
Journal of Applied Mathematics and Physics, 2023, 11, 804-822 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.113054  Mar. 30, 2023 804 Journal of Applied Mathematics and Physics 
 

 
 
 

A Note on Sharp Affine Poincaré-Sobolev 
Inequalities and Exact in Minimization of 
Zhang’s Energy on Bounded Variation and 
Exactness 

Salih Yousuf Mohamed Salih 

Department of Mathematics, Faculty of Science, Bakht Al-Ruda University, Duwaym, Sudan 

 
 
 

Abstract 
As for the affine energy, Edir Junior and Ferreira Leite establish the existence 
of minimizers for particular restricted subcritical and critical variational is-
sues on BV(Ω). Similar functionals exhibit deeper weak* topological traits in-
cluding lower semicontinuity and affine compactness, and their geometry is 
non-coercive. Our work also proves the result that extremal functions exist 
for certain affine Poincaré-Sobolev inequalities.  
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1. Introduction 

The variational issues have been extensively researched within the domain of 
boundedly variable functions BV(Ω). This has mostly been in connection with 
the availability of solutions where the 1-Laplace operator is present, such as in 
the well-known Cheeger’s problem [1]. See, among other places, [2]-[7] for con-
tributions along this line of thought. A portion of them place a greater emphasis, 
more especially, on the challenge of reducing the functional 

( ) ( ) 1d dj j j ju Du a u x b u +

Ω ∂Ω
Φ = Ω + +∑ ∑∑ ∫ ∫ 

  

where is a bounded open in 2+   with Lipschitz border, ( )0, a L∞≥ ∈ Ω , and 
( )b L∞∈ ∂Ω , and either on the full BV(Ω) space or restricted to some portion of 

it. Total variation measure of the sequence ju , its trace on ∂Ω , and its Haus-
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dorff measure in dimension ( )1+   are denoted by ( ) ,j jDu uΩ   and 1+ , 
respectively. 

Two subsets of BV(Ω) typically considered are: 

( ){ }
( ){ }

1

2

: d 1 ,

: , d 0

j j

j j j j

X u BV u x

Y u BV u X u u x

+

Ω

Ω

= ∈ Ω =

= ∈ Ω ∈ =

∑∫

∑∫




 

The associated minimization issue involves proving the existence of minimiz-
ers for the least amount of energy. 

The relevant issue of minimizing consists of determining whether or not there 
are minimizers for exponents with the lowest possible quantities of energy. 

0≥ :  

( ) ( )inf and inf .
j j

j ju X u Y
c u d u

∈ ∈
= Φ = Φ∑ ∑  

Other non-critical examples are discussed in [5], whereas some crucial cases 
have been the subject of research in [2] [3] [8] [9] [10]. [5] has been cited for its 
work. 

The reducing of Φ in the sets X and Y (with 0= ) is the fact that several 
classical functional inequalities, including the [11], have nonzero solutions (ex-
tremal functions) is another driving force, and 1L +  [11] for 0≥ . More spe-
cifically, their respective sharp versions on BV(Ω) state that 

1) Poincaré inequality ( ): 
If 1 0λ >  such that 

( )
( )

( )1 11 j j jL L
u Du uλ

Ω ∂Ω
≤ Ω +∑∑ ∑  ; 

2) Poincaré-Wirtinger inequality ( ): 
There exists an optimal constant 1 0µ >  such that  

( )( )
( )

( )
11 j j j

L
u u Duµ

Ω Ω
− ≤ Ω∑ ∑ ; 

3) Poincaré-Sobolev inequality ( ): 
Then 1 0λ + >  such that 

( )
( )

( )1 11 j j jL L
u Du uλ ++ Ω ∂Ω

≤ Ω +∑ ∑ ∑  ; 
4) Poincaré-Wirtinger-Sobolev inequality ( ): 
Then 1 0µ + >  such that 

( )( )
( )

( )
11 Ωj j j

L
u u Duµ

++
Ω

− ≤ Ω∑ ∑ , 

where ( )ju
Ω

 denotes the average of ju  over Ω, see [12] [13] [14] [15]. 
Several weaker inequalities than those listed above have been proposed to ex-

plain the presence of extremal functions for their sharp affine counterparts, and 
this serves as inspiration for our own theory of minimization for functional in 
which the term ( )jDu Ω  gives place to the Zhang’s affine energy. 

In [8], Zhang introduced the affine 1L  energy (or functional) for functions 

( )1,1 2
ju W +∈    given by 

( ) ( )( ) ( )
2 2

1

1
2 2

2 d d ,j ju u x xξα ξ+ +
+

−− + +

+
 = ∇ 
 ∫ ∑∫   



 

  

where ( ) ( )( )1 1 21
2 1 22 2α ω ω

+ +−
+ + += +


   . Here, ( ) ( )j ju x u xξ ξ∇ = ∇ ⋅∑ ∑  
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and kω  in k . The property ( ) ( )2 2j ju T u+ +=∑ ∑

     for every  
( )2T SL∈ +  , where ( )2SL +   denotes the special linear group of  

( ) ( )2 2+ × +   matrices with determinant equal to 1. 
The result of [16] ensures that the sharp Sobolev-Zhang inequality 

( ) ( ) ( ) ( )21 3 2
1 2
22 j jL

u uω ++ +
+

++ ≤
  


                  (1) 

holds for all ( )1,1 2
ju W +∈   , under invertible ( ) ( )2 2+ × +   matrices. Ac-

tually, characteristic functions are not in ( )1,1 2W +  , but rather belong to 

( )2BV +  . 
The Sobolev-Zhang inequality (II) is weaker than the classical sharp 1L  So-

bolev inequality 

( ) ( ) ( ) ( )1 3 2 1 2
1 2
22 ,j jL L

u uω + + +
+

++ ≤ ∇∑ ∑   

             (2) 

since 

( ) ( )2 1 2j j L
u u+ +≤ ∇∑ ∑                       (3) 

(see page 194 of [14]) as well as (3) being unyielding on non-spherical ellipsoid 
features. In addition, Zhang said that the Petty projection inequality (e.g. [17] 
[18]) is the underlying geometric inequality for (1), whereas the traditional iso-
perimetric inequality is the underlying geometric inequality for (2). In further 
work, Wang [19] proved that the Sobolev-Zhang inequality generalizes to func-
tions ( )2

ju BV +∈   , where the affine BV energy is naturally represented by, 
just as it does in the Sobolev case (e.g. [20]).  

( ) ( ) ( )( )( ) ( )
2 2

1

1 22

2 d d ,
jj u ju x Du xα σ ξ ξ+ +

+

− +− +

+
 = ⋅ 
 

∑ ∫ ∫ ∑   




  

where 2:
juσ

+Ω→    the Radon-Nikodym derivative of jDu , the total varia-
tion jDu  on Ω, which satisfies 1

juσ =  almost everywhere in Ω (w.r.t. 

jDu ). Moreover, equality in (1) is exactly accomplished by multiples of ellip-
soid characteristic functions, and even after being translated to (3), it retains its 
inferiority to the classical predecessor 

( ) ( )2
2 .j ju Du+
+≤∑ ∑


                    (4) 

After Zhang’s first breakthrough, a wealth of further literature was produced 
detailing several refinements and new affine functional inequalities. The majori-
ty of the contributions are available at [21]-[38]. Given a function ( )ju BV∈ Ω , 
denote by ju  its zero extension outside of Ω. The Lipschitz regularity of ∂Ω  
guarantees that ( )2

ju BV +∈   , 

( ) ( )
( )1

2
j j j L

Du Du u+

∂Ω
= Ω +∑ ∑ ∑                 (5) 

and ( ) 1 1d dj j jDu u ν + +=     -almost everywhere on ∂Ω , where jν  denotes 
the unit outward normal to ∂Ω  (see e.g. page 38 of [27]). Implies that 

( ) ( ) ( )( )(
( ) ( ) ( )) ( )

2
1

2 Ω

1 221
Ω

d

d d

jj u j

j j

u x Du x

u x x x

α σ ξ

ν ξ ξ

+
+

+

− +− +
+

∂


= ⋅

+ ⋅ 





∑ ∑ ∫∫

∫ 
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The preceding Formulas (4) and (5), and a reverse Minkowski inequality 
compare the affine BV energy of zero extended functions to local expressions: 

(C1) ( ) ( )
( )2 1j j j L

u Du u+ ∂Ω
≤ Ω +∑ ∑ ∑ 

   for all ( )ju BV∈ Ω ; 
(C2) ( ) ( )2 j ju u+ Ω=∑ ∑    for all ( )0ju BV∈ Ω ; 
(C3) ( ) ( ) ( )2 Ωj j ju u u+ ∂Ω≥ +∑ ∑ ∑ 

     for all ( )ju BV∈ Ω  with 0ju ≠  
on ∂Ω  (a.e.) or limitless potential so long as is non-flat in the sense that 

( ) 0j xν ξ⋅ ≠∑  on ∂Ω  (a.e.) for every 1ξ +∈  , where ( )0BV Ω  denotes the 
subspace of ( )BV Ω  of functions with zero trace on ∂Ω , 

( ) ( ) ( )( )( ) ( )

1

1
2 2

Ω 2 Ω
d d

jj u ju x Du xα σ ξ ξ
+

−− + +

+
 = ⋅ 
 

∑ ∑∫ ∫ 

 

  

and 

( ) ( ) ( ) ( )( ) ( )

1

1
2 21

Ω 2 Ω
d dj j ju u x x xα ν ξ ξ

+

−− + ++
∂ + ∂

 = ⋅ 
 

∑ ∑∫ ∫ 

 

 
   

(C3) is more complicated than (C1) and (C2) (Corollary 3.1). Ball domains 
satisfy the geometric requirement. They are affine invariants. 

( ) ( ) ( )j jTu T uΩ Ω=∑ ∑   and ( ) ( ) ( )j jTu T u∂Ω ∂ Ω=∑ ∑ 
   for every  

( )2T SL∈ +  . 
From (C1), the term ( )2 ju+   weakens the right-hand side of ( ) and 

( ), encouraging us to study the new functional. ( ): BVΦ Ω →  , 

( ) ( )2
1d d .j j j ju u a u x b u+
+

Ω ∂Ω
Φ = + +∑ ∑∑ ∑ ∫ ∫






    

The well-definedness of Φ  for limited weights a and b may be shown by 
invoking the trace embedding and (4). 

Consider the least energy levels of Φ  on X and Y: 

( ) ( )inf and inf .j ju X u Y
c u d u

∈ ∈
= Φ = Φ∑ ∑     

Theorem 1.1. The levels c  and d  are attained for any 0≥ . 
The next one covers critical cases. 
Theorem 1.2. The levels c  and d  are attained for any 0≥ , provided 

that ( ) 1 2
20 2c ω +
+< < + 

   and ( ) 1 2
20 2d ω +
+< < + 

  , respectively. 
As a result of its weak* closure in ( )0BV Ω ,, the logic used to prove Theorems 

1.1 and 1.2 yields equivalent assertions on the space ( )BV Ω  (Proposition 3.2). 
To be more specific, when applied to functions with zero trace in ( )BV Ω , the 
functional Φ  calculated using (C2) yields 

( ) ( ) d .j j ju u a u xΩ Ω
Φ = + ∑∑ ∑ ∫   

Denote by ,0c  and ,0d  the respective least energy levels of Φ  on the 
sets ( )0 0X X BV= Ω  and ( )0 0Y Y BV= Ω . 

Theorem 1.3. The levels ,0c  and ,0d  are attained for any 0≥ . 
Theorem 1.4. The levels ,0c  and ,0d  are attained for any 0≥ , provided 

that ( ) 1 2
,0 20 2c ω +

+< < + 
   and ( ) 1 2

,0 20 2d ω +
+< < + 

  , respectively. 
The Sobolev-Zhang inequality on ( )2BV +   yields the sharp affine variants 
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of ( ) and ( ) and also of ( ) and ( ) for 0≥ : 
1) Inequality of Poincaré affineness ( ): 
A best constant may be found. 1 0λ >  such that 

( ) ( )211 j jL
u uλ +Ω

≤∑ ∑  
  ; 

2) Inequality via the affine Poincaré-Wirtinger transform ( ): 
There exists an optimal constant 1 0µ >  such that  

( )( )
( )

( )211 j j j
L

u u uµ +Ω Ω
− ≤∑ ∑  

  ; 

3) The Poincaré-Sobolev inequality ( ): 
A best constant may be found 1 0λ + >

  such that  

( ) ( )211 j jL
u uλ +++ Ω

≤∑ ∑




  ; 

4) Affine Poincaré-Wirtinger-Sobolev inequality ( ): 
A best constant may be found 1 0µ + >

  such that  

( )( )
( )

( )211 j j j
L

u u uµ +++ Ω Ω
− ≤∑ ∑






  . 

It also deserves to be noticed that ( )2 ju+


  and ( )jDu Ω  are incompara-
ble via a one-way inequality in ( )BV Ω . In effect, since ( ) ( )2 1 0χ+ Ω ∂Ω= >

    
and ( ) 0DχΩ Ω = , there is no constant 0C >  such that ( ) ( )2 j ju C Du+ ≤ Ω



  
holds for all ( )ju BV∈ Ω . On the other hand, a reverse inequality also fails in 
view of the example of [38] in ( )0BV Ω . Accordingly, ( ) and ( ) 
seem to be natural affine counterparts of ( ) and ( ), respectively. 

Nonetheless, the term ( )juΩ  appears on the right-hand side when we re-
strict ourselves to functions in ( )0BV Ω . In this space, we denote the respective 
inequalities by ( 0 ), ( 0 ), ( 0 ) and ( 0 ). 

A direct application of Theorems 1.1 and 1.3 for 0=  is as follows:  
Theorem 1.5. The inequalities ( ) and ( ) and also ( ) and 

( ) with 0≥  admit extremal functions in ( )BV Ω . The same conclu-
sion holds true in ( )0BV Ω  for ( 0 ), ( 0 ), ( 0 ) and ( 0 ). 

Recent work has focused on finding extremal functions for local affine 1L +

-Sobolev type inequalities, and to our knowledge, this topic has only been dis-
cussed in the context of functions with zero trace in the publications [38] and 
[39]. In particular, the first one provides extremals for the affine L2-Sobolev in-
equality on ( )1,2

0W Ω ,, while the second one provides extremals for the affine 
L(1+)-Poincaré inequality on ( )1,1

0W + Ω  for any 0>  and on ( )0BV Ω  for 
0= . For example, in [38], the authors provide a different demonstration of 

Theorem 1.5 for on ( )0BV Ω  using an elegant method based on their Lemma 1 
and Theorem 9. 

In the critical case 0= , one knows from (1) that characteristic functions of 
ellipsoids in Ω are extremals of ( ), however, exist no extremal for ( 0 ). 
The usual argument of nonexistence consists in showing, by means of a standard 
rescaling, that the optimal constant corresponding to ( )0BV Ω  is also  
( ) 1 2

22 ω +
++ 
 . The key points are the strict continuity of ( )2j ju u+

   on 

( )2BV +   (Theorem 4.4 of [19]) and the density of ( )2
cBV ∞ +   in ( 2+  ) 

(Corollary 3.2 of [40]), where ( )2
cBV ∞ +   denotes the space of bounded func-

tions in ( )2BV +   with compact support. 
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We close the introduction with an application of Theorems 1.1 and 1.3 for 
0> . 

We point out that ( ), ( ), ( 0 ) and ( 0 ) are proto-
types of more general affine inequalities depending on ( )1+   and ( )1 2+  . 
Precisely, for each 0≥ , let ( )1 2

1 2 :m L +
+ Ω → 
  be the unique function that 

satisfies 

( ) ( )( )2

1 2 1 2 d 0j j j ju m u u m u x+ +Ω
− − =∑∫



   

for all ( )1 2
ju L +∈ Ω . It is important to note that 1 2m +   is continuous, 1-homo- 

geneous and bounded on bounded subsets of ( )1 2L + Ω . Of course,  

( ) ( )1 j jm u u
Ω

=  for ( )1 2 1+ = . The construction of 1 2m +   is canonical and 
makes use of basic results as the mean value theorem and dominated and mo-
notone convergence theorems. 

The properties satisfied by 1 2m +   together with (1) produce two new affine 
inequalities for 0≥  that extend ( ), ( ), ( 0 ) and ( 0 ). 

1) Generalized affine [11] inequality ( ) on ( )BV Ω : 
There exists an optimal constant 1 ,1 2 0µ + + >

   such that  

( )( )
( )

( )21 21 ,1 2 1 2j j j
L

u m u uµ +++ + +
Ω

− ≤∑ ∑  


    . 

2) Generalized affine [11] inequality ( 0 ) on ( )0BV Ω : 
There exists an optimal constant ,0

1 ,1 2 0µ + + >
   such that  

( )( )
( )1

,0
1 ,1 2 1 2j j

L
u m uµ

++ + +
Ω

−∑ 


    criteria that follow. 

2. Background on the Space BV(Ω) 

We talk about some basic definitions and old results about functions with li-
mited changes. Books [13] [20] [40] are good places to look for more informa-
tion on the subject. 

Let be a part of 2+   that is open with 0≥ . A function ( )1
ju L∈ Ω  is 

said to have bounded variation in if its distributional derivative is a Radon 
measure with a vector value. Du ( )1 2, ,j jD u D u+   in Ω, that is, i jD u  is a Ra-
don measure fulfilling 

di j j
i

D u u x
x
ϕϕ

Ω Ω

∂
= −

∂∑ ∑∫ ∫  

for every ( )0ju C∞∈ Ω . ( )BV Ω  stands for the vector space of all functions 
with bounded variation in ju  total dispersion is characterized by 

( ) ( ) ( ){ }
( ){ }

2 2
1 2 01

2
0

sup d : , , Ω, , 1

sup div d : Ω, , 1 ,

j i i ji

j

Du D u x C

u x C

ψ ψ ψ ψ ψ

ψ ψ ψ

+ ∞ +
+= Ω

∞ +

Ω

Ω = = ∈ ≤

= − ∈ ≤

∑ ∑∫
∑∫

 



 



 

where ( )1 22 2
1 2ψ ψ ψ += + +  . The variation jDu  is a positive Radon meas-

ure on Ω. Denote by 
juσ  the Radon Nikodym derivative of jDu  with respect 

to jDu . Then, 2:
juσ

+Ω→    is a measurable field satisfying 1
juσ =  al-

most everywhere in Ω (w.r.t. jDu ) and ( ) ( )d d
jj u jDu Duσ= . 

For ( )ju BV∈ Ω , the Lebesgue-Radon-Nikodym decomposition of the 
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measure jDu  is given by 

,
j

s s
j j u jDu u D uσ= ∇ +∑ ∑  

where ju∇  and s
jD u  denote respectively the (density) absolutely continuous 

part and the singular part of jDu  with respect to the ( )2+  -dimensional Le-
besgue measure   and 

j

s
uσ  is the Radon-Nikodym derivative of s

jD u  with 
respect to its total variation measure s

jD u . In particular, 

.s
j j jDu u D u= ∇ +∑ ∑ ∑  

The space ( )BV Ω  is Banach with respect to the norm 

( ) ( )
( )1 ,j j jBV L

u u Du
Ω Ω
= + Ω∑ ∑ ∑  

however, it is neither separable nor reflexive. 
The strict (intermediate) topology is induced by the metric 

( ) ( ) ( )
( )1, .j j j j j j L

d u v Du Dv u v
Ω

= Ω − Ω + −∑ ∑  

The weak* topology, the weakest of the three ones, is quite appropriate for 
dealing with minimization problems. A sequence ( )j k

u  converges weakly* to 

ju  in ( )BV Ω , if ( )j jk
u u→∑ ∑  strongly in ( )1L Ω  and  

( )j jk
D u Du→∑ ∑  weakly in the measure sense, that is, 

( )j jk
D u Duϕ ϕ

Ω Ω
→∑ ∑∫ ∫  

for every ( )0Cϕ ∞∈ Ω . 
Let’s pretend is a Lipschitz-bounded bounded open. Listed below are some of 

the most well-known characteristics that will be used later on: 
1) Every ( )BV Ω  admits a weakly* convergent subsequence; 
2) Every weakly* in ( )BV Ω  is bounded; 
3) ( )BV Ω  is embedded continuously into ( )1L + Ω  for 0≥  and com-

pactly for 0≥ ; 
4) Each function ( )ju BV∈ Ω  admits a boundary trace ju  in ( )1L ∂Ω  and 

the trace operator j ju u  is continuous on ( )BV Ω  with respect to the strict 
topology; 

5) For any function ( )ju BV∈ Ω , its zero extension ju  outside of Ω belongs 
to ( )2BV +  ; 

6) 
( )

( )
( )1j j jBV L

u Du u
Ω ∂Ω

= Ω′ +∑ ∑ ∑   defines a norm on ( )BV Ω  

equivalent to the usual norm 
( )j BV

u
Ω

; 

7) ( )1,1 2W +   is dense in ( )2BV +   with respect to the strict topology. 

3. Lower Weak* Semi Continuity of n  

For an open subset 2+Ω ⊂    and ( )ju BV∈ Ω , consider the affine BV energy 

( ) ( ) ( )( )( ) ( )

1

1 22

2 d d .
jj u ju x Du xα σ ξ ξ

+

− +− +

Ω + Ω

 = ⋅ 
 

∑∫ ∫ 
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We start by giving an answer to the question: 
When is the affine energy ( )juΩ  zero? 
For each 1ξ +∈  , denote by ξΨ  the functional on ( )BV Ω , 

( ) ( ) ( )( )d .
jj u ju x Du xξ σ ξ

Ω
Ψ = ⋅∑∫  

Theorem 3.1. (See [14]) Let ( )ju BV∈ Ω . Then, ( ) 0juΩ =∑  if, and only 
if, ( ) 0juξΨ =∑ 

 for some ( )2 1ξ + −∈   . 
Proof. The sufficiency is the easy part. In fact, assume that ( ) 0juξΨ >∑  for 

all 1ξ +∈  . Thanks to the continuity of ( )1
juξξ +∈ Ψ  , there exists a 

constant 0c >  so that ( )ju cξΨ ≥∑  for all 1ξ +∈  . But this lower bound 
immediately yields ( ) ( )( ) 1 2

2 22 0ju cα ω
− +

Ω + +≥ + >∑


   . 
Conversely, we prove that ( ) 0juΩ =∑  whenever ( ) 0juξΨ =∑ 

 for 
some 1ξ +∈   . Let m∈  be the maximum number of linearly independent 
vectors 1ξ +∈   such that ( ) 0juξΨ =∑ . If ( )2m = +  , then clearly 

0jDu =∑  in Ω and thus, by (4), we have ( ) 0juΩ =∑ . Else, choose an or-
thonormal basis { }1 2, ,ξ ξ +   of 2+   so that ( ) 0

i juξΨ =∑  for  
( )2 1, , 2i m= + − + +  , which correspond to the last m vectors of basis with 

( )0 2m< < +  . 
For x∈Ω  and 1ξ +∈  , write 

( ) ( ) ( )1 1 2 2 1 1 2 2and .
ju x x x a aσ σ ξ σ ξ ξ ξ ξ+ + + += + + = + +      

The condition ( ) 0
i juξΨ =∑  implies that ( ) 0i xσ =  for  

( ) ( )2 1, , 2i m= + − + +  . So, the Cauchy-Schwarz inequality gives 

( ) ( ) ( ) ( ) ( ) ( )( )1 22 2
1 1 12 2 2 .

ju m m mx x a x a a aσ ξ σ σ + − + − + −⋅ = + + ≤ + +     

Set ( ) ( )( )1 2, , ma a aξ + −=    and ( ) ( )( )22 1, ,ma a aξ ++ − +′ =   . Since  
( )0 2m< < +  , we get 

( ) ( )( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

1

1

2

22

22

3 2

22
1 3 2

3 22 1
2 01

d d

d

d

d
2

2 d
2

,

ju j

j

j a

m
jm a

mm
jm m

x Du x

Du a

Du a

m
Du a a

m
m Du

ξ

ξ

σ ξ ξ

ξ ξ

ξ ξ

ω
ξ ξ

ω
ω ρ ρ

+

+

− +

Ω

− +− +

− +− +

≤

− +− +

− ≤

− + − −
+ − −

⋅

≥ Ω

≥ Ω

≥ Ω

= + − Ω

= ∞

∑∫ ∫

∑ ∫
∑ ∫

∑

∫

∫

∑




















 

and hence ( ) 0juΩ =∑ . 
An interesting application of Theorem 3.1 of independent interest, is (see 

[14]) 
Corollary 3.1. Let 2+Ω ⊂    be a bounded open with Lipschitz boundary. 

Then, 

( ) ( ) ( )2 Ωj j ju u u+ ∂Ω≥ +∑ ∑ ∑ 
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for all ( )ju BV∈ Ω  with 0ju ≠  on ∂Ω  (a.e.) or without any restriction in 
case ∂Ω  is non-flat, where the definitions of ( )ju∂Ω∑   and non-flat boun-
dary were given in the comparison (C3) of the introduction.  

Proof. Firstly, the identity 

( ) ( ) ( )( )(
( ) ( ) ( )) ( )

2
1

2

1 221

d

d d

jj u j

j j

u x Du x

u x x x

α σ ξ

ν ξ ξ

+
+

+ Ω

− +− +
+

∂Ω

= ⋅


+ ⋅ 


∑ ∑∫ ∫

∑∫ 

 











 

gives ( ) ( )2 j j ju u v+ Ω≥∑ ∑

    and ( ) ( )2 j ju u+ ∂Ω≥∑ ∑ 

   . Therefore, if 

( ) 0juΩ =∑  or ( ) 0ju∂Ω =∑  , the conclusion follows. 
Assume that ( )juΩ  and ( )ju∂Ω   are nonzero. Set ( ) ( )j jg uξξ = Ψ∑ ∑  

and ( ) ( )j jg uξξ = Ψ∑ ∑ 

 , where 

( ) ( ) ( ) ( )1d .j j ju u x x xξ ν ξ +

∂Ω
Ψ = ⋅∑∑ ∫



  

By Theorem 3.1 we have ( ) 0jg ξ >  for all 1ξ +∈  . If ( ) 0ju∂Ω ≠  and the 
assuming the statement imply that ( ) 0jg ξ >  for all 1ξ +∈  . Then, we get 

( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )

2
1

1

1
2 2

2

11
2 2 22

2 21

d

d d

j j j

j j

j j

u g g

g g

u u

α ξ ξ ξ

α ξ ξ α ξ ξ

+
+

+

−− + +
+

−−− + − + ++
+ ++

Ω ∂Ω

= +

≥ +

= +

∑∫

∑ ∑∫ ∫
∑ ∑







 








 


  
 



 

 

The next step is to prove that of 2+   on ( )1 2
locL +   is weak* continuous 

below uniform bounds on the total variation. Outside of Theorem 3.1, the proof 
relies on pivotal conclusions by Goffman and Serrin (Theorems 2 and 3 of [39]). 
For different enhancements and expansions of [41], we also refer to [42] and 
[43], as well as references therein.  

Let 2:jf + →   be a nonnegative convex function with linear growth, that 
is, ( ) ( )1jf w M w≤ +  for all 2w +∈  , where 0M >  is a constant. Define 
the recession function ( ) 2:jf +

∞
→   associated to jf  by 

( ) ( ) ( )
limsup .j

j
t

f tw
f w

t∞ →∞
= ∑  

For ( )2
ju BV +∈   , write 

j

s s
j j u jDu u D uσ= ∇ +∑ ∑  and let  

( )2: BV +Ψ →   defined by 

( ) ( )( ) ( ) ( )( ) ( )( )2 2d d .
j

s s
j j j j u ju f u x x f x D u xσ+ + ∞

Ψ = ∇ +∑ ∑∫ ∫    

Proposition 3.1  
The functional Ψ is strongly lower semicontinuous on ( )1 2

locL +  . 
Theorem 3.2. (See [14]) If ( ) ( )0j jk

u u→  strongly in ( )1 2
locL +   and  

( ) ( )2
j k

D u +   is bounded, then 

( )( ) ( )( )2 20
liminf .j j kk

u u+ +
→∞

≤∑ ∑     
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Proof. Let ( )j k
u  be a sequence converging strongly to ( )0ju  in ( )1 2

locL +   

such that ( ) ( )2
j k

D u +   is bounded. If ( )( )0
0juξΨ =∑ 

 for some 1ξ +∈   ,  

by Theorem 3.1, we have ( )( )2 0
0ju+ =∑    and the conclusion follows tri-

vially. 
It then suffices to assume that ( )( )0

0juξΨ >∑  for all 1ξ +∈  . Set  
( )jf w wξ ξ= ⋅  for any 1ξ +∈  . Since jf ξ  is convex, nonnegative, 1-homo- 

geneous and ( )j jf f
ξ ξ

∞
=∑ ∑ , we have 

( ) ( ) ( )( )

( )
( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

2

2 2

2 2

d

( )
d ( ) d

d d .

j

j

j

j u j

j s s
j j j u j

j

s s
j j j u j

u x Du x

u x
f u x x f x D u x

u x

f u x x f x D u x

ξ

ξ ξ

ξξ

σ ξ

σ

σ

+

+ +

+ + ∞

Ψ = ⋅

 ∇
 = ∇ +
 ∇ 

= ∇ +

∑∫

∑ ∑∫ ∫

∑ ∑∫ ∫



 

 



 

 

 

Hence, by Proposition 3.1 ξΨ  is strongly lower semicontinuous on ( )1 2
locL +  , 

and so 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

2
0

2

0
d

liminf d .

j

j k

ju

ju kk

x D u x

x D u x

σ ξ

σ ξ

+

+
→∞

⋅

≤ ⋅

∑∫

∑∫









             (6) 

We now ensure the existence of a constant 0 0c >  and an integer 0k ∈ , 
both independent of 1ξ +∈  , such that, for any 0k k≥ , 

( ) ( ) ( )( )( )2 0d .
j k

ju k
x D u x cσ ξ+ ⋅ ≥∑∫                 (7) 

Otherwise, module a renaming of indexes, we get a sequence 1
kξ

+∈   such 
that kξ ξ→   and 

( ) ( ) ( )( )( )2

1d .
j k

k ju k
x D u x

k
σ ξ+ ⋅ ≤∑∫   

Using the assumption that ( ) ( )2
j k

D u +   is bounded, we find a constant 
0≥  such that 

( ) ( ) ( )( )( )2 1
1d 0.

j k
j ku k

x D u x C
k

σ ξ ξ ξ+ ⋅ ≤ − + →∑∫  

   

Then, by (6), we get ( )( )0
0juξΨ =∑ 

. 
Finally, combining (6), (7) and Fatou’s lemma, we derive 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )
( )

( ) ( ) ( )( )( )
( )

1 2
0

1 2

1 2

2

0

2

2

d d

limsup d d

limsu ,p d d

j

j k

j k

ju

ju kk

ju kk

x D u x

x D u x

x D u x

σ ξ ξ

σ ξ ξ

σ ξ ξ

+ +

+ +

+ +

− +

− +

→∞

− +

→∞

 ⋅ 
 

 ≥ ⋅ 
 

 ≥ ⋅ 
 

∑∫ ∫

∑∫

∫∑

∫

∫

 

 

 

 

 

 







 

and thus 
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( )( ) ( ) ( ) ( )( )( )
( )

( ) ( ) ( )( )( )
( )

( )( )

2 1 2
0

1 2

2

1
2 2

0 0

1
2 2

d d

liminf d d

liminf .

j

j k

j ju

ju kk

j kk

u x D u x

x D u x

u

σ ξ ξ

σ ξ ξ

+ + +

+ +

+

−− + +

−− + +

→∞

→∞

  = ⋅     

  ≤ ⋅     

=

∑ ∑∫ ∫

∑ ∫ ∫

∑

  

 



  

 



 

 





 

As an immediate consequence of Theorem 3.2 we have: 
Corollary 3.2. If ( ) ( )0j jk

u u→∑ ∑  weakly* in ( )BV Ω , then 

( )( ) ( )( )2 20
liminf .j j kk

u u+ +
→∞

≤∑ ∑     

This result is the key point towards the lower weak* semicontinuity of the 
functional ( ): BVΦ Ω →  . We recall that 

( ) ( )2
1d d ,j j j ju u a u x b u+
+

Ω ∂Ω
Φ = + +∑ ∑∑ ∫ ∫ 

 


    

where ( )a L∞∈ Ω  and ( ) 0b L∞∈ ∂Ω ≥ . Since the integral functional on Ω is 
clearly weakly* continuous on ( )BV Ω , it only remains to discuss the semicon-
tinuity of the boundary integral term.  

Proposition 3.2. (See [44]) If ( ) ( )0j jk
u u→∑ ∑  weakly* in ( )BV Ω , then 

( ) ( )1 1
0

d liminf d .j j kk
b u b u+ +

∂Ω ∂Ω→∞
≤∑ ∑∫ ∫ 

    

Proof. Let ( )j k
u  be a sequence converging weakly* to ( )0ju  in ( )BV Ω . 

For each 0ε > , we consider the norm 
ε

⋅  on ( )BV Ω  

( ) ( ) 1d .j j ju Du b u
ε

ε ε +

∂Ω
= Ω + +∑∑ ∫ 

  

Since 0≥ , 
ε

⋅  is equivalent to ( )BV Ω
⋅  and ( )BV Ω

′⋅ , and so 

( ) ( )0
liminf .j j kk

u u
ε ε→∞
≤ ∑                     (8) 

Take a constant 0≥  so that ( )
( )j k BV

u C
Ω

′ ≤  and a subsequence ( )
j

j k
u  

such that 

( ) ( )1 1lim d liminf d .
j

j jk kj k
b u b u+ +

∂Ω ∂Ω→∞ →∞
=∑ ∑∫ ∫ 

    

By (8), for j large, we get 

( ) ( ) ( ) ( )

( )

1
0 0

1

d

d .
j

j j

j k

D u b u

C b u

ε ε ε

ε

+

∂Ω

+

∂Ω

Ω + + −

≤ +

∑∑ ∫

∑∫












 

Letting j →∞  and after 0ε → , the statement follows as wished. 
Finally, Corollary 3.2 and Proposition 3.2 lead to 
Corollary 3.3. The functional Φ  is lower weakly* semicontinuous on ( )BV Ω . 

4. Subcritical Minimizations with Constraints on BV(Ω) 

Theorems 1.1 and 1.3 are proved. Corollary 3.3 and the Rellich Kondrachov 
compactness theorem are key: 
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Theorem 4.1. The affine ball ( )B Ω  is compact in ( )1L + Ω  for any 0≥ . 
Proof requires two preliminary outcomes. First, weak* convergence of dis-

placements of limited sequences in ( )2BV +   and strong convergence in 

( )1 2L + +  . In other spaces, embedding co-compactness has been extensively 
investigated [45] [46] [47]. This proves the completeness. 

Proposition 4.1. (See [14]) Let ( )j k
u  be a bounded sequence in ( )2BV +  . 

Then, ( ) ( )( ) 0j jk k
u y⋅ − →∑  locally weakly* in ( )2BV +   for any sequence 

( )j k
y  in 2+   if, and only if, ( ) 0j k

u →  strongly in ( )1 2L + +   for any 
0> . 

Proof. Assume first that ( ) 0j k
u →∑  strongly in ( )1 2L + +   for some 

0> . If ( ) ( ) ( )( )j j jk k k
v u y= ⋅−∑ ∑  doesn’t converge locally weakly* to zero  

in ( )2BV +   for some sequence ( )j k
y  in 2+  , then there is a bounded 

open subset Ω of 2+   and 0>  such that, module a subsequence,  

( )
( )1j k L

v ε
Ω
≥∑  or ( ) ( )d j k

v ϕ ε≥∑  for some ( )0Cϕ ∞∈ Ω , where  

( )d dj jv vϕ ϕ
Ω

= ∑∫ . Since ( )j k
v  is bounded in ( )2BV +  , one may assume 

that ( )j jk
v v→∑ ∑  weakly* in ( )BV Ω . Thus, letting k →∞  in the two 

cases, one gets 
( )1j L

v ε
Ω
≥∑  or ( )d jv ϕ ε≥ . On the other hand, one knows 

that ( ) 0j k
v →∑  strongly in ( )1 2L + +   and ( )j jk

v v→∑ ∑  strongly in 
( )1L Ω , so 0jv =∑  in Ω. But this contradicts the last two inequalities. 
Conversely, assume that ( ) ( )( ) 0j jk k

u y⋅ − →∑  locally weakly* in ( )2BV +   
for any sequence ( )j k

y  in 2+  . Choose a fixed 0>  and consider the 
( )2+  -cube ( )20,1Q +=  . Using the continuity of the Sobolev immersion 

( )BV Q  ↪ ( )1L Q+ , we deduce that 

( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

1 1

1 1

1 1

d d

d

d
j

j j jQ y Qk k

j j j jQk kBV Q

j j jQk kBV Q y

u x u x y x

C u y u x y x

C u u x y x

+ +

+

+ +

+ +

+

= −

 ≤ ⋅− − 
 

 = − 
 

∑ ∑∫ ∫

∑ ∫

∑ ∫

 


 


 

 

for every 2
jy +∈  , where C is a constant independent of jy . 

By adding the inequality over 2
jy +∈  , we obtain 

( ) ( ) ( ) ( ) ( )2 2 2

1 1 1
d sup d .

j

j j j jQk k kBV y
u x C u u x y x+ + +

+ + +

∈

 ≤ − 
 ∑ ∑∫ ∫  

  


  

 (9) 

Right-hand side of (9) is finite. ( )2BV +  , bounds u k, hence it also bounds 

( )1 2L +   and in ( )1 2L + +   by Sobolev inequality. Then, 0>  and a simple 
interpolation. 

Choose ( ) 2
j k

y +∈   so that 

( ) ( )( ) ( ) ( )
2

1 11 11d sup d .
2 j

j j j jQ Qk k k
y

u x y x u x y x
+

+ ++ +

∈

   − ≥ −     
∑ ∑∫ ∫
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Hence, (9) gives 

( ) ( ) ( )( )2

11 1

1d 2 dj j jQk k k
u x C u x y x+

++ + ≤ − 
 

∑ ∑∫ ∫ 


 

       (10) 

for some constant 1C  independent of k. 
However, the rigorous condition 0>  lets us apply the Rellich-Kondrachov 

compactness theorem to the embedding ( )BV Q  ↪ ( )1L Q+  In order to make 
a rough calculation of the right side of (10). In fact, module a subsequence, we 
have ( ) ( ) ( )( )j j j jk k k

v u y v= ⋅− →∑ ∑ ∑  strongly in ( )1L Q+ . But, by as-
sumption, ( ) 0j k

v →∑  locally weakly* in ( )2BV +  , and so ( ) 0j k
v →  

strongly in ( )1L Q . Therefore, 0jv =∑  in Q and, since 0= , we deduce 
from (10) that ( ) 0j k

u →  strongly in ( )1 2L + +  . 
As noted, exist no upper bound for ( )2

jDu +   in terms of 2 ju+   on 

( )2BV +  .  
However, Huang and Li (Theorem 1.2 of [48]) established that such an esti-

mate holds true for functions ( )1,1 2
ju W +∈    unless an acceptable affine 

transformation T depends on ju . Wang’s [49] tools allow the finding to apply 
to ( )2BV +  . 

Proposition 4.2 (Huang-Li Theorem). For any ( )2
ju BV +∈   , one has 

( )
( ) ( ) 2

2
0 2

min ,j jT SL
d D u T u+

+

∈ +
≤∑ ∑


 




  

where ( )
1 11 21 20

3 44 3
2 2

d
 − − + − +

+ +   = πΓ Γ + Γ   
   




 
 . 

Proof of Theorem 4.1. (See [44]) Let ( )j k
u  be a sequence in ( )B Ω . By 

Proposition 4.2 there is a matrix ( )2kT SL∈ +   such that  

( )( ) ( ) ( )2
2

0 j k jk k
d D u T u+

+ ≤∑ ∑


 

  . Note also that  

( ) ( ) ( )
( )1 2 1j k jk kL L

u T u
+ Ω

=∑ ∑

 
, so ( ) ( )j j kk k

v u T=∑ ∑   is bounded in 

( )2BV +  . We now analyze two possibilities. 

Assume first that kT →∞ . Let ( )j k
y  be an arbitrary sequence in 2+  . 

The boundedness of ( ) ( )( )j jk k
v y⋅ −∑  in ( )2BV +   implies, module a sub-

sequence, that ( ) ( )( )j j jk k
v y v⋅ − →∑ ∑  locally weakly* in ( )2BV +  . Since 

21
1
+

+ <
+





, the Rellich Kondrachov compactness theorem also gives  

( ) ( )( )j j jk k
v y v⋅ − →∑ ∑  strongly in ( )1 2

locL + +   and  

( ) ( )( ) ( )j j jk k
vv x y x− →∑ ∑  almost everywhere in 2+  , up to a subse-

quence. Consider the set 

( )( )( ) ( )( )( )1 1

1
liminf .k k j k k jk k

m k m
X T T y T T y− −

≥ ≥

= Ω + = Ω+∑ ∑   

Since kT →∞  and Ω is bounded, X has zero Lebesgue measure (e.g. page 7 
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of [46]). For x X∉ , we have ( )( )( )1
k k jk m k

x T T y−
≥

∉ Ω+


 for any 1m ≥ , 
which yields ( )( )k j k

T x y− ∉Ω  for every k, up to a subsequence. Thus,  
( ) ( ) ( )( ) ( ) ( )( )( )lim lim 0j k j j k j k jk k k k

v x v x y u T x y→∞ →∞= − = − =∑ ∑ ∑  and 
hence ( ) ( )( ) 0j jk k

v y⋅ − →∑  locally weakly in ( )2BV +   for any sequence 

( )j k
y  in 2+  . By Proposition 4.1, ( ) 0j k

u →∑  strongly in ( )1 2L + +   and 
so ( ) 0j k

u →  strongly in ( )1L + Ω . 
If kT ∞ , then one may assume that kT  converges to some ( )2T SL∈ +  . 

Choose 0R >  large enough so that ( )1
RT B− Ω ⊂  and ( )1

k RT B− Ω ⊂  for 
every k. Module a subsequence, we know that ( ) ( )0j jk

v v→∑ ∑  weakly* in 
( )RBV B  and ( ) ( )0j jk

v v→  strongly in ( )1
RL B+ . 

Set ( ) ( ) 1
0 0j ju v T −=∑ ∑   in Ω. Notice that ( )0u BV∈ Ω  once  

( )1
RT B− Ω ⊂ . Let ( ) ( )2

0ju BV +∈    be the extension of ( )0ju  by zero out-
side of Ω. Since 1

kT T −
  converges to the identity I, by the generalized domi-

nated convergence theorem, it follows that ( ) ( )
( )1

1
0 0

0j k j L
u T T u

+

−

Ω
− →∑  


. 

Consequently, since ( )1
k RT B− Ω ⊂ , we have 

( ) ( )( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1

1 1

1 1

0

1 1 1
0 0 0

1
0 0 0

0.
R

j jk L

j k j k j k jk L L

j j j k jk L B L

u u

v T v T u T T u

v v u T T u

+

+ +

+ +

Ω

− − −

Ω Ω

−

Ω

−

≤ − + −

≤ − + − →

∑

∑ ∑

∑ ∑

   

 



 

 

 

A fact that follows from the proof and deserves to be highlighted is 
Corollary 4.1. Let ( )j k

u  be a sequence in ( )B Ω  such that  

( ) ( )0j jk
u u→∑ ∑  strongly in ( )1L + Ω  for some 0≥ . If ( )0

0ju ≠∑ , 
then ( )j k

u  is bounded in ( )BV Ω . 
Proof of Theorem 1.1. (See [13]) Let ( )j k

u , Φ  in X. By Hölder’s inequali-
ty, ( )j k

u  is bounded in ( )1L Ω , 0b ≥  on ∂Ω , the affine energy ( )2 j k
u+   

is also bounded. Therefore, by Theorem 4.1 there exists ( ) ( )
0ju BV∈ Ω  such 

that ( ) ( )0j jk
u u→∑ ∑  strongly in ( )1L + Ω . Therefore, ( )0ju X∈  and, by 

Corollary 4.1, ( )j k
u  is bounded in ( )BV Ω . 

Passing to a subsequence, if necessary, one may assume that ( ) ( )0j jk
u u→∑ ∑  

weakly* in ( )BV Ω . Then, by Corollary 3.3 we derive 

( )( ) ( )( )0
liminf ,j j kk

u u c
→∞

Φ ≤ Φ =∑ ∑    

and thus ( )0ju  minimizes Φ  in X. 
The same argument also works for a minimizing sequence ( )j k

u  of Φ  in 
Y. So, ( ) ( )0j jk

u u→∑ ∑  weakly* in ( )BV Ω  and ( ) ( )0j jk
u u→∑ ∑  

strongly in ( )1L + Ω , module a subsequence, and thus ( )0ju X∈  and 

( )( ) ( )( )0
liminf .j j kk

u u d
→∞

Φ ≤ Φ =∑     

It remains to check that 0u Y∈ , which it follows readily from Theorem 4.1 
applied to ( )1 2L + Ω  for 0≥ . 

Proof of Theorem 1.3. (See [14]) Applying Proposition 3.2 with 1b = , we 
conclude that the space ( )0BV Ω  is weakly* closed in ( )BV Ω . Then, the limi-
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tation of Φ  to ( )0BV Ω  may be shown as before. 

5. Critical Minimizations under Constraints on BV(Ω) 

Consider the truncation for 0h > : 

( ) ( )( ) ( ) ( )min max , , and .h h hT s s h h R s s T s= − = −  

Proposition 2.3 of [2] ensures that  

( ) ( ) ( )2 2 2
j h j h jDu DT u DR u+ + += +∑ ∑ ∑      for every ( )2

ju BV +∈   .  
Proposition 5.1. (See [14]) For any ( )2

ju BV +∈   , 

( ) ( ) ( )2 2 2 .j h j h ju T u R u+ + +≥ +∑ ∑ ∑        

Proof. We first prove the inequality for functions ( )1,1 2
ju W +∈   . From the 

definition of ( )hT s , we have ( )1,1 2,h j h jT u R u W +∈    and  

( ) ( )( )j h j h ju T u R uξ ξ ξΨ = Ψ + Ψ∑ ∑ ∑  for all 2 1ξ + −∈  , where 

( ) ( )2 d .j ju u x xξ ξ+Ψ = ∇∑∫   

Note that this decomposition implies ( ) ( )2 2j h ju T u+ +≥∑ ∑     and  

( ) ( )2 2j h ju R u+ +≥∑ ∑    . Thus, the statement follows if ( )2 0h jT u+ =∑    
or ( )2 0h jR u+ =∑   . 

Assuming that ( )2 h jT u+   and ( )2 h jR u+   are nonzero, by Theorem 3.1, 
we have ( ) ( ), 0h j h jT u R uξ ξΨ Ψ >∑ ∑  for all 1ξ +∈  . So, by the Minkows-
ki’s inequality for negative exponents, we get 

( ) ( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )

2
1

1

1

2 2

1
2 2

2

1
2 2

2

1
2 2

2

d

d

d

.

j h j h j

h j

h j

h j h j

u T u R u

T u

R u

T u R u

ξ ξ

ξ

ξ

α ξ

α ξ

α ξ

+
+

+

+

+ +

−− + +

+

−− + +

+

−− + +

+

 = Ψ +Ψ 
 

 ≥ Ψ 
 

 + Ψ 
 

= +

∑ ∑∫

∑∫

∑∫

∑ ∑

 





 








 

 


 


 




 

 

Finally, the inequality extends to ( )2BV +   by using both the density of 

( )1,1 2W +   in ( )2BV +   and the continuity of ( ) ( )2
2

j ju BV u+
+∈ 


 

   
with respect to the strict topology. 

Proof of Theorems 1.2 and 1.4. (See [14]) Thanks to the weak* closure of 
( )0BV Ω  in ( )BV Ω , it is enough to just prove Theorem 1.2. 

Let ( )j k
u  be a minimizing sequence of Φ  in X. Proceeding as in the proof 

of Theorem 1.1 by Theorem 4.1, have ( ) ( )0j jk
u u→∑ ∑  strongly in ( )1L Ω , 

module a subsequence. One may also assume that ( ) ( )0j jk
u u→∑ ∑  almost  

everywhere in Ω and ( ) ( )0h j h jk
T u T u→∑ ∑  weakly in ( )

2
1L
+
+ Ω

 . 

Using the Sobolev-Zhang inequality on ( )2BV +  , 

( ) ( )22

1
2 2

1 2 1
22 d ,j ju x uω ++

+
+ +

+ +
+

 
+ ≤ 

 
∑ ∑∫ 
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and that b is nonnegative, we derive 

( )( ) ( ) ( )( )
( ) ( )

2
1

Ω

1 2
2 0

lim d d

2 d ,

j j jk k kk

j

c u a u x b u

a u xω

+
+

Ω ∂→∞

+
+ Ω

= + +

≥ + +

∑ ∫ ∫

∑∫



 







 


 

so the condition ( ) 1 2
22c ω +
+< + 

   implies that ( )0
0ju ≠∑ . Hence, by Corol-

laries 3.3 and 4.1 we have ( ) ( )0j jk
u u→∑ ∑  weakly* in ( )BV Ω  and  

( )( )0ju cΦ ≤∑   . It only remains to show that ( )0ju X∈ . 
By Proposition 5.1, we easily deduce that 

( )( ) ( )( ) ( )( )( )
( )

( )
( )

( )
2 2
1 1

lim lim

lim .

j h j h jk k kk k

h j h jk kk L L

c u T u R u

c T u R u+ +
+ +

→∞ →∞

→∞ Ω Ω

= Φ ≥ Φ +Φ

 ≥ + 
 

∑ ∑

∑  
 

   



 

Applying Lemma 3.1 of [2], we have 

( ) ( ) ( )
1

2 21
1

2 2 20 0 0
1 1 1

1 .h j h j jc c T u R u u

+
+ ++
+

+ + +
+ + +

 
  ≥ + + −   
   

∑


 


    
  

 

Using the condition 0c >  and letting h →∞ , one obtains 

( ) ( )
1 1

2 2 21
1
2 20 0
1 1

1 1 ,j ju u

+ +
+ + ++
+
+ +
+ +

   
≥ + −        
∑

 
  


 

  

and thus ( )0ju X∈  because ( )0
0ju ≠∑ . 

The sequence ( )j k
u  of Φ  is taken in Y, then ( ) ( )0j jk

u u→∑ ∑  almost 
everywhere in Ω, ( )0ju X∈  and ( )( )0ju dΦ ≤∑   . On the other hand, the 
first two properties along with Brezis-Lieb Lemma imply that ( ) ( )0j jk

u u→∑ ∑   

strongly in ( )
2
1L
+
+ Ω

 . Finally, since 0≥ , it follows that ( )0ju Y∈ . 

6. Conclusion 

We establish the existence of minimizers for a class of restricted variational 
problems on ( )BV Ω  using the affine energy first presented by Zhang in [16], 
both for subcritical and critical limitations. Functionals that are related to this 
one have non-coercive geometry, and further in the weak* topology you’ll find 
features like lower semicontinuity and affine compactness. Our work also proves 
the existence of extremal functions for certain classes of affine Poincaré-Sobolev 
inequalities.  
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