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Abstract 
We present a tensor description of Euclidean spaces that emphasizes the use 
of geometric vectors which leads to greater geometric insight and a higher 
degree of organization in analytical expressions. We demonstrate the effec-
tiveness of the approach by proving a number of integral identities with vec-
tor integrands. The presented approach may be aptly described as absolute 
vector calculus or as vector tensor calculus. 
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1. Introduction 

Since the invention of coordinate systems in the middle of the 17th century, the 
subject of geometry has followed the steady path of algebraization. This is not sur-
prising: the very idea of a coordinate system is to represent geometric objects by 
their coordinates, or, in the case of vector quantities, by their components with 
respect to the coordinate basis, thus opening up the problem to analytical methods. 
This is the distinct advantage of the method of coordinates over the geometric ap-
proach: while geometric arguments usually require unique insights and therefore a 
certain degree of ingenuity, analytical methods lean towards universality and ro-
bustness. The advent of computing has further cemented this advantage. 

That being said, the use of coordinates in general theoretical investigations 
comes with significant costs. Chief among them is the loss of geometric insight. 
This shortcoming can be illustrated by examining some of the classical results of 
Leonhard Euler and Louis Lagrange found in their celebrated works on the cal-
culus of variations. 
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In 1744, in his search for a minimal shape of revolution, Euler introduced 
what we would now call a cylindrical coordinate system (see Figure 1), and de-
scribed the profile of the minimal surface by an unknown function ( )r z . By 
making arguments that were largely geometric in their nature, Euler demon-
strated that ( )r z  must satisfy the equation 

( ) ( ) ( )2 1 0r z r z r z′′ ′− − =                       (1) 

whose solution  

( ) cosh zr z a
a

=                          (2) 

reveals that the desired shape is a catenary for which the closest distance between 
the surface and the axis of revolution is a. 

In 1755, Lagrange took an even more unapologetically coordinate approach to 
the problem of minimal surfaces when he represented the unknown surface by the 
graph of a function ( ),F x y  in Cartesian coordinates, as illustrated in Figure 2. 
Reasoning analytically, Lagrange demonstrated that ( ),F x y  must satisfy the 
partial differential equation  

2 22 2 2 2 2

2 2 2 2 2 0,F F F F F F F F F
y x x y x yx y x y

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − =   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂   
      (3) 

for which a closed form solution exists only in the most special cases. 
 

 

Figure 1. Euler’s approach to minimal surfaces, where a surface of revolution is represented 
in cylindrical coordinates by ( )r r z= . 

 

 

Figure 2. Lagrange’s approach to minimal surfaces where a surface represented by the 
graph of a function ( ),F x y  in Cartesian coordinates. 

https://doi.org/10.4236/jamp.2023.113047


P. Grinfeld 
 

 

DOI: 10.4236/jamp.2023.113047 707 Journal of Applied Mathematics and Physics 
 

These works of Euler and Lagrange have been rightfully revered by later ma-
thematicians for the seminal nature of the techniques developed in them as well 
as for the flight of creativity that their development required. To us, however, as 
we contemplate the relative advantages and disadvantages of the method of 
coordinates, these works offer an additional insight that speaks to the potential 
loss of geometric interpretation that comes with the use of coordinate systems. It 
appears that neither Euler nor Lagrange was aware of the geometric meaning of 
their equations. It was only in 1774 that the French mathematician Jean Baptiste 
Meusnier discovered that a minimal surface is characterized by zero mean cur-
vature, a quantity of which Euler and Lagrange had complete mastery. 

Crucially, loss of geometric insight is not merely an aesthetic lament: geome-
tric insight serves as a guide for most analytical explorations and, in particular, 
for organizing analytical expressions into meaningful and manageable combina-
tions. With the loss of geometric insight, we lose control over our calculations, 
and the resulting growth in the complexity of analytical expressions inevitably 
forces us to retreat in the face of computational challenges. 

In response to the loss of geometric insight, two distinct approaches have been 
developed: the tensor calculus approach and the dyadic approach favored by 
modern differential geometers. Tensor calculus, which relies on the use of coor-
dinates, preserves the geometric insight by providing a framework of invariance 
that dictates precise rules for combing analytical expressions into geometrically 
meaningful combinations. By contrast, the dyadic approach eschews compo-
nents altogether and operates strictly in terms of geometric objects. Naturally, 
both approaches have their uses and misuses, their advantages and disadvantag-
es, as well as their adherents and detractors - note the orgies-of-indices vs. the 
orgies-of-formalism debate based on the quotes from Elie Cartan and Hermann 
Weyl The truth, of course, as Cartan’s and Weyl’s teach us, is that elements of 
both approaches are essential, and the two schools of thoughts complement, ra-
ther than conflict, each other. 

The goal of this paper is to describe a vector tensor calculus, i.e. a particular 
style of the tensor treatment of a Euclidean space that combines elements of both 
the tensor and dyadic approaches by emphasizing the use of geometric vectors, 
by which we mean a directed segment, in a tensor calculus setting. Some ele-
ments of this approach can be found in V. F. Kagan’s Foundations of the Theory 
of Surfaces in Tensor Terms [1]. However, Kagan typically uses geometric vector 
quantities only at the outset of any particular discussion and quickly abandons 
them in favor of working with their components. By contrast, we will take the 
analysis of vector quantities much further and discover their tremendous utility 
in simplifying the description of Euclidean spaces and in revealing new and in-
sightful relationships. 

Another noteworthy aspect of Kagan’s work that deserves to be mentioned is 
its determination to communicate the essential ideas in a way that favors trans-
parency over the technical details. Interesting, and relevant to the goals of this 
paper, is the fact that this element of Kagan’s style displeased some of his con-
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temporaries. In an otherwise positive review [2], A. D. Alexandrov criticized Ka-
gan’s lack of formalism: 

… Other shortcomings of this book have to do with the prevalence of the 
tensor framework. They manifest themselves in insufficient attention to the pre-
cise definitions of concepts as well as to the specification of assumptions re-
quired for validity of theorems. 

It is not my goal to criticize the work of V. F. Kagan. Such deficiencies are 
characteristic of an entire direction in differential geometry and can be found in 
the majority of books devoted to this field. They have become a matter of style 
that I find anachronistic, as our present notion of rigor is different from that of, 
say, the middle of the nineteenth century. 

With Alexandrov’s remarks duly noted, we will follow the spirit of Kagan’s 
classic and favor clarity over formalism. Our main goal is to show that an em-
phasis on geometric vectors can provide greater insight into the structure of a 
Euclidean space, offer more elegant demonstrations of known results, and open 
doors to new results. For the more traditional approach to the tensor description 
of a Euclidean space, see the classical textbooks [3] [4] [5]. 

2. Summary of Demonstrated Identities 

As an illustration of the effectiveness of the proposed approach, we will demon-
strate a family of integral relationships on a smooth hypersurface S in an n- 
dimensional Euclidean space, where S is characterized by the unit normal field 
N , mean curvature Bα

α , and scalar curvature R. A natural approach to extend-
ing the concept of geometric vectors to higher-dimensional Euclidean spaces is 
described in Chapter 20 of [6]. Also note that for a two-dimensional hypersur-
face, the scalar curvature R reduces to twice the Gaussian curvature K. 

As with most integral identities in vector calculus, the presented formulas are 
direct corollaries of the divergence theorem. However, not all frameworks make 
the application of the divergence theorem straightforward or the results of its 
application subject to a geometric interpretation. This is almost surely the reason 
why some of the presented identities appear to have heretofore eluded discovery. 

Assuming that S is sufficiently smooth, we will first demonstrate the well- 
known fact that the surface integral of the unit normal over a closed surface va-
nishes, i.e. 

d .
S

S =∫ N 0                             (4) 

Similarly, we will show that the surface integral of the curvature normal Bα
αN  

also vanishes, i.e. 

d .
S

B Sα
α =∫ N 0                           (5) 

Finally, we will demonstrate that the surface integral of the invariant RN  va-
nishes as well, i.e.  

d ,
S

R S =∫ N 0                            (6) 
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which, in the case of a two-dimensional hypersurface, becomes  

d .
S

K S =∫ N 0                            (7) 

Each of the above identities will be demonstrated by expressing the integrand 
as the surface divergence of a first-order tensor (with vector elements) and thus 
making it subject to a straightforward application of the surface divergence 
theorem. 

For the next set of integral identities, introduce the position vector R  ema-
nating from an arbitrary origin O. (Note that the scalar curvature R is entirely 
unrelated to the magnitude of the position vector R .) Observe that for any vec-
tor field U  whose integral over a closed surface S vanishes, i.e. 

d ,
S

S =∫ U 0                              (8) 

it is natural to inquire as to the value of the integral 

d
S

S⋅∫ R U                              (9) 

since it is independent of the location of O. Indeed, if ′R  is the position vector 
field emanating from an alternative origin O’, then  

,′ = +R R d                             (10) 

where d  points from O’ to O, and we have  

( )d d
S S

S S′ ⋅ = + ⋅∫ ∫R U R d U                         (11) 

d d
S S

S S= ⋅ + ⋅∫ ∫R U d U                    (12) 

d .
S

S= ⋅∫ R U                             (13) 

Independence from the location of O suggests that the integral 

d
S

S⋅∫ R U                              (14) 

represents a geometric characteristic of the surface S. Indeed, for each of the 
vector fields N , Bα

αN , and RN , the surface integral of the dot product with 
the position vector yields an interesting geometric quantity. Namely, 

d
S

S nV⋅ =∫ R N                         (15) 

( )d 1
S

B S n Aα
α⋅ = − −∫ R N                      (16) 

1d d ,
2S S

K S B Sα
α⋅ = −∫ ∫R N                      (17) 

where V is the volume of the domain enclosed by S, A is the surface area of S, 
and Bα

α  is, again, the mean curvature. 
Note that the same logic applies to the cross product integral 

d .
S

S×∫ R U                           (18) 

However, somewhat disappointingly, we will find that 

d d d .
S S S

S B S K Sα
α× = × = × =∫ ∫ ∫R N R N R N 0             (19) 
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3. A Vector Tensor Calculus Description of a Euclidean Space 
and of Hypersurfaces within It 

We will now describe the fundamental elements of a vector tensor calculus - a 
flavor of conventional tensor calculus with an emphasis on geometric vectors. 
Since it is not possible to present a full account in the limited available space, we 
will only give the definitions of the key objects, state their fundamental proper-
ties, and list the essential identities relevant to our narrative. A detailed descrip-
tion can be found in [6]. 

The presented approach works in Euclidean spaces of arbitrary dimension n. 
However, for the sake of specificity and simplicity, we will mostly limit our de-
scription to the three-dimensional space since the generalization to arbitrary 
dimension is completely straightforward. 

Refer the ambient Euclidean space to arbitrary curvilinear coordinates 1 2 3, ,Z Z Z  
or, collectively, iZ , and treat the position vector R  as a function of iZ , i.e.  

( ) ,Z=R R                           (20) 

where the shorthand symbol ( )ZR  represents the function ( )1 2 3, ,Z Z ZR . 
Then the covariant basis iZ , the contravariant basis iZ , the covariant metric 
tensor ijZ , and the contravariant metric tensor ijZ  are given by the identities  

( )
i i

Z
Z

∂
=

∂

R
Z                          (21) 

i i
j jδ⋅ =Z Z                           (22) 

ij i jZ = ⋅Z Z                           (23) 

,ij i
jk kZ Z δ=                           (24) 

where i
kδ  is the familiar Kronecker delta symbol. Note that in an n-dimensional 

space,  

.i
i nδ =                             (25) 

Collectively, the objects iZ , iZ , ijZ , ijZ , i
jδ , along with the Levi-Civita 

symbols ijkε  and ijkε , are referred to as the metrics or, more specifically, the 
ambient metrics. 

Suppose that a hypersurface S is referred to the surface coordinates 1 2,S S  or, 
collectively Sα . Treat the surface restriction of the position vector R  as a 
function of Sα , i.e.  

( ) ,S=R R                           (26) 

where, again, the shorthand symbol ( )SR  represents the function ( )1 2,S SR . 
Following the ambient footprint, the covariant basis αS , the contravariant 

basis αS , the covariant metric tensor Sαβ , and the contravariant metric tensor 
Sαβ  are given by the identities  

( )S
Sα α

∂
=

∂

R
S                          (27) 
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α α
β βδ⋅ =S S                             (28) 

Sαβ α β= ⋅S S                             (29) 

,S Sαβ α
βγ γδ=                             (30) 

where α
βδ  is again the familiar Kronecker delta symbol but this time defined on 

the surface. Note that on a hypersurface in an n-dimensional space, we have  

1.nα
αδ = −                             (31) 

Collectively, the objects αS , αS , Sαβ , Sαβ , α
βδ , along with the Levi-Civita 

symbols αβε  and αβε , are also referred to as the metrics or, more specifically, 
the surface metrics. 

The ambient components iU  of a vector U  are given by the dot product of 
U  with the contravariant basis vectors iZ , i.e.  

.i iU = ⋅Z U                            (32) 

Similarly, the surface components U α  of a vector U  in the plane tangential 
to surface S are given by the dot product of U  with the surface contravariant 
basis vectors αS , i.e.  

.U α α= ⋅S U                           (33) 

The shift tensor iZα  represents the ambient coordinates of the surface cova-
riant basis αS , i.e.  

.i iZα α= ⋅Z S                          (34) 

The shift tensor is a critical object in the traditional approach to tensor calculus, 
but will not figure in our analysis. 

The unit normal N  is given by the identity  

1 ,
2

αβ
α βε= ×N S S                        (35) 

where αβε  is the surface Levi-Civita symbol. Of the two available normal direc-
tions, the above formula chooses the one such that the set 1 2, ,S S N  is positive-
ly oriented. Clearly, the above definition of the unit normal N  is valid only for 
a two-dimensional hypersurface and it is, indeed, a straightforward matter to 
generalize it to higher (and lower) dimensions. 

The (ambient) covariant derivative k∇  is a differential operator that pre-
serves the tensor property of its inputs. It satisfies the product rule, the sum rule, 
and the metrinilic property with respect to all the ambient metrics, i.e. 

, , , , 0ij i ijk
k ij k k j k ijk kZ Z δ ε ε∇ ∇ ∇ ∇ ∇ =                (36) 

, i
k i k∇ ∇ =Z Z 0                        (37) 

In affine coordinates, the covariant derivative k∇  coincides with the partial 
derivative kZ∂ ∂ . The same is true of k∇  with respect to tensors of order zero, 
i.e. invariants, in arbitrary coordinates. In particular, the covariant basis iZ  can 
be expressed in terms of the covariant derivative, i.e.  

.i i= ∇Z R                           (38) 
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The surface covariant derivative γ∇  is a differential operator that applies to 
objects defined on the surface. It, too, is distinguished by the property that it 
preserves the tensor property of its inputs. It satisfies the sum rule, the product 
rule, and the metrinilic property with respect to ambient metrics, i.e.  

, , , , 0,ij i ijk
ij j ijkZ Zγ γ γ γ γδ ε ε∇ ∇ ∇ ∇ ∇ =               (39) 

and most of the surface metrics, i.e.  

, , , , 0,S Sαβ α αβ
γ αβ γ γ β γ αβ γδ ε ε∇ ∇ ∇ ∇ ∇ =              (40) 

with the notable exception of the surface bases αS  and αS . It coincides with 
the partial derivative S γ∂ ∂  in affine coordinates, provided that the surface 
admits such coordinates. It also coincides with the partial derivative for tensors 
of order zero in arbitrary coordinates. In particular,  

.α α= ∇S R                           (41) 

The ambient version of the divergence theorem states that the volume integral 
of an invariant quantity i

iT∇ , known as the divergence of iT , equals the sur-
face integral of the invariant quantity i

iN T , i.e.  

d d ,i i
i iS
T N T Sω

Ω
∇ =∫ ∫                      (42) 

where Ω  is a domain enclosed by the surface S, and iN  are the ambient com-
ponents of the exterior normal N . Note that the divergence theorem remains 
valid for tensors iT  with vector elements. 

The surface divergence theorem applies to a patch S with a boundary L and 
states that the surface integral of the invariant quantity Tα

α∇ , known as the 
surface divergence of Tα , equals the boundary integral of the invariant n Tα

α , 
i.e.  

d d ,
S L

T S n T Lα α
α α∇ =∫ ∫                     (43) 

where nα  are the surface components of the exterior unit normal n  to the 
boundary L that lies in the plane tangent to the surface. Once again, the theorem 
remains valid for a tensor αT  with vector elements. 

The concept of curvature arises in the analysis of the vectors α β∇ S . While 

α β∇ S  do not vanish, they are orthogonal to the surface and can therefore be 
written in the form 

,Bα β αβ∇ =S N                         (44) 

where Bαβ  is known as the curvature tensor. Note that the sign of Bαβ  de-
pends on the choice of the orientation of N . Thanks to Equation (41), the com-
bination BαβN , which we will refer to as the vector curvature tensor, is given in 
terms of the position vector R  by the identity 

.Bαβ α β= ∇ ∇N R                        (45) 

From this equation, it immediately follows that the curvature tensor Bαβ  is 
symmetric, i.e.  

.B Bαβ βα=                           (46) 
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The invariant Bα
α  is known as the mean curvature. 

Raising the subscript β  in Equation (45) and contracting with α  yields  

.Bα α
α α= ∇ ∇N R                          (47) 

The vector quantity Bα
αN  is known as the curvature normal by analogy with 

the like-named characteristic of a curve. In fact, for any smooth curve in an n- 
dimensional Euclidean space, the quantity α

α∇ ∇ R  represents the curve’s cur-
vature normal conventionally defined as ( )2 2d dsR s . Also note that the orien-
tation of the curvature normal does not depend on which of the two available 
orientations for N  is chosen. 

In words, the above identity states that the curvature normal of a surface is the 
surface Laplacian of the position vector. Alternatively, it may be described as the 
surface divergence of the contravariant basis vector αS , i.e.  

.Bα α
α α= ∇N S                           (48) 

By expressing the curvature normal as the surface divergence of another quanti-
ty, Equation (48) virtually anticipates the fact that the integral of the curvature 
normal over a closed surface S vanishes. 

The covariant derivative of the unit normal N  is given by the Weingarten 
equation  

.Bα β α
β∇ = −N S                         (49) 

One of the most elegant identities involving the curvature tensor is the Gauss 
equations of the surface which read  

,B B B B Rαγ βδ αδ βγ αβγδ− =                     (50) 

where Rαβγδ  is the Riemann-Christoffel tensor. For a two-dimensional hyper-
surface in a three-dimensional Euclidean space, the Gauss equations reduce to 
the form  

,B B B B Kαγ βδ αδ βγ αβ γδε ε− =                    (51) 

where K is the Gaussian curvature and αβε  is again the Levi-Civita symbol. 
Raising the subscripts α  and β  yields  

,B B B B Kα β α β αβ
γ δ δ γ γδδ− =                      (52) 

where αβ αβ
γδ γδδ ε ε=  is known as the second-order delta system. 

Note that for any second-order system Aα
β  in two dimensions we have  

,A A A A Aα β α β αβ
γ δ δ γ γδδ− =                      (53) 

where A is the determinant of Aα
β . Therefore, on a two-dimensional hypersur-

face, the Gauss equations are equivalent to the statement that the Gaussian cur-
vature equals the determinant B of Bα

β , i.e.  

.K B=                             (54) 

In fact, an interesting generalization of the Gauss-Bonnet theorem to a closed 
hypersurface in an arbitrary-dimensional Euclidean space is the statement that 
the surface integral 
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d
S

B S∫                              (55) 

depends on the topology of S but not its shape. 
In n dimensions, write the Gauss equations 

B B B B Rαγ βδ αδ βγ αβγδ− =                      (50) 

with α  and β  as superscripts, i.e. 

,B B B B Rα β α β αβ
γ δ δ γ γδ⋅ ⋅− =                       (56) 

and contract α  with γ  and β  with δ , i.e. 

.B B B B Rα β α β αβ
α β β α αβ⋅ ⋅− =                       (57) 

The invariant  

R Rαβ
αβ⋅ ⋅=                             (58) 

is known as the scalar curvature and thus we have 

.B B B B Rα β α β
α β β α− =                         (59) 

In words, the difference between the square of the trace of the curvature tensor 
Bα
β  and the trace of the third fundamental form B Bα β

β γ  equals the scalar cur-
vature. 

Closely related to the Gauss equations, are the Codazzi equations  
,B Bα βγ β αγ∇ = ∇                          (60) 

which, in combination with the symmetry of Bβγ , imply that the tensor Bα βγ∇  
is symmetric in all of its subscripts. Below, we will use the immediate conse-
quence of the Codazzi equations obtained by raising the index γ  and con-
tracting it with α , i.e.  

.B Bα α
α β β α∇ = ∇                           (61) 

4. Demonstrations of the Integral Identities 

4.1. The Integral ∫S N Sd  

With the help of the ambient and the surface versions of the divergence theo-
rems we will now prove, in two different ways, the fact that the integral of the 
unit normal N  vanishes, i.e.  

d .
S

S =∫ N 0                             (4) 

Indeed, since i
iN=N Z , the ambient version of the divergence theorem tells 

that  

d d d .i i
i iS S

S N S Z
Ω

= = ∇∫ ∫ ∫N Z Z                   (62) 

We now observe that the integrand in the last integral vanishes by the metrinilic 
property (36) and thus the proof is complete. 

One dissatisfying aspect of this proof is the fact that it engages elements from 
the ambient space while the identity  
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d
S

S =∫ N 0                              (4) 

itself includes only fields defined on the surface S. Therefore, it will behoove us 
to construct a proof that likewise only involves fields defined on S. In its literal 
form, the following proof applies only to a two-dimensional hypersurface but 
can be easily generalized to arbitrary dimension. 

Recall that the normal N  is given by the identity 

1 .
2

αβ
α βε= ×N S S                         (35) 

Since 

,α α= ∇S R                            (41) 

we have 

1 .
2

αβ
α βε= ∇ ×N R S                        (63) 

By the combination of the product rule and the metrinilic property (40) of α∇  
with respect to αβε , we have 

( )1 1 .
2 2

αβ αβ
α β α βε ε= ∇ × − ×∇N R S R S               (64) 

Furthermore, the fact that Bα β αβ∇ =S N  yields  

( )1 1 .
2 2

Bαβ αβ
α β αβε ε= ∇ × − ×N R S R N               (65) 

Next, note that since Bαβ  is symmetric and αβε  is skew-symmetric, the 
double contraction Bαβ

αβε  vanishes. Thus, the normal N  is given by the 
identity 

( )1 .
2

αβ
α βε= ∇ ×N R S                      (66) 

In other words, N  can be expressed as half the surface divergence of 
αβ

βε ×R S , which immediately yields the desired result by an application of the 
surface divergence theorem. Indeed, integrate both sides of the above identity 
over the surface S, i.e. 

( )1d d .
2S S

S Sαβ
α βε= ∇ ×∫ ∫N R S                 (67) 

When S is closed and therefore does not have a boundary, the surface diver-
gence theorem tells us that the surface integral of the unit normal vanishes, as we 
set out to show. When S is a patch with a boundary L, the surface divergence 
theorem reads 

1d d .
2S L

S n Lαβ
α βε= ×∫ ∫N R S                  (68) 

Since the combination n αβ
αε  equals the components T β  of the unit tangent 

vector T  to the boundary L, we discover the formula 
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1d d .
2S L

S L= ×∫ ∫N R T                     (69) 

Note that both N  and T  have two possible orientations that must be coor-
dinated according to the following rule of thumb: when the fingers of the right 
hand follow the direction of T , the thumb must point in the direction of N . 

In particular, Equation (69) shows that the integral of the unit normal N  
over a surface patch depends only on the shape of its contour boundary and not 
the shape of the patch itself. 

The geometric quantities found in Equation (69) are illustrated in Figure 3. 

4.2. The Integral ∫S NB Sdα
α  

Let us now turn our attention to the identity  

d
S

B Sα
α =∫ N 0                          (5) 

involving the integral of the curvature normal Bα
αN . Recall that the curvature 

normal Bα
αN  is the surface divergence of the contravariant basis αS , i.e. 

,Bα α
α α= ∇N S                           (48) 

from which, once again, the desired identity follows immediately by an applica-
tion of the surface divergence theorem. Indeed, integrating both sides over S, we 
find 

d d .
S S

B S Sα α
α α= ∇∫ ∫N S                       (70) 

If the surface S is closed and therefore does not have a boundary L, the integral 
on the right vanishes, as we set out to show. Meanwhile, for a patch S with a 
boundary L, an application of the surface divergence theorem yields 

d d .
S L

B S n Lα α
α α= ∇∫ ∫N R                      (71) 

Since 

,n nα α
α α∇ = =R S n                        (72) 

where n  is the exterior unit normal to the boundary L that lies in the plane 
tangent to the surface S, we arrive at the final identity 

d d .
S L

B S Lα
α =∫ ∫N n                        (73) 

Two proofs of a special case of this identity can be found in [7]. The contrast 
between the complexity of those proofs and that of the one presented here 
speaks to the effectiveness of our vector tensor calculus framework. 

The key elements in the above identity are illustrated in Figure 4. 
Note that unlike the integral of the unit normal N , the integral of the curva-

ture normal Bα
αN  does depend on the shape of the patch (albeit only in the 

immediate vicinity of L) since the shape of the patch dictates the direction of the 
normal n . 
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Figure 3. Geometric elements found in Equation (69). 
 

 

Figure 4. Geometric elements found in Equation (73). 

4.3. The Integral ∫S NR Sd  

Finally, let us demonstrate the identity 

d ,
S

R S =∫ N 0                            (6) 

where R is the scalar curvature. Recall that for a two-dimensional hypersurface, 
2R K= , where K is the Gaussian curvature, and therefore (6) implies  

d .
S

K S =∫ N 0                            (7) 

To begin the proof, apply the covariant derivative α∇  to both sides of the 
Weingarten equation 

,Bα β α
β∇ = −N S                          (49) 

to obtain an expression for the surface Laplacian of the unit normal N , i.e. 

( ).Bα β α
α α β∇ ∇ = −∇N S                      (74) 

An application of the product rule on the right side yields 

 .B Bα β α β α
α α β α β∇ ∇ = −∇ − ∇N S S                   (75) 

Since  

Bβ β
α α∇ =S N                            (76) 

and, by the Codazzi equations, 

,B Bα α
α β β α∇ = ∇                           (61) 

we have 

.B B Bα β α β α
α α β β α∇ ∇ = − − ∇N N S                    (77) 

A reverse application of the product rule to the second term on the right yields 

( ) ,B B B Bα β α β α β α
α α β β α β α∇ ∇ = − −∇ +∇N N S S              (78) 
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and, since Bβ β
β β∇ =S N , we have 

( ) ( ).B B B B Bα α β β α β α
α α β α β β α∇ ∇ = − −∇N N S               (79) 

Since  

,B B B B Rα β α β
α β β α− =                          (59) 

we find that the surface Laplacian of N  is given by  

( ).R Bα β α
α β α∇ ∇ = −∇N N S                      (80) 

Solving for RN , we find 

( ) ,R Bα α β
α β= ∇ ∇ +N N S                       (81) 

and therefore, much like N  and Bα
αN , the invariant RN , can be expressed as 

the surface divergence of a first-order tensor and thus the desired identity fol-
lows immediately by an application of the surface divergence theorem. Indeed, 
as before, integrate both sides over the surface S, i.e.  

( )d d .
S S

R S B Sα α β
α β= ∇ ∇ +∫ ∫N N S                   (82) 

When the surface S is closed and therefore does not have a boundary L, an 
application of the surface divergence theorem yields the desired result  

d ,
S

R S =∫ N 0                             (6) 

which, for a two-dimensional hypersurface, reduces to  

d .
S

K S =∫ N 0                             (7) 

Meanwhile, if S is a surface patch with a boundary L, then the surface diver-
gence theorem reads  

( )d d ,
S L

R S n n B Lα α β
α α β= ∇ +∫ ∫N N S                  (83) 

or, equivalently, 

( )d d .
S L

R S n B Lα α
α α= ∇ +∫ ∫N N n                   (84) 

With the help of Weingarten’s Equation (49), this identity can be rewritten in 
the form  

( )d d .
S L

R S n B n B Lα α β
β α α β= −∫ ∫N S                  (85) 

For a two-dimensional hypersurface, where 2R K= , the above formula be-
comes  

( )1d d .
2S L

K S n B n B Lα α β
β α α β= −∫ ∫N S                 (86) 

4.4. The Integral ∫S R N Sd⋅  

Let us now prove the related integral identities involving dot products with the 
position vector R . Since the following calculations rely on the very same ele-
ments that we used extensively in the foregoing discussion, we will present the 
derivations as staccato chains of identities with minimal references. 

https://doi.org/10.4236/jamp.2023.113047


P. Grinfeld 
 

 

DOI: 10.4236/jamp.2023.113047 719 Journal of Applied Mathematics and Physics 
 

For the integral 

d
S

S⋅∫ R N                           (87) 

we have 

d di
iS S

S N S⋅ = ⋅∫ ∫R N R Z                    (88) 

by Equation (42) ( )di
iΩ

= ∇ ⋅ Ω∫ R Z                (89) 

by Equation (37) di
iΩ

= ∇ ⋅ Ω∫ R Z                  (90) 

by Equation (38) di
iΩ

= ⋅ Ω∫ Z Z                   (91) 

by Equation (22) diiδΩ= Ω∫                      (92) 

by Equation (25) dn
Ω

= Ω∫                       (93) 

.nV=                      (94) 

In summary, 

d .
S

S nV⋅ =∫ R N                        (15) 

This is a well-known elegant expression for the volume of the enclosed domain 
as a surface integral. 

4.5. The Integral ∫S R NB Sdα
α⋅  

Let us now turn our attention to the integral  

d .
S

B Sα
α⋅∫ R N                         (95) 

Since 

,Bα α
α α= ∇ ∇N R                        (47) 

a reverse application of the product rule yields 

( ) .Bα α α
α α α⋅ = ∇ ⋅∇ −∇ ⋅∇R N R R R R                  (96) 

Thus, by the surface divergence theorem, 

d d .
S S

B S Sα α
α α⋅ = − ∇ ⋅∇∫ ∫R N R R                    (97) 

Continuing, we find 

d d
S S

B S Sα α
α α⋅ = − ∇ ⋅∇∫ ∫R N R R                    (98) 

by Equation (41) d
S

Sα
α= − ⋅∫ S S                   (99) 

by Equation (28) d
S

Sα
αδ= −∫                     (100) 

by Equation (31) ( )1 d
S

n S= − − ∫                  (101) 

( )1 .n A= − −                    (102) 

In summary, 

( )d 1
S

B S n Aα
α⋅ = − −∫ R N                       (16) 
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4.6. The Integral ∫S R NR Sd⋅  

Recall that the expression for the invariant RN  in the divergence form reads  

( ).R Bα α β
α β= ∇ ∇ +N N S                       (81) 

Thus, by a reverse application of the product rule, 

( )( ) ( ) ,R B Bα α β α α β
α β α β⋅ = ∇ ⋅ ∇ + −∇ ⋅ ∇ +R N R N S R N S        (103) 

and thus, by the surface divergence theorem, 

( )d d .
S S

R S B Sα α β
α β⋅ = − ∇ ⋅ ∇ +∫ ∫R N R N S              (104) 

Continuing, we find 

( )d d
S S

R S B Sα α β
α β⋅ = − ∇ ⋅ ∇ +∫ ∫R N R N S              (105) 

by Equation (27) ( )dS
B Sα α β

α β= − ⋅ ∇ +∫ S N S         (106) 

by Equation (49), (28) ( )dS
B B Sβ α α β

α β α βδ δ= − − +∫           (107) 

( )1 d
S

B Sα β
α βδ= − −∫                (108) 

by Equation (31) ( )2 d .
S

n B Sα
α= − − ∫                (109) 

In summary, 

( )d 2 d ,
S S

R S n B Sα
α⋅ = − −∫ ∫R N                     (110) 

For the special case of a two-dimensional hypersurface, where 3n =  and 
2R K= , we have  

1d d .
2S S

K S B Sα
α⋅ = −∫ ∫R N                        (17) 
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