2) and implement-
ing even 2k ≠ , despite so far only the chance 2k =  has been concerned ex-
plicitly to demonstrate the connection of the present approach with the known 
Lagrangian of special relativity. 
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The usefulness of the present model also appears considering that the mere 
Newtonian potential, having the form const xδ , admits actually a much more 
general formulation [4]. 

So new perspectives appear plausible even in the extended case of non-Newtonian 
potentials ( ),k kU U x xδ δ ′=  ; for example, in the most general case where the par-
ticle is not free, e.g. because it interacts with several different fields, the functional  
dependence of kL  on v would imply kv  or a sum k k

k
L LζΣ = ∑  corresponding  

to the superposition of several quantum k-states. Of course momentum and 
force of each kL , pertinent to the form of the respective kf , are still given by 
(3.5) and (3.7). Work is in progress on this point. 

5. Conclusions 

The model defines a Lagrange function directly relatable to classical, thermody-
namic, relativistic and quantum results. 

The chance of generalizing further the few cases highlighted in present paper 
is possible to appear, and in principle simple, by regarding appropriately (4.7): 
the sum of two terms possibly suggests a more general series expansion of L as a 
function of higher powers of Lorentz factors β . 

If so, then some open questions arise concerning in particular the Lagrangian 
of the standard model: what kind of phenomena could describe these higher or-
der terms of LΣ  with different f and k? Are the terms of this conceivable series 
expansion LΣ  related to the Feynman diagrams of the respective situations? Do 
these terms require new hypotheses to introduce the mass, or the mass is intro-
ducible via dimensional considerations only as in (4.8)? 

Activity is in progress to clarify the actual physical implications of the genera-
lization (2.2). 
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