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Abstract 
We investigate the phenomenon of coherent perfect absorption in a high- 
order system with three passive resonators coupled to a super-surface to form 
this three-state coherent perfect absorber. The effective parity time (PT) sym-
metry in the passive system has received much attention, and in this open 
three-state PT symmetric system, the incident wave is used as the effective 
gain instead of balancing the material gain and loss. We analyze the variation 
of coherent perfect absorption of this system with the coupling coefficient of 
the system by simulation. 
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1. Introduction 

In recent years, the time-symmetric optical system has attracted a lot of atten-
tion in all aspects. Since PT symmetric Hamiltonians have the characteristic of 
having a fully real-valued energy spectrum below the phase transition point [1]. 
PT symmetry can extend quantum mechanics to some new areas of research. 
Ruschhaupt et al. have carried out pioneering work in recent years to achieve PT 
symmetry using gain and loss in optics to achieve PT symmetry Hamiltonian 
[2], and PT symmetry has emerged in various fields, including negative refrac-
tion [3], coherent perfect absorption [4], topological phase [5] [6] [7] [8] [9], 
electromagnetic impurity immunity [10], gain-loss induced topological edge 
states [11] [12] [13], laser absorbers [14], power oscillations [15] [16] [17] [18], 
irreversible Bloch oscillations [19], unidirectional invisibility [20] and various 
nonlinear effects [21]. 
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According to quantum mechanics, if a Hermitian quantum system is inter-
connected with the external environment and introduces loss and gain, the sys-
tem becomes an open non-Hermitian systems. At the same time, the concept of 
non-Hermitian can be applied to the field of optics, which has become a hot 
topic in the field of optics in recent years. Non-Hermitian systems can exhibit 
spontaneous symmetry breaking relative to PT symmetry, accompanied by 
spectral phase transitions from real to complex numbers [22]. The most obvious 
feature that distinguishes non-Hermitian systems from Hermitian systems is the 
singularity. In a non-Hermitian system, due to the exchange of energy between 
the system and the environment, the eigenstates of the non-Hermitian systems 
will merge, and the point at which the eigenstates merge together is the singular-
ity. At the singularity, a phase transition occurs in the non-Hermitian systems— 
multiple eigenstates merge into one. Ideally, such a quantum system, which is 
closed and has constant energy that does not change with time, is the Hermitian 
systems. In general, quantum systems are basically open and have a large num-
ber of theoretical and experimental studies on non-Hermitian systems with 
energy varying with time [23] [24] [25]. EPs are used in many different fields, 
including acoustics [26] [27] [28], PT-symmetric systems [29] [30], coherent 
perfect absorption [31], photonic lattices [32], photonic crystals [33] [34], Bose- 
Einstein condensates [35], lasers [36], hydrogen atoms MS [37], microwaves [38] 
[39]. One direct application that takes advantage of the unique properties of EPs 
is sensors [40] [41]. More precisely, the feature topology surrounding the eigen-
values of the EP can be used to enhance the sensitivity of such a device. 

Coherently, perfect absorption is a peculiar phenomenon that occurs when a 
non-Hermitian system satisfies the condition of PT symmetry. The loss and gain 
of the control system are balanced so that the energy is absorbed, thus achieving 
coherent perfect absorption of non-Hermitian systems. The principle of cohe-
rent perfect absorber is the reverse process of generating laser, that is, effectively 
using the interference effect of coherent light in the absorbing body, so that the 
absorber has an almost perfect (close to 100%) absorption efficiency, that is, the 
incident radiation is completely absorbed. We call this optical system a coherent 
perfect absorber. CPA has attracted great interest due to its wide range of poten-
tial applications in optical communications and photonic devices, such as sen-
sors, modulators, optical switches and transistors. The CPA mechanism was first 
proposed by Chong et al. in 2010 [31], and since then, a large number of theories 
and experiments on CPA have been proposed. Now, CPA phenomenon has been 
demonstrated in different materials, including graphene [42], photonic crystals 
[43], waveguides [44], etc. 

The study of high-order EPs is a hot research direction in recent years, be-
cause the cube root response near EP3 is extremely sensitive to external pertur-
bations compared to the square root response near EP2 [45]. Therefore, we 
propose a three-state coherent perfect absorber with a PT phase transition con-
sisting of three passive resonators coupled to the metasurface. In our three-state 
system, it can be found that this three-state PT symmetric system has CPA ap-
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pearing before and after the PT phase transition, and the effect of system coupl-
ing on the absorption peak frequency is observed by calculation and simulation. 

2. Theory of Higher-Order Systems 

The theoretical model of our three-state system is shown in Figure 1, which 
consists of a “U” shaped comb line and two open resonant rings, and the two 
open resonant rings are located on the same side of the comb line. Since it needs 
to meet the 50 ohm matching, the width of the microstrip line is 2.4 mm, the 
geometric parameters in Figure 1(a) are 1 25 mml = ; 2 15 mml = ; 3 22 mml = , 
the total size of the two open resonant rings is 8 mm × 8 mm, the line width of 
both the comb line and the open resonant ring is 0.2 mm, the seam width at the 
opening of the comb line and the resonant ring is 1 mm, the distance of the open 
resonant ring from the microstrip line The distance between the open resonant 
ring and the microstrip line is 10 mm, and the simulation is performed using the 
microwave simulation software of CST Microwave Studio. 

In our whole system, the “U” shaped comb line acts as the bright resonator A 
( e iwta A −= ), the resonant ring close to the comb line acts as the dark resonator 
B ( e iwtb B −= ), and the rightmost resonant ring acts as the dark resonator C 
( e iwtc C −= ), the bright resonator A can be directly excited by the incident wave, 
while the dark resonance can only be excited by the near-field coupling from the 
bright resonant cavity, by changing the distance between the comb line and the 
resonant ring B to adjust the coupling 1κ  between them, and by changing the 
distance 1s  between the two resonators to adjust the coupling 2κ  between  
 

 
(a) 

 
(b) 

Figure 1. (a) Structural model of the system, (b) Theoretical model of the system where γa 
is the scattering loss of resonator A; Γa is the dissipation loss of resonator A; Γc the dissi-
pation loss of resonator C; κ1 is the coupling between resonator A and resonator B; κ2 is 
the coupling between resonator B and resonator C. 

https://doi.org/10.4236/jamp.2023.113049


M. J. Fan et al. 
 

 

DOI: 10.4236/jamp.2023.113049 740 Journal of Applied Mathematics and Physics 
 

them. Resistor 1R  is loaded at the opening of resonator A, capacitor 1C  is 
loaded at the opening of resonator B, and resistor 2R  and capacitor 2C  are 
loaded at the opening of resonant ring C. As can be seen from the CST simula-
tion, bright resonator A is excited at 0 0.91 GHzw = . By adjusting the system 
parameters capacitor 1C  and 2C , so that the three resonators can be excited at 
the same frequency. Then 1 2 2.74 pfC C= = . 

The coupled mode equation of the three-state Non-Hermitian system is: 
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This in turn leads to the derivation of the Hamiltonian quantity H for the 
three-state non-Ermian system as: 
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In the ideal PT symmetric system to satisfy 1 2κ κ κ= =  and a a cγ −Γ = Γ . 
The eigen solutions of the Hamiltonian quantities are derived by ( )det 0H wI− = : 

2 2 2 2
1 0 2 0 3 0; 2 ; 2c cw w w w w wκ κ= = − −Γ = + −Γ          (3) 

3. Simulation Results for Higher-Order Systems 

The following parameters were obtained by fitting the system model using CST 
simulation software: 0.13 GHzaγ = ; 0.006aΓ = ; 0.009cΓ = ; the data simula-
tion of the real and imaginary parts of the eigenvalue analytic solution with κ 
evolution is shown in Figure 2. 
 

   
(a)                                         (b) 

Figure 2. (a) Simulation of the real part of the eigenvalue analytic solution with κ evolution, the real 
part is equal before κ = 0.033 GHz. (b) Data simulation of the evolution of the imaginary part of the ei-
genvalue analytic solution with κ, the imaginary parts are equal after κ = 0.033 GHz, then the EP point 
appears at κ = 0.033 GHz. 
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(a) 

 
(b) 

Figure 3. (a) Variation of CPA with κ for the system at ideal PT symmetry, where the left 
column shows the calculated results of the coupled mode equation and the right column 
shows the results of the CST simulation. (b) Analytic spectrum of the system at ideal PT 
symmetry with respect to 10log 1 CPA− . 

 
From Figure 3, it can be seen that when κ is less than 0.033 GHz, the peak of 

coherent perfect absorption is one; when κ is greater than 0.033 GHz, the peak of 
coherent perfect absorption changes from one to three; this change can be ob-
served more obviously from Figure 3(b). 

4. Conclusion 

In conclusion, instead of balancing the gain and loss of the material, we use the 
incident wave as the effective gain to build a three-state system with ideal PT 
symmetry. The coherent perfect absorption phenomenon in the higher-order 
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system is analyzed by simulation results, and unlike the two-state system, the 
three-state system has a coherent perfect absorption peak before and after the EP 
point. This study of coherent perfect absorption in higher-order systems can be 
applied to optical communication and photonic devices such as sensors, mod-
ulators, optical switches and transistors which also have some wide potential ap-
plications.  
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