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Abstract 
In this paper, a system of Lorenz-type ordinary differential equations is con-
sidered and, under some assumptions about the parameter space, the pres-
ence of the supercritical non-degenerate Hopf bifurcation is demonstrated. 
The technical tool used consists of the Central Manifold theorem, a well- 
known formula to calculate the Lyapunov coefficient and Hopf’s Theorem. 
For particular values of the parameters in the parameter space established in 
the main result of this work, a graph is presented that describes the evolution 
of the trajectories, obtained by means of numerical simulation.  
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1. Introduction 

Lorenz-Type systems present a great variety of dynamic behaviors such as the 
presence of chaotic orbits [1] [2], existence of homoclinic and heteroclinic orbits 
[3] [4] [5], presence of bifurcaciones de Pitch-fork o Hopf [6] [7] [8], as well as 
the Lorenz attractor [7] [9], among others. An interesting problem is determin-
ing the geometric structure of the Lorenz attractor for specific Lorenz-type sys-
tems. 

Hopf Bifurcation corresponds to the following situation: when the system pa-
rameter is varied and it crosses a critical value, the Jacobian, at equilibrium, has 
a pair of conjugate complex eigenvalues moving from the left half-plane to the 
right or vice versa, while the other eigenvalues remain fixed; at the time of crossing, 
the real parts of the two eigenvalues become zero, the stability of the equilibrium 

How to cite this paper: Muñoz-Aguirre, 
E., Alvarez-Mena, J., Calderón-Saavedra, 
P.E., Ramírez-Ortega, J. and Hernández- 
Zamora, F.G. (2023) Existence of Super-
critical Hopf Bifurcation on a Type-Lorenz 
System. Journal of Applied Mathematics and 
Physics, 11, 780-789. 
https://doi.org/10.4236/jamp.2023.113052 
 
Received: February 22, 2023 
Accepted: March 25, 2023 
Published: March 28, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.113052
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.113052
http://creativecommons.org/licenses/by/4.0/


E. Muñoz-Aguirre et al. 
 

 

DOI: 10.4236/jamp.2023.113052 781 Journal of Applied Mathematics and Physics 
 

changes from stable to unstable, or from unstable to stable, thus giving rise to a 
limit cycle. When the limit cycle is stable, the Hopf Bifurcation is supercritical. 
When the limit cycle is unstable, the Hopf bifurcation is said to be subcritical [5]. 
The Hopf Bifurcation concept is very important and has been studied in various 
mathematical models of interest, such as the Homogeneous Diffusive Preda-
tor-Prey System with Holling Type II and Predator-Prey Model with Mutual In-
terference, see [10] and [11]. 

In this paper, it is proposed the study of the Hopf Bifurcation for the Lo-
renz-type system  

( )

2

,
,

,

x a y x
y dy xz
z bz fx gxy

= −

= −

= − + +







                       (1) 

when 0a > , 0f ≥ , 0g ≥ , 0f g+ > , ,b d ∈ , and ( )T 3, ,x y z ∈  
represents the system state variable. 

The system (1) is presented by Li and Ou in their article [8] of the year 2011; 
for this reason it is called Li-Ou system. Precisely, in the cited reference the au-
thors demonstrate the existence of the Hopf Bifurcation, leaving open the prob-
lem of determining whether the Hopf Bifurcation is nondegenerate, as well as 
the problem of distinguishing whether such a bifurcation is supercritical or sub-
critical. In this regard, in 2013 Li and Wang claim that the issue is still open due 
to its complexity [7], while in 2018, Calderón-Saavedra et al., address the prob-
lem for the case where the parameter f is zero, proving the existence of subcriti-
cal Hopf Bifurcation [12]. In this paper, the problem is addressed for the case 

0f >  and it is proved the existence of the supercritical Hopf Bifurcation for 
this system, and a concrete example is modeled showing the Hopf bifurcation 
with the behavior of trajectories for a particular system. This is the main result of 
the work presented here and the methodology developed to solve it is the same 
as that used by [4] and [13] to calculate the Lyapunov coefficient. 

It is clear that there is still a lot to analyze in the system, for example, it would 
be necessary to distinguish regions where the subcritical Hopf Bifurcation exists, 
to determine the extension of the regions where the Supercritical Hopf Bifuca-
tion is still present. In the same way, it would be necessary to address the Hopf 
bifurcation control for the system. 

Lorenz-type systems are of interest in various topics of physics and engineer-
ing, such as synchronization [9], control and Hopf bifurcation control ([13]- 
[18]), to name a few. 

This paper is organized as follows. In Section 2, some preliminary results are 
described regarding the existence of the Hopf bifurcation in system (1). In Sec-
tion 3, it is shown that the Hopf bifurcation is nondegenerate and supercritical 
for some constraints on the parameters. It is illustrated geometrically the beha-
vior of trajectories for a particular system. Finally, in Section 4, the conclusions 
of this paper are presented. 
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2. Dynamics of the Li-Ou System 
2.1. Symmetry 

The following lemma shows that the Li-Ou system is symmetric with respect to 
the Z axis. 

Lemma 1 The system (1) is invariant under the linear transformation  
3 3:T →   defined by ( ) ( ), , , ,T x y z x y z= − −  for all ( ) 3, ,x y z ∈ .  

Proof follows from F T T F=   for the vector field F associated with system 
(1). For a demonstration of this result see [13]. 

2.2. Equilibriums 

Analysis of the system begins by determining the equilibrium points, for which 
the following system of equations is solved:  

( ) 0,a y x− =  

0,dy xz− =  
2 0.gxy bz fx− + =  

Equilibrium points of (1) are classified according to the following cases. 
Case 0bd < . The origin is the only equilibrium point of the system and is 

denoted by 0P . 
Case 0bd = . There are two possibilities, 0d ≠  or 0d = . When 0d ≠ , it 

is obtained that 0b = , and every point of the form ( )0,0, z  is an equilibrium 
of the system. When 0d = , the only equilibrium point of the system is 0P . 

Case 0bd > . The system has three equilibrium points:  

0 1 2, , , y , , .bd bd bd bdP P d P d
f g f g f g f g

   
= = − −      + + + +   

 

First two cases are not of interest, the analysis focuses on the case 0bd > . In 
2011, Li and Ou [8] showed that in 0P  the system (1) presents a dynamic without 
bifurcation, in contrast, at the equilibrium points 1P  and 2P  the system presents 
Hopf bifurcation. With the purpose of offering a self-contained work, the result 
from [8] for the system (1), with 0f = , is stated in Theorem 1. 

Theorem 1 For the system (1) with parameters 0a > , 0b > , 0g >  and 
0f = , the following statements hold:  

1) For 0
3

a bd +
< < , the equilibrium points 1P  and 2P  are stable. 

2) When 
3

a b d+
< , the equilibriums 1P  and 2P  are unstable. 

3) When 
3

a bd +
= , in each equilibrium 1P  and 2P  arises a periodic orbit 

with period 
2T
ab

=
π

. 

Therefore, the system presents a Hopf bifurcation at the equilibrium points 

1P  and 2P  with bifurcation critical value ( )0 :
3

a bd−
+

= .  
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In addition, the result of [8] for the system (1), with 0f > , is stated in Theo-
rem 2. 

Theorem 2 The system (1) is considered with parameters 0a > , 0b > , 
0f > , 0g ≥  and 0f g+ > . The following statements hold:  

1) When ( )0 d d f−< < , the equilibriums 1P  and 2P  are stable.  
2) When ( )d d f−> , the equilibriums 1P  and 2P  are unstable.  
3) For ( )d d f−= , an orbit appears at each equilibrium 1P  and 2P  with 

period 2T
ω

=
π , where ( )

( )
2abd f

a b d f
ω −

−

=
+ −

. 

Thus, the system presents a Hopf bifurcation at the equilibrium points 1P  
and 2P  with bifurcation critical value  

( ) ( ) ( )

( ) ( )( ) ( )2 22 2

3
2

9 2
.

2

a f g a b f
d f

f

a f g a f g a b f a b f
f

−

+ + +
=

+ + + + + +
−

       (2) 

Analysis of the Hopf bifurcation is very important in the study of the stability 
of the periodic orbits of a system (see [6] [19] [20]). On the other hand, when 
the stability of a periodic orbit is not desired, it is possible to disturb the system 
in order to change its stability. This process is called stability control. In the Hopf 
bifurcation control, the information that provides the analysis of the bifurcation 
is considered primary information (see [15] [18] [21] [22]). A Hopf bifurcation 
analysis consists of determining whether the Hopf bifurcation is nondegenerate, 
and whether it is the case, to distinguish if it is supercritical or subcritical, in this 
activity, the first Lyapunov coefficient plays a fundamental role [7] [23] [24]. 

3. Nondegenerate Hopf Bifurcation 
3.1. Case f = 0 

This case was studied in [12] where it is shown that the bifurcation Hopf is 
non-degenerate and supercritical in a specific region of parameters. The follow-
ing result is for a self-contained presentation of this work. 

Theorem 3 When the parameters satisfy 0b > , a b= , 
3

a bd +
= , 0g >   

and 0f = , the system (1) presents a Hopf bifurcation nondegenerate and su-
percritical at equilibrium points 1P  and 2P .  

3.2. Case f > 0 

This section presents the main result of this work, which provides two specific 
regions of system parameters, where the Hopf bifurcation is nondegenerate and 
supercritical. 

Regions in the parameters space of the system are determined (1):  

( ) ( ){ }5: , , , , | 0, , , 1IR a b d f g a a b d d f f g−∈ > = = = =  
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and 

( ) ( ){ }5: , , , , | 0, , , 1, 2 .IIR a b d f g a a b d d f f g−∈ > = = = =  

Theorem 4 If the system parameters (1) are in the region IR  or the region 

IIR , the periodic orbits around 1P  and 2P  are stable. Therefore, the system (1) 
presents Hopf bifurcation non-degenerate and supercritical in R at equilibrium 
points 1P  and 2P .  

Proof. Under the conditions in the parameters, 0a > , a b= , ( )d d f−= , 
0f >  and 0g ≥ , Theorem 2 guarantees the existence of the Hopf bifurcation 

at equilibrium points 1P  and 2P . For analysis of the Hopf bifurcation at these 
equilibrium points, it proceeds as follows. By the symmetry of the system with 
respect to the z axis (Lemma 1), the critical point 1P  is analyzed and the results 
are extended to the point critical 2P . Using the well-known formula for the first 
Lyapunov coefficient (see page 98 of Y. Kuznetsov [5]) it is determined that the 
first Lyapunov coefficient is negative at the equilibrium point 1P . Finally, it is 
concluded by the Hopf Theorem (see page 98 of Y. Kuznetsov [5]) that the Hopf 
bifurcation is supercritical. 

Jacobian matrix A of system (1) evaluated at equilibrium 1P  is  

( ) ( )
( )

( )
0

, with .
2

a a
ad f

A d f d f h h
f g

f g h gh a

−
− −

− 
 = − − =  + + − 

 

Solving the system Aq i qω= , the eigenvalue 1 iλ ω=  is obtained, with ei-
genvector  

( )( )2

.
ah

q ah hi
d f a i

ω
ω ω−

 
 

= + 
 + − 

 

The adjoint eigenvector 3p C∈ , that is, the vector that satisfies the equation 
TA p ipω= − , is  

( )( ) ( )( )2 2

.

gh ad f a d f i

p ab a i
ah

ω ω

ω
− −

 + − + +
 
 = −
 

− 
 

 

It is necessary to determine a vector parallel to p that satisfies the property 
, 1p q = , hence, vector p is normalized:  

( )( )

( )( ) ( )( )2 2

1 .
2

gh ad f a d f i

p ab a i
ah d f a i

ah

ω ω

ω
ω

− −

−

 + − + +
 
 = −

−  
− 

 

 

In order to calculate the first Lyapunov coefficient, the equilibrium point must 
be transferred to the origin  

( ) ( ) ( ) ( )( )1 , , , , .
ad f ad f

P d f h h d f
f g f g
− −

− −

 
 = =
 + + 
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This is done by the transformation 1Y X P= − , where X satisfies the system 
(1). Then Y satisfies the system  

( ) ( )
( )

1

0
,

2

a a
Y d f d f h Y y KY

f g h gh a
− −

− 
 = − − + 
 + − 

              (3) 

where 1y  is the first Y coordinate and K is the matrix,  

0 0 0
0 0 1 .

0f g

 
 − 
 
 

 

It is observed that system (3) has the form ( )Y AY F Y= + , where A is the 
Jacobian matrix of the system evaluated at equilibrium 1P  and the nonlinear 
part  

( ) 1 3
2
1 1 2

0
.F Y y y

fy gy y

 
 = − 
 + 

 

Thus, ( ) ( )2F Y O Y= . On the other hand, the Taylor expansion of F in a 
neighborhood of 0Y =  is expressed by  

( ) ( ) ( ) ( )41 1, , , ,
2 6

F Y B Y Y C Y Y Y O Y= + +  

where ( ),B Y Y  and ( ), ,C Y Y Y  are multilinear vector functions with 3Y ∈ . 
To find an expression for multilinear vector functions B and C, the partial deriv-
atives of the components functions ( )1 2 3, ,F F F  of F are used. The first compo-
nent function is the zero function, so it does not contribute to the expressions 
that are searched for. The partial derivatives of 2F  are,  

2
2 2 2 2

3 1 2
1 2 3 1

; 0; ; 0;
F F F Fy y
y y y y

∂ ∂ ∂ ∂
= − = = − =

∂ ∂ ∂ ∂
 

2 2 2 2
2 2 2 2

2
1 2 1 3 2 1 2

0; 1; 0; 0;
F F F F

y y y y y y y
∂ ∂ ∂ ∂

= = − = =
∂ ∂ ∂ ∂

 

2 2 2 2
2 2 2 2

2
2 3 3 1 3 2 3

0; 1; 0; 0.
F F F F

y y y y y y y
∂ ∂ ∂ ∂

= = − = =
∂ ∂ ∂ ∂

 

Then the function 2B  is expressed in the form  

( ) ( )( )T 2
2

0 0 1
, 0 0 0 2 .

1 0 0
B q q q q ah d a iω ω

− 
 = = − + − 
 − 

 

The partial derivatives of 3F  are used,  
2

3 3 3 3
2 1 1 2

1 2 3 1

2 ; ; 0; 2 ;
F F F F

gy fy gy f
y y y y

∂ ∂ ∂ ∂
= + = = =

∂ ∂ ∂ ∂
 

2 2 2 2
3 3 3 3

2
1 2 1 3 2 1 2

; 0; ; 0;
F F F F

g g
y y y y y y y
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂
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2 2 2 2
3 3 3 3

2
2 3 3 1 3 2 3

0; 0; 0; 0.
F F F F

y y y y y y y
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

 

Then the function 3B  is expressed in the form  

( ) ( )T 2
3

2 0
, 0 0 2 .

0 0 0

f g
B q q q g q ah af ag g iω

 
 = = + + 
 
 

 

Finally, the expression for the multifunction is obtained  

( ) ( )( )
( )

2

0
, 2 .B q q ah d f a i

h af ag g i

ω ω

ω
−

 
 

= − − − 
 + + 

 

By a similar process, the following expressions are obtained, 

( )
( )

2

0
, 2 ,B q q ah

ah f g
ω

 
 = − 
 + 

 

( ) ( )( )
( )

2

0
, 2 ,B q q ah d f a i

h ag af g i

ω ω

ω
−

 
 

= − + − 
 + − 

 

( )
0

, , 0 .
0

C q q q
 
 =  
 
 

 

The Inverse matrix 1A−  of A is given by  

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2

2
1

1
2 2 2

21 1 .
2 2 2

1 0

gh bd f b
ah f g h f g f g

bd f h f g bA
h ah f g h f g f g

d
a

−

−−

 − + −
 

+ + + 
 + + − =
 + + +
 
 − 
 

 

While the matrix 32i I Aω − , and its inverse are written below,  

( ) ( )
( )

3

2 0
2 2 .

2 2

i a a
i I A d f i d f h

h f g gh i b

ω
ω ω

ω
− −

+ − 
 − = − 
 − + − + 

 

On the other hand, the inverse matrix ( ) 1
32i I Aω −−  is given by the expres-

sion  

( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

2 2

2 2

4 2 2
2 2 2

1 2 2 4 2 ,2
2 2 2

2 2

bd f h g b d f i ab a i ah

bd f h f g d f i ab a b i h a ir

h d f f g f g i h a f g g i a d f i

ω ω ω

ω ω ω ω

ω ω ω ω

− −

− −

− −

 − − + + − + −
 
 
  − + + + − + + − +  
 
 
  − + + + + + − + −  

 

https://doi.org/10.4236/jamp.2023.113052


E. Muñoz-Aguirre et al. 
 

 

DOI: 10.4236/jamp.2023.113052 787 Journal of Applied Mathematics and Physics 
 

with ( ) ( )( )2 26 2 4r abd f i bd f gh abω ω− −= − − + − − . 
With what has been done up to now, it has the elements from the formula of 

the First Lyapunov Coefficient of [5]. Thus, if the hypotheses a b= , 1f g= = ,  

( ) 53
100

d f a− = , 51
100

h a=  and 849
1000

aω =  are considered, it is found that the 

Lyapunov coefficient in IR  is  

( ) 2
1 0 1.7320 0.a= − <  

With the respective parameters, in the IIR  region it is found that the Lyapu-
nov coefficient is  

( ) 2
1 0 1.528219575 0.a= − <  

Value of the coefficient was obtained with a program carried out with the 
Maple software. 

Since ( )1 0  is negative in the regions IR  and IIR , as a consequence of 
Hopf Theorem, the periodic orbit that emerges in the point 1P  is stable. There-
fore, in both parameter regions, the system (1) presents non-degenerate and su-
percritical Hopf bifurcation at equilibrium points 1P  and 2P . 

  
Example 1 To illustrate the Theorem 4, two particular trajectories are pre-

sented together with their graphs of the Li-Ou system, with values of the  

parameters, ( ) 1439, , , , 1,1, ,1, 2
2500

a b d f g  =  
 

. The chosen values verify the  

hypotheses, 0b > , b a= , 0f > , 0g >  and ( )d d f−=  and clearly belong 
to the IIR  region, therefore, it is verified what ensures the Theorem 4, the 
presence of a stable periodic orbit. 

In Figure 1, it is represented in red the graph of the orbit with initial condi-
tion  
 

 

Figure 1. Stable limit cycle ( ) 1439, , , , 1,1, ,1,2
2500

a b d f g  =  
 

. 
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( ) ( )0 0 0, , 0.4473, 0.4544,0.5863 ,x y z = − −  

and it is represented in blue the graph of the orbit with initial condition  

( ) ( )0 0 0, , 0.4398, 0.4413,0.5777 .x y z = − −  

Graphs of the orbits in Figure 1 give evidence of the existence of a stable pe-
riodic orbit.  

4. Conclusion 

Under some hypotheses in the parameters of the Li-Ou system, it is showed that 
the Hopf bifurcation, the existence of which has been known since the year 2011 
[8], is non-degenerate and supercritical, Theorem 3. For this purpose, the sym-
metry of the system with respect to the z axis was used to reduce the analysis to 
only one critical point and the well-known formula for the first Lyapunov coeffi-
cient. Theorem 3 is illustrated geometrically, graphically showing the evolution 
of two trajectories for an instance of the Li-Ou system. 
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