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Abstract 
In this paper, we study the following Schrödinger-Kirchhoff equation 

( ) ( ) ( ) ( )2

2 1 2d , ,a b u x u V x u f u u H− + ∇ ∆ + = ∈∫   where ( ) 0V x ≥  and 

vanishes on an open set of 2  and f has critical exponential growth. By us-
ing a version of Trudinger-Moser inequality and variational methods, we ob-
tain the existence of ground state solutions for this problem. 
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1. Introduction 

In this paper, we study the existence of ground state solutions for the following 
Schrödinger-Kirchhoff equation:  

( ) ( ) ( ) ( )2

2 1 2d , ,a b u x u V x u f u u H− + ∇ ∆ + = ∈∫           (1.1) 

where , 0a b >  and the potential ( ) 0V x ≥  satisfying:  
(V1) ( ) 0V x =  at ( )0Bδ  and ( ) 0V x C≥  in ( )2

2\ 0B δ  for some  

0 , 0C δ > . 
(V2) There holds true;  

( ) ( )
2

sup lim 0,
xx

V x V x γ
→∞∈

= = >


                  (1.2) 

and the nonlinear term ( )f t  is a continuous function on  . Moreover, we 
impose the following conditions on the nonlinearity ( )f t ;  

(f0) ( ) 0f t =  for all 0t ≤ ; 
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(f1) critical exponential growth; there exists 0 0α >  such that  

( )
2

0

0

0 for ,
lim

for ;e tt

f t a a
a aα→+∞

>
= +∞ <

                (1.3) 

(f2) there exists 4µ >  such that  

( ) ( ) ( ) { }
0

0 d \ 0 .
t

F t f s s tf t tµ µ< = ≤ ∀ ∈∫            (1.4) 

(f3) there exist 0 0t >  and 0 0M >  such that ( ) ( )0F t M f t≤  for any 

0t t≥ ; 
(f4) ( ) ( )f t o t=  and ( )0 0f = ; 

(f5) ( ) ( )1f t C∈   and 
( )
3

f t
t

 is increasing.  

Without losing generality, we suppose that 1a b= = . So we may rewrite 
problem (1.1) in the following form: 

( ) ( ) ( ) ( )3

2 1 31 d , .u x u V x u f u u H− + ∇ ∆ + = ∈∫          (1.5) 

Remark 1.1 The condition (f2) implies that ( ) ( )2F t o t=  as 0t → . Indeed, 
the condition (f2) implies that  

( )
0,

F t
tµ

′ 
> 

 
                        (1.6) 

from which we can promptly obtain ( ) ( )2F t o t=  as 0t → . From the condi-
tion (f1), (f2) and (f4), we can get the following growth condition for ( )f t ; for 
any 0ε >  and 0 0β α> , there exists Cε  such that  

( ) ( )2
0e 1 , .tf t t C t tβµ

εε≤ + − ∀ ∈               (1.7) 

From the condition (f5), we can also easily check that the function ( ) ( )4f t t F t−  
is increasing.  

The corresponding Dirichlet problem for (1.1) on a smooth domain 2Ω ⊂  ,  

( ) ( )2 d , ,

0 ,

a b u x u f x u x

u x
Ω

− + ∇ ∆ = ∈Ω

 = ∈∂Ω

∫            (1.8) 

is related to the stationary analogue of the Kirchhoff equation  

( ) ( )2 d , ,ttu a b u x u f x u
Ω

− + ∇ ∆ =∫               (1.9) 

which was first proposed by Kirchhoff [1] as an extension of the classical 
D’Alembert’s wave equation for free vibrations of elastic strings. Problem (1.9) 
has attracted considerable attention after Lions [2] introduced an abstract 
framework to the problem. 

The above problem is nonlocal as the appearance of the term 2 du x
Ω
∇∫  im-

plies that (1.5) is not a pointwise identity. This phenomenon provokes some 
mathematical difficulties, which make the study of such class of problems par-
ticularly interesting. For more details on the physical and mathematical back-
ground of this problem to [2] [3] [4] [5]. 
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Since we will work with critical exponential growth, we need to review the 
Trudinger-Moser inequality. For one thing, let Ω  denote a smooth bounded 
domain in ( )2N N ≥ . N. Trudinger [6] proved that there exists 0α >  such 
that ( )1,

0
NW Ω  is embedded in the Orlicz space ( )L

αϕ
Ω  determined by the  

Young function 1e
N

Ntα
αϕ

−= . It was sharpened by J. Moser [7] who found the 

best exponent 
1

1
1

n
n nnα ω −

−= , where 1nω −  is the surface measure of the unit  

sphere in N . For another, the Trudinger-Moser inequality was extended for 
unbounded domains by D. M. Cao [8] in 2  and for any dimension 2N ≤  
by J. M. do Ó [9]. Moreover, J. M. do Ó et al. [10] established a sharp Concen-
tration-compactness principle associated with the singular Trudinger-Moser in-
equality in N . 

Many significant research results about (1.1) have been obtained. For example, 
in [11], X. Wu studied the nontrivial solutions and high energy solutions of 
problem (1.1) if ( )V x  has a positive constant lower bound and the nonlineari-
ties term with 4-superlinear growth at infinity. In [12], the authors studied the 
following Schrödinger-Kirchhoff type equation  

( )( ) ( )( ) ( ) ( )2

2 2 2d inM u V x u x u V x u A x f u∇ + −∆ + =∫      (1.10) 

where M is a Kirchoff-type function and ( ) 0V x V≥  is a continuous function, A 
is locally bounded and the function f has critical exponential growth. Applying 
variational methods beside a new Trudinger-Moser type inequality, they get the 
of ground state solution. Moreover, in the the local case 1M ≡ , they also get 
some relevant results. We emphasize that in these papers, the potential ( )V x  
have a positive constant lower bound. Some studies of the Kirchhoff equation 
with critical exponential growth may refer [13] [14] [15] [16]. 

In [17], the author establishes a class of Trudinger-Moser inequality and 
proves the existence of the ground state solution to a class of Schrödinger equa-
tion with critical exponential growth. In addition, a class of quasilinear n-Laplace 
Schrödinger equations with degenerate potentials and of exponential growth is 
also studied. But to the best of our knowledge, the Schrödinger-Kirchhof equa-
tion that satisfies condition (V1), (V2) doesn’t seem to have been studied. Dif-
ferent from the first two results, the appearance of the term 2

2 du x∇∫ , Some 
proof methods in the original text are invalid, so we have to find other methods, 
for the details see Lemmas 3.2 and 3.9. 

Motivated by [17], we can prove the existence of the ground state solution to 
problem (1.5) as in [17]. In order to get the result we want, we use a version of 
Trudinger-Moser inequality.  

Lemma 1.2. (Trudinger-Morse inequality [17]) Assume that the potential 
( ) 0V x ≥  satisfies that ( ) 0V x =  at the ball ( )0Bδ  centered at the origin 

with the radius δ  and ( ) 0V x C≥  in ( )2
2\ 0B δ  for some 0δ > . Then  

( ) ( )
( )2

2
21 2 22

4

, d 1

sup e 1 d .u

u H u V x u x

x
∈ ∇ + ≤

π

∫

− < ∞∫





           (1.11) 
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Lemma 1.2 will be used to obtain the existence of ground state solution of the 
following Schrödinger-Kirchhof equation;  

( ) ( ) ( )

( )
2

2 2

1 2

1 d in ,

,

u x u V x u f u

u H

− + ∇ ∆ + =

 ∈

∫ 


         (1.12) 

Lemma 1.3. (Fatou’s Lemma) Let ( ), ,X B µ  be a measure space, and  
[ ]{ }: 0,nf X → ∞  be a sequence of non-negative measurable functions. Then 

the function liminfn nf→∞  is measurable and  

liminf d liminf d .n nX X
f fµ µ≤∫ ∫                (1.13) 

Now, we are ready to state the main results of this paper.  
Theorem 1.4. Suppose that (V1), (V2) and f0 - f5 hold. If we further assume 

that  

( )
2

0

2

lim ,
e tt

F t t
α→+∞

= ∞                       (1.14) 

then (1.12) admits a positive ground state solution.  

2. Preliminaries 

In this section, we give some useful notions and lemmas, which are used to 
prove our results. 

Now, we introduce some notations. For any 1 r≤ < ∞ , ( )2rL   is the usual 
Lebesgue space with the norm  

( )2

1

.r r
ru u= ∫  

( )1 2H   is the usual Sobolev space with the norm  

( ) ( )1 2 2

2 2 2 d .Hu u u x= ∇ +∫ 
 

Lemma 2.1. ([17]) Assume that ( )1 2u H∈   such that  

( )( )2

2 2 d ,u V x u x∇ + < +∞∫


 

where ( )V x  satisfies the assumption (V1). Then there exists some constant 
0c >  depending on δ  and 0C  such that  

( )( )2 2

2 2 2d d .u x c u V x u x< ∇ +∫ ∫
 

 

which was proved in [17].  
Remark 2.2. If we define ( )2

VH   as the completion of ( )2
0C∞   under 

the norm  

( )( )( )2

1
2 2 2d ,u V x u x∇ +∫  

then Lemma 2.1 implies an result;  

( ) ( )2 1 2 .VH H=   
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The problem (1.5) associated functional is  

( ) ( )( ) ( ) ( )2 2 2

22 2 21 1d d d .
2 4VI u u V x u x u x F u x= ∇ + + ∇ −∫ ∫ ∫  

 

where ( ) ( )
0

d
t

F t f s s= ∫ , and its Nehari manifold is  

( ) ( ) ( ){ }1 2 | 0, , 0 ,V Vu u H u I u u′= ∈ ≠ =  

where  

( ) ( ) ( ) ( )2 2 2 2

2 2 2, 1 d d d d .VI u u u x u x V x u x f u u x′ = + ∇ ∇ + −∫ ∫ ∫ ∫
   

 

In order to study the problem (1.5) under the assumptions (V1) and (V2), we 
introduce the following limiting equation;  

( ) ( )2

2 d ,a b u x u u f uγ− + ∇ ∆ + =∫                 (2.1) 

where we recall from (V2) that  

( ) ( )
2

sup lim 0,
xx

V x V x γ
→∞∈

= = >


 

The corresponding functional and Nehari manifold associated with (2.1) are  

( ) ( ) ( ) ( )2 2 2

22 2 21 1d d d .
2 4

I u u u x u x F u xγ∞ = ∇ + + ∇ −∫ ∫ ∫  
 

and  

( ) ( ){ }1 2 | 0, , 0 ,u H u I u u∞ ∞′= ∈ ≠ =  

where  

( ) ( ) ( )2 2 2 2

2 2 2, 1 d d d d .I u u u x u x u x f u u xγ∞′ = + ∇ ∇ + −∫ ∫ ∫ ∫   
 

We can easily verify that if Nu∈ , then  

( ) ( ) ( )( ) ( )2 2

221 12 d d ,
2 4VI u f u u F u x u x= − − ∇∫ ∫ 

 

and if u ∞∈ , then  

( ) ( ) ( )( ) ( )2 2

221 12 d d .
2 4

I u f u u F u x u x∞ = − − ∇∫ ∫ 
 

3. The Proof of Theorem 1.3 

In this section, we want to show that (1.5) has the existence of ground state solu-
tions.  

Lemma 3.1. V  and ∞  are not empty.  
Proof. we only prove that V  is not empty since the proof of ∞  is similar. 

Let ( )1 2
0u H∈   be positive and compactly supported in a bounded domain 

Ω . Define  

( ) ( )

( )( ) ( )
( )

2 2

2

0 0

22 2 22 4
0 0 0

0 0

: ,

d d

2 d , 0.

Vh t I tu tu

t u V x u x t u x

f tu tu x t

′=

= ∇ + + ∇

− ∀ >

∫ ∫
∫
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V  being not empty is a direct result of the fact; ( ) 0h t >  for 0t >  small 
enough and ( ) 0h t <  for 0t >  sufficiently large. 

We first prove that ( ) 0h t >  for 0t >  small enough. From Remark 1.1, we 
conclude that for any 0ε > , there exist Cε  such that  

( ) ( )2
0e 1tf t t C t µ β

εε≤ + −                 (3.1) 

for any t∈ . Using this estimate, we can write  

( ) ( )( ) ( ) ( )

( )( ) ( )
( )( )

2 2 2

2 2

2
0 0

2 2

22 2 22 4
0 0 0 0 0

22 2 22 4
0 0 0

12 2 1
0 0

d d 2 d

d d

2 d 2 e 1 d ,tu

h t t u V x u x t u x f tu tu x

t u V x u x t u x

t u x t C u xµ βµ
εε + +

= ∇ + + ∇ −

≥ ∇ + + ∇

− − −

∫ ∫ ∫

∫ ∫

∫ ∫

  

 

 

 (3.2) 

Which implies that ( ) 0h t >  for small 0t >  since 4µ > . 
Next, we prove that ( ) 0h t <  for 0t >  sufficiently large. The condition (f2) 

implies that ( ) ( )1F t t Fµ≥  when 1t > . Then it follows that there exists 

3 0C >  such that ( ) ( ) 31F t t F Cµ≥ −  for all 0t > . this together with the con-
dition (f2) yields that there exists 4, 0C C >  such that ( ) ( ) 41f t Ct F Cµ≥ −  for 
all 0t > . Noticing that 0u  is compactly supported in the bounded domain Ω , 
we can write  

( ) ( )( ) ( ) ( )

( )( ) ( )
( )

2 2

2 2

2

22 2 22 4
0 0 0 0 0

22 2 22 4
0 0 0

1 1
0 4 0

d 2 d

d

2 1 d 2 d ,

h t t u V x u x t u f tu tu x

t u V x u x t u

F Ct u x C tu xµ µ

Ω

+ +

Ω

= ∇ + + ∇ −

≤ ∇ + + ∇

− +

∫ ∫ ∫

∫ ∫
∫ ∫

 

 



 (3.3) 

which implies that ( )h t  is negative for sufficiently large 0t > .  
Now, we set  

( ){ } ( ){ }inf , and inf , ,V V Vm I u u m I u u∞ ∞ ∞= ∈ = ∈   

and we claim the following lemma.  
Lemma 3.2. It holds that  

0 .Vm m∞< <                         (3.4) 

Proof. To show that Vm m∞< , it is enough to find u satisfying Vu∈  such 
that ( )VI u m∞< . From [18], we know that if  

( )
2

0

2

lim ,
e tt

F t t
α→+∞

= ∞  

then m∞  is attained by some w ∞∈ . By the definition of ( )V x , it is easy to 
check that  

( )( ) ( )
( ) ( ) ( )

2 2

2 2 2

22 2 2

22 2 2

d d

d d d .

w V x w x w x

w w x w x f w w xγ

∇ + + ∇

< ∇ + + ∇ =

∫ ∫

∫ ∫ ∫
 

 



 

Hence there exists ( )0,1t∈  such that  
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( ) ( )( ) ( )( ) ( )2 2 2

22 22 d d d ,tw V x tw x tw x f tw tw x∇ + + ∇ =∫ ∫ ∫  
 

which implies that Vu tw= ∈ . then it follows that  

( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

22 22

22 22

0

1 1d d d
2 4

1 1d d d
2 4

max

V V

t

m I tw tw V x tw x tw x F tw x

tw tw x tw x F tw x

I tw I tw I w m

γ

∞ ∞ ∞ ∞≥

≤ = ∇ + + ∇ −

≤ ∇ + + ∇ −

= ≤ = =

∫ ∫ ∫

∫ ∫ ∫

  

  

 

Next, we show 0Vm > . We prove this by contradiction. Assume that there 
exists some sequence k Vu ∈  such that ( ) 0V kI u → , then we have  

( ) ( ) ( )

( ) ( )( )2

2

2

1 ,
4

1 1 4 d
4 4
1 .
4

V

V

V k V k V k k

k k k kH

k H

I u I u I u u

u f u u F u x

u

′= −

= + −

≥

∫  

which implies that 2 0
Vk Hu → . From k Vu ∈  and (3.1), we know that  

( ) ( )2
0

2 2

2d e 1 d .ku
k k k kf u u x u C u xµ β

εε≤ + −∫ ∫ 
          (3.5) 

By the Trudinger-Morse inequality (1.11) and 4µ > , we get for any 1p > ,  

( ) ( ) ( )( )2 2
0 0

2 2 2

11

e 1 d d e 1 d .k k

V

p pu p up
k k k Hu x u x x C uµ µ µβ β ′′− ≤ − ≤∫ ∫ ∫  

 (3.6) 

From (3.5) and (3.6), there exist 1 2, 0C C > , such that  

( )2

2
1 2d .

V Vk k k kH Hf u u x C u C u µε≤ +∫  

Therefore  

( )2

2 2
1 2 .

V V Vk k k k kH H Hu f u u C u C u µε≤ ≤ +∫  

Since 4µ > , there exist 0ρ >  such that  
2 0.

Vk Hu ρ≥ >  

which is a contradicion to 2 0
Vk Hu → .  

We now consider a minimizing sequence { }k Vk
u ⊂   for Vm . Since  

( ) ( )2 2

2 2
d d ,k ku x u x∇ ≤ ∇∫ ∫

 

 

we can assume that 0ku ≥ . The (A-R) condition (f2), ( ) 0V k VI u m→ >  and 
Remark 2.2 give that { }k k

u  is bounded in ( )1 2H  , and then up to a subse-
quence, there exists ( )1 2u H∈  , such that  

( ) ( )
( )

1 2 2

2

in , and in for any 1,

in ,

a.e.

p
k

p
k loc

k

u u H L p

u u L

u u

>

→

→

 





 

By extracting a subsequence, if necessary, we define , 0lβ ≥  as  

( ) ( )2 2lim d and d .k kk
f u u x l f u u xβ = =∫ ∫ 
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By the weak convergence, it is obvious that [ ]0,l β∈ .  
Lemma 3.3. It holds that 0β > .  
Proof. We proof this by contradiction. Assume that 0β = . Then we have  

( ) ( ) ( )( ) ( )2 2

221 12 d d d 0,
2 4V k k k k kI u f u u F u x u x x= − − ∇ →∫ ∫ 

 

which contradicts (3.4).  
Lemma 3.4 The case 0l =  cannot occur.  
Proof. We prove this by contradiction. If 0l = , then 0u = , and 0ku →  in 

( )2 2
locL  . we first claim that  

( )( )2

2lim d 0.kk
V x u xγ

→+∞
− =∫                  (3.7) 

For any fixed 0ε > , we take 0Rε >  such that  

( ) for any .eV x x Rγ ε− ≤ >  

combining this and the boundedness of ku  in ( )1 2H  , we derive that  

( )( ) ( )( ) ( )( )2

2 2 2

2

d d d

d ,

c
R R

R

k k kB B

kB

V x u x V x u x V x u x

c u x K

ε ε

ε

γ γ γ

ε

− = − + −

≤ +

∫ ∫ ∫

∫


 

where 2

2sup dk
k

K u x= ∫ . This together with 0ku →  in ( )2 2
locL   as 

k → +∞  yields that  

( )( )2

2lim d ,kk
V x u x cγ ε

→+∞
− ≤∫  

which implies that (3.7) hold. 
Similarly to the proof of ([19]. Proposition 6.1), we can get there exists some 

sequence 1kt ≥  such that k kt u ∞∈  and { }k k
t  converges to 1 as k → +∞ . 

Now, by (3.7), we can write  

( )

( ) ( )( )

( )

( )( ) ( ) ( )

2

2 2 2

2
2

2 22 2 22 2
2 2

lim

lim d
2

lim

1lim d d .
2 4

k kk

k
V k k kk

V k kk

k k k
k k k k kk

k k

m I t u

t
I t u V x u x

I t u

F t u t
t u V x u x u x u

t u

γ

∞ ∞→+∞

→+∞

→+∞

→+∞

≤

 
= + − 

 
=

 
= ∇ + − + ∇  

 

∫

∫ ∫ ∫



  

 

This together with the monotonicity of 
( )
2

F t
t

 and lim 1kk
t

→+∞
=  gives  

( )lim ,V k Vk
m I u m∞ →+∞

≤ =  

which contradicts (3.4). This accomplishes the proof of Lemma 3.4.  
Note that (f5) implies the following inequality;  

( ) ( ) ( )

( ) ( )
( )

4

1 3 4
3 3

1
4

d 0. 0,0 1.
t

t f u u F tu F u

f u f su
s u s u t

u su

−
+ −

 
= − ≥ ∀ ≠ ≤ ≤ 

  
∫

        (3.8) 
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Lemma 3.5. If l β= , then Vu∈  and ( )V VI u m= . 
Proof. If l β= , then  

( ) ( )2 2lim d d .k kk
f u u x f u u x

→+∞
→∫ ∫ 

 

Then we can get  

( )( ) ( )
( )( ) ( )

( )

( )

2 2

2 2

2

2

22 2 2

22 2 2

d d

lim d d

lim d

d .

k k kk

k kk

u V x u x u x

u V x u x u x

f u u x

f u u x

→+∞

→+∞

∇ + + ∇

≤ ∇ + + ∇

=

=

∫ ∫

∫ ∫
∫

∫

 

 





 

If the above equality holds, then Vu∈ , and the lemma is proved. Therefore, 
it remains to show that the case where  

( )( ) ( ) ( )2 2 2

22 2 2d d du V x u x u x f u u x∇ + + ∇ <∫ ∫ ∫  
        (3.9) 

cannot occur. In fact, if (3.9) holds, we can take some ( )0,1t∈  such that 

Vtu∈ . Indeed, let  

( ) ( ) ( )( ) ( )( ) ( )2 2 2

22 22 d d d ,g t tu V x tu x tu x f tu tu x= ∇ + + ∇ −∫ ∫ ∫  
 

Obviously, ( )g t  is positive for small t. This together with ( )1 0g <  implies 
that there exists ( )0,1t∈  such that ( ) 0g t = , i.e., Vtu∈ . 

Using (f5), we can obtain  

( ) ( )4 .f tu tu t f u u<                    (3.10) 

From (3.8) we know that  

( ) ( ) ( )
4 1 .
4

tF tu f u u F u−
> +                (3.11) 

Combining (3.10) and (3.11), we derive  

( ) ( ) ( ) ( )1 1 .
4 4

f tu tu F tu f u u F u− < −             (3.12) 

Since ( )0,1t∈ , by the define of ( )V u , (3.12) and Fatou’s lemma, we de-
duce that  

( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2
2 2

2 2

1 ,
4

1d d
4 4
1 1d d
4 4

1 ,
4

1lim , .
4

V V V

V V

V k V k k Vk

m I tu I tu tu

t u V x u x f tu tu F tu x

u V x u x f u u F u x

I u I u u

I u I u u m
→∞

′≤ −

 = ∇ + + − 
 
 < ∇ + + − 
 

′= −

 ′≤ − =  

∫ ∫

∫ ∫
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Which is a contradiction.  
In the following, we consider the case 0 l β< < . If 0 l β< < , then 

0ku u ≠
 in ( )1 2H  . We can choose an increasing sequence { }j j

R → +∞  
such that 1 1j jR R+ > + ,  

( ) ( )d 1
R j

jB
f u u x l o= +∫                    (3.13) 

and  

( )d 1c
R j

p
jB

u x o=∫  

for any 2 p≤ < ∞ . We define  

{ }1

2\ | 1 .
j jj R R j jC B B x R x R
+

= = ∈ ≤ < +  

Lemma 3.6. For the jC  given above, we have  

( ) ( )d 1
j

k k jC
f u u x o=∫                    (3.14) 

and  

( )2 d 1
j

k jC
u x o∇ =∫                     (3.15) 

Proof. We prove (3.14) by contradiction. If there exists some subsequence 
{ }i i

j  of { }j  such that (3.14) fails, then we must have  

( )
1

d .
ji

k kC
i

f u u x
∞

=

= ∞∑∫  

However, we have  

( ) ( )

( )( ) ( )
2

2 2

1
22 2 2

d d

d d ,

ji
k k k kC

i

k k k

f u u x f u u x

u V x u x u x

∞

=

≤

= ∇ + + ∇ < ∞

∑∫ ∫

∫ ∫



 

 

which arrives at a contradiction. Similarly, we can also prove (3.15).  
Lemma 3.7. ([17]) It holds that  

( ) ( )2 2lim d d .kk
F u x F u x

→+∞
=∫ ∫ 

 

which was proved in [17].  
Lemma 3.8. ([20]) Let Ω  be a domain in N . Suppose { } { } ( )1,n ng h L⊂ Ω  

and ( )1h L∈ Ω . If  

( )0 , 0, a.e.n n n ng h g x h h x≤ ≤ → → ∈Ω  

and  

lim nn
h h

Ω Ω→∞
=∫ ∫  

then lim 0n ng→∞ Ω
=∫ .  

Lemma 3.9. It hold that  

( ) ( )lim d d
R Rj j

k kB Bk
f u u x f u u x

→+∞
=∫ ∫  

provided j is large enough.  
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Proof. Since ku  is bounded in ( )1 2H  , there is 0C > , and for any 
2 p≤ < +∞ , we have  

( ) ( ) ( )2 1 2 .p p
R j

k k kL B L Hu u u C≤ ≤ ≤               (3.16) 

According to (ii) in definition 6.1 in reference [21], when ( )m E < ∞ , it can 
be obtained  

lim .pp
f f

∞→+∞
=                       (3.17) 

where E stands for measurable set. 
From (3.16) and (3.17), we can deduce that  

lim .pp
f f C

∞→+∞
= ≤  

which implies that ku  is bounded in 
jRB . 

We can let ( ) ( )k k kg f u u f u u= − , using (1.4), we can derive  

( ) ( ) ( )

( )2
02 1 e 1 .k

k k k k k

u
k k

g f u u f u u f u u

u C u µ β
εε +

= − ≤

≤ + −
 

Because ku  is bounded in 
jRB , then there is 0M > , we have  

( )02 1 2 1
1e 1 .M

k k k k kg u C u u C uµ µβ
εε ε+ +≤ + − = +  

where ( )0
1 e 1MC C β

ε= ⋅ − . 
Using ku u→  in ( )2p

locL   and lemma 3.8, we can get  

( ) ( )lim 0.
R j

k kBk
f u u f u u

→+∞
− =∫  

which implies that  

( ) ( )lim d d .
R Rj j

k kB Bk
f u u x f u u x

→+∞
=∫ ∫               (3.18) 

The proof is completed.  
From (3.18) and Lemma 3.6, since 11j jR R ++ < , we can extract a subsequence 

jku  such that for every j∈ ,  

( ) ( )d 1
j jR j

k k jB
f u u x l o= +∫  

and  

( ) ( ) ( ) ( )
2

2d 1 , d 1 , d 1 .
j j j jj j j

k k j k j k jC C C
f u u x o u x o u x o= ∇ = =∫ ∫ ∫  

Now, we take { }jku  as a new minimizing sequence renaming it { }j j
u . 

Lemma 3.10. It cannot be  

( )( ) ( ) ( )2 2 2

22 2 2d d d .u V x u x u x f u u x∇ + + ∇ <∫ ∫ ∫  
      (3.19) 

Proof. If (3.19) is true, then there exists some ( )0,1t∈  such that Vtu∈ . 
Since ( )0,1t∈ , by the define of ( )V u , (3.12) and Fatou’s lemma, we deduce 
that 
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( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2
2 2

2 2

1 ,
4

1d d
4 4
1 1d d
4 4

1 ,
4

1lim , .
4

V V V

V V

V k V k k Vk

m I tu I tu tu

t u V x u x f tu tu F tu x

u V x u x f u u F u x

I u I u u

I u I u u m
→∞

′≤ −

= ∇ + + −

< ∇ + + −

′= −

 ′≤ − =  

∫ ∫

∫ ∫

 

 

 

which is a contradiction.  
Lemma 3.11. It cannot be  

( )( ) ( ) ( )2 2 2

22 2 2d d d .u V x u x u x f u u x∇ + + ∇ >∫ ∫ ∫
  

      (3.20) 

Proof. We prove (3.20) by contradiction. If  

( )( ) ( ) ( )2 2 2

22 2 2d d d .u V x u x u x f u u x∇ + + ∇ >∫ ∫ ∫
  

      (3.21) 

Since ju u→  weakly in ( )1 2H  , from Lemma 3.9, we can deduce  

( ) ( ) ( )2 2d 1 d .j j jf u u x o f u u x+ =∫ ∫ 
 

This implies that  

( ) ( )
( ) ( )
( ) ( )

2 2

2 2

2 2

22

22

22

22

2

lim

lim d d

d lim d

d d

.

V V

V

jH Hj

j j jj

jj

H

u u

f u u x u x

f u u x u x

f u u x u x

u

→+∞

→+∞

→+∞

≤

 = − ∇  

= − ∇

≤ − ∇

<

∫ ∫

∫ ∫

∫ ∫

 

 

 

 

which is a contradiction.  
End of the proof of Theorem 1.3. Lemma 3.10 and Lemma 3.11 imply ( ) 0VI u′ = . 

Hence  

( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

1 ,
4

1 1d d
4 4

1 1lim d lim d
4 4

1lim , .
4

V V V

k k k k kk k

V k V k k Vk

m I u I u u

u V x u x f u u F u x

u V x u x f u u F u x

I u I u u m

→∞ →∞

→∞

′≤ −

= ∇ + + −

≤ ∇ + + −

 ′= − =  

∫ ∫

∫ ∫

 

 

 

which implies that u is a minimum point for VI  on V  since 0u ≠ . There-
fore u is a ground state solution of the Equation (1.5) through the definition of 
the ground state. 
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4. Conclusion 

In this paper, we use the Nehari manifold technique to prove the existence of 
ground state solutions for a class of Schrödinger-Kirchhoff equations with va-
nishing potential and exponential growth. 
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