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Abstract 
The system of shortened Maxwell’s equations simulating the processes of 
evolution of the stimulated Raman scattering (SRS) by polaritons in aniso-
tropic dipole-active crystals is obtained. The theory was developed for the 
case of cubic crystals which become anisotropic due to the deformation of the 
dielectric constant by the linearly polarized pump wave. The pump field is a 
linearly polarized plane electromagnetic wave. We report the results of the 
theoretical investigation of the possibility of the existence of a regime of pulse 
propagation as simultaneous travel of solitary waves in coherent anti-Stokes 
stimulated Raman scattering by polaritons in anisotropic crystals. The em-
phasis was made on the existence of both Stokes and anti-Stokes pulses 
propagating with two stable and perpendicular to the direction of travel pola-
rizations. We showed the theoretical possibility of simultaneous propagation 
of pulses not only at frequencies of Stokes and anti-Stokes waves but the 
pump frequency as well. We obtained the expression for the gain factor g. It is 
also shown that the expression for g is consistent with the experimental re-
sults for the spectra of ZnS. 
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1. Introduction 

Past decades showed significant progress in both theory of solitons and their 
multiple applications. The theoretical consideration includes, for instance, con-
sidering 3D solitons [1], solitons in exciton-polariton condensates [2], solitons 
of phonon polaritons and plasmon-polariton [3], solitons in multi-photonic 
processes [4], dissipative solitons [5] [6], Raman solitons in structures with me-
tamaterials [7], solitons in SRS [8], etc. We also see the tremendous success in 
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applying solitons in new substances whose characteristics could improve the 
properties of optical communication systems [9] [10] [11] [12] [13]. In [9] a new 
almost dispersionless mode in the photonic band gap in LiNbO3 is obtained. The 
article [10] reports experimental results on phonon-polariton Raman scattering 
in a hexagonally poled LiTaO3 crystal, showing that the anti-Stokes and Stokes 
Raman intensities are significantly enhanced by cascading a couple of qua-
si-phase-matching processes where the coherent polariton fields are driven and 
the enhanced scattering signals are further amplified. The demonstration of the 
distortion-free propagation of polariton pulses in CuCl is considered in [11]. 
The effects of the exciton dispersion on the properties of polariton solitons in 
gyrotropic and non-gyrotropic crystals are investigated in [12]. The first obser-
vation of spontaneous Raman solitons in Raman scattering by the NH3 is re-
ported in [13]. Significant progress is achieved in developing waveguides (see, 
for example [14] [15] [16]). In [14] was demonstrated that the giant nonlinearity 
of UV hybrid light-matter states (exciton-polaritons) up to room temperature, 
would lead to a new generation of integrated UV nonlinear light sources for ad-
vanced spectroscopy and measurement. The theoretical study of the magne-
to-optical manipulation of surface polaritons (SPs) in the negative index metama-
terial-dielectric interface waveguide system leading toward the creation of optical 
logic gates is shown in [15]. The analysis of the influence of Raman-induced 
self-frequency shift in two-component solitons, supported by both quadratic and 
cubic nonlinearities on soliton stability is reported in [16]. We also see new de-
velopments in the theory and application of microcavities and microcavity lasers 
[17]-[23]. In [17] we find the reported results of studying the nonstationary 
nonlinear processes in the lithium-niobite-on insulator (LiNOI) platform, which 
offers both large quadratic and cubic nonlinearities thus enabling brand new 
nonlinear photonic devices and applications for the next generation of inte-
grated photonic circuits. Detailed analysis of polariton-mediated Raman scat-
tering in microcavities is shown in [18]. The observation of bright polariton so-
litons in a semiconductor microcavity is provided in [19] [20] [21]. The unique 
perspectives toward ultrafast nonlinear photonics by exploiting the coupling of 
atomic motion and solitons inside a cavity are discussed in [22]. The theoretical 
and experimental investigation of an easily reproducible way to generate Raman 
solitons with controllable spectral width in an anomalous dispersion region in a 
functionalized silica microsphere is discussed in [23]. Of course, we also see 
progress in further development in both theoretical and practical domains of 
optical fibers and fiber lasers using solitons [24] [25] [26]. In [24] the research is 
focused on the numerical study of dark solitons in normal-dispersion optical fi-
bers described by the cubic-quintic complex Ginzburg-Landau equation with the 
existence of chaotic content and the tunneling through a potential barrier. The 
high-power intra-cavity Raman solitons within a passively mode-locked 
Yb-doped fiber laser were demonstrated successfully for the first time in [25]. 
The results of tunable mid-infrared Raman soliton generation in an all-solid flu-
oro-tellurite fiber pumped by a 1960 nm femtosecond fiber laser are in [26]. 
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The important feature of an optical pulse along with the amplitude and fre-
quency is its polarization. It is very desirable to have solitons with certain pola-
rization since this feature can be used for the delivery of additional information 
in communication systems. Such analysis for microcavity lasers is presented in 
[27] [28] [29]. The authors of [27] reported the results obtained for the state of 
polarization in the emission of a vertical-cavity surface-emitting laser with fre-
quency-selective feedback added. The influence of polarization on the formation 
of vectorial polariton in semiconductor microcavities through numerical simula-
tions is considered in [28]. In the case of optical fibers, since they are randomly 
birefringent and solitons formatting and traveling in them are randomly pola-
rized, it is desirable to have solitons with a well-defined polarization [29]-[43]. 
The theoretical and experimental study of soliton propagation in fiber lasers and 
its relationship with polarization is discussed in [44] [45] [46]. For example, [44] 
reports on the experimental observation of two types of a phase-locked vector 
soliton in weakly birefringent cavity erbium-doped fiber lasers. The results of the 
study of the polarization dynamics of ultrafast solitons in mode-locked lasers are 
presented in [45]. The vector feature of the dissipative solitons formed in a fiber 
laser is investigated in [46]. 

On the other hand, since optoelectronic systems have a large bandwidth, it 
would be promising to have several temporal solitons, traveling through the me-
dium simultaneously. Some theoretical aspects of such propagation (different 
substances, different mechanisms, etc.) were considered in [47] [48] [49]. The 
generation of three-wave solitons in the resonant LO-phonon-mediated interac-
tion of two intense coherent polaritons is proposed in [47]. We considered the 
theory and computer simulation of simultons formation in stimulated Roman 
scattering by polaritons in dipole-active crystals [48] [49]. In past years progress 
was also achieved in the process of the realization of solitons at different fre-
quencies [50] [51] [52]. The study of a compact nanotube-mode-locked all-fiber 
laser that can simultaneously generate picosecond and femtosecond solitons at 
different wavelengths is considered in [50]. The numerical and experimental in-
vestigation of the dynamics of dual-color-soliton collisions inside a mode-locked 
laser can be found in [51]. The experimental observation of polychromatic gap 
solitons generated by supercontinuum light in an array of optical waveguides, 
see in [52]. However, in our opinion, some aspect that could significantly broa-
den the diversity of soliton applications is the propagation of solitons not only 
having certain frequencies but definite polarizations as well. Authors think that 
one of the perspective applications of simultaneously propagating solitons with 
fixed polarizations (polarization simultons) is their application in digital systems 
with one polarization considered to be “zero” and another as “1”. The example 
of nonlinear processes leading to the formation of such polarization simultons 
was considered in [53], in which we studied the conditions of their formation in 
stimulated Raman scattering by polaritons. In the present paper, we theoretically 
consider a more general case: polarization soliton formation at not only Stokes 
frequency but anti-Stokes as well. Our theory developed for CARS in di-
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pole-active anisotropic crystals is consistent with experimental results. 

2. Basic Principles and Equations 

In the present article, we consider the nonlinear interaction of four electromag-
netic waves: anti-Stokes, Stokes, laser pump, and polariton. The pump wave is a 
linearly polarized plane electromagnetic wave whereas anti-Stokes and Stokes 
have two mutually perpendicular components (the nonlinear medium is as-
sumed to be nonmagnetic and transparent at frequencies of anti-Stokes, Stokes, 
and laser waves). It is also assumed that the nonlinear interaction takes place in a 
nonlinear medium in a form of a layer bounded by the planes z = 0 and z = L. 
The pump wave 

( ) ( ) ( )ˆ, , exp . .z
l l l l lE r t e A z t i k z t c cω = − + 


              (1) 

propagates along the z-axis. The subscripts a, l, s, and p henceforth denote the 
anti-Stokes, laser, Stokes, and polariton waves at the frequencies , , ,a l s pω . We use 
the expressions for the anti-Stokes, Stokes, and polariton fields in the form 

( ) ( ) ( ) ( ) ( )
1,2

ˆ, , exp . .a a a a aE r t e A z t i k r t c cµ µ

µ
ω

=

 = − + ∑




            (2) 

( ) ( ) ( ) ( ) ( )
1,2

ˆ, , exp . .s s s s sE r t e A z t i k r t c cµ µ

µ
ω

=

 = − + ∑




            (3) 

( ) ( ) ( ) ( ) ( )
1,2,3

ˆ, , exp . .p p p pE r t e A z t i Wr t c cσ σ

σ
ω

=

 = − + ∑
 

           (4) 

where , , , , , , , , ,a s l p a s l p a s l pk q n= ; , , ,a s l pn  and , , ,a s l pk  are the refractive indices and 
the magnitude of wave vectors in the unpumped medium; , , ,ˆa s l pe  are the real 
unit vectors of corresponding electromagnetic fields; , , , , , ,a s l p a s l pq cω= ;  

l skW k= −


 

; p l sω ω ω= − ; ( )
, ,ˆa s a se kµ ⊥



, ( ) ( )1 2
, ,ˆ ˆa s a se e⊥ , ( )1,2ˆpe W⊥



, ( ) ( )1 2ˆ ˆp pe e⊥ , 
( )3ˆpe W W=



. 
Since we consider the non-resonant frequencies, the longitudinal components 

of the anti-Stokes and Stokes waves can be neglected, but this cannot be done for 
the polariton wave in the vicinity of the phonon resonance. As it was shown in 
[54] with a further advance towards this region the amplitudes of all three pola-
riton waves ( )

pA σ  become comparable at first, then ( )3
pA  (the longitudinal 

component) becomes dominant (of course, if such excitation is allowed by the 
selection rules). The phase of the polariton wave is determined by the vector W



 
(not by pk



 ( p p pk q ε= , ' ''
p p piε ε ε= +  is the dielectric constant at the pola-

riton frequency pω )). 
The nonlinear interaction of the electromagnetic waves ,l sω  with the further 

generation of anti-Stokes and polariton waves is described by the nonlinear parts 
of the corresponding polarizations ( 1,2µ = ): 

( ) ( ) ( ) ( ) ( ) ( )2 ' ' ''' ' ''
2 2e

zi k z
a a l p a l a a s s aP A A A A A A Aµ σ µ µ µ µµσ µµ µµ µχ γ γ− ∆= + +  

( ) ( ) ( ) ( )*
1 2 e

zi k z
l l s p l a pP A A A Aµ σ µ σµσ µσχ χ ∆= +                 (5) 

( ) ( ) ( ) ( ) ( ) ( )2* ' ' ''' ' ''
1 2s s l p s l s s a a sP A A A A A A Aµ σ µ µ µ µµσ µµ µµ µχ γ γ= + +  
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( ) ( ) ( ) ( ), **
1 2 exp z

p p l s p l aP A A A A i k zσ µ µ µµσ µσχ χ= + − ∆  ( 1, 2σ = ) 

( )( ) ( ) ( ) ( )3 *3 * 3
1 2 exp z

p p l s p l aP A A A A i k zµ µ µµ µχ χ= + − ∆ , 

where a
µσχ , 1l

µσχ , 2l
µσχ , s

µσχ , 1p
µσχ , 2p

µσχ , 3
1p
µχ , 3

2p
µχ , '

2a
µµγ , ' ''

2a
µµ µγ , '

1s
µµγ , 

and ' ''
2s
µµ µγ  are the corresponding tensor contractions of the non-resonance 

quadratic and cubic nonlinear polarizabilities with unit vectors of interacting 
waves; z z z z

l ak k W k∆ ≡ + − . 
The system of shortened equations for the amplitudes , , ,a l s pA  is obtained 

from Maxwell’s equations by using the standard method of getting shortened 
equations by applying the approximation of slowly varying amplitudes [55] 

1,2µ = , 1,2,3σ =  
( )

( )

( )

( ) ( )
( ) ( ) ( ) ( ) ( ){ }2* ' ' * ''' ' ''

2 2

1

2 e ,
cos

z

a a
z
a

i k za
a l p a l a a s s az

a a

A A
z tv

i A A A A A A A
cn

µ µ

µ

σ µ µ µ µµσ µµ µµ µ
µ µ

ω χ γ γ
θ

− ∆

∂ ∂
+

∂ ∂

= +
π

+

 (6) 

( ) ( ) ( ) ( ){ }*
1 2

21 e
cos

zi k zl l l
l s p l a pz z

l l l

A A
i A A A A

z tv cn
µ σ µ σµσ µσω

χ χ
θ

∆∂ ∂
+ =

∂
π

+
∂

,      (7) 

( )

( )

( )

( )
( ) ( ) ( ) ( ) ( ){ }2* ' '' * ''' ' ''

1 2

1

2 , 1,2
cos

s s
z
s

s
s l p s l s s a a sz

s s

A A
z tv

i A A A A A A A
cn

µ µ

µ

σ µ µ µ µµσ µµ µµ µ
µ

ω χ γ γ σ
θ

∂ ∂
+

∂ ∂

= + + =
π

 (8) 

( )
( )

( ) ( ) ( )

( ) ( )

( ) ( ){ }

3
2 2

2

*2 *
1 2

2
2

4 e
z

p p p p pzz
p p p

i k z
p p l s p l a

A A A
iW iWe i W k A

z z tc

q A A A A

σ σ σ
σ σ

µ µµσ µσ

ω ε

χ χ

∗ ∗ ∗ ∗
∗∗

− ∆

∂ ∂ ∂
− + + −

+π

∂ ∂ ∂

=

    (9) 

( )
( )

( )
( ) ( )

( )( )
( ) ( )

( ) ( ) ( ){ }

1 2 3 * 3 3
1 2 3

2

3 * *2* 2 3 * 3
1 2

d 2
d

4 e
z

p p p p p pz z zz
p p p

i k z
p p p p l s p l a

A A A A
iW e e i W We i

z z z tc

k A q A A A Aµ µµ µ

ω ε

χ χ

∗ ∗ ∗ ∗

− ∆

 ∂ ∂ ∂
 − + + − +
 ∂ ∂ ∂ 

= +π−

 (10) 

Provided the strong polariton absorption we have [54] 

( )( )
( )

( )( )
( )

1 1 2 2*
2

p p p
p p p

A A
W A A W k

z tc

σ σ
σ σω− −∂ ∂

≈ −
∂ ∂

 ,        (11) 

We can neglect in (9) and (10) the terms with the derivatives so that we could 
directly obtain the expressions for ( ) ( )1,2pA σ σ =  and ( )3

pA : 

( ) ( ) ( ){ } ( )* **
1 22 *

4 e , 1,2 ,
zi k z

p p l s p l a
p

A A A A A
s

σ µ µµσ µσχ χ σ
ε

− ∆= + =
π
−

      (12) 

and 

( ) ( ) ( ){ }3 * *3 * 3
1 2*

4 e ,
zi k z

p p l s p l a
p

A A A A Aµ µµ µχ χ
ε

− ∆+
π

= −            (13) 
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where ps W q= . 
The substitution of the obtained expressions (12) and (13) for the amplitudes 

of polariton waves in (6)-(10) results in new system of differential equations for 

, ,a l sA  as follows: 
( )

( )

( )

( ) ( )
( ) ( ){

( ) ( ) ( )}

2' * '' 2 '
1 2

' * ''' ''
2

21 e
cos

zi k za a a
a l s a l az z

a a a

a s s a

A A
i A A A A

z tv cn

A A A

µ µ
µ µµµ σ µµ σ

µ µ µ

µ µ µµµ µ

ω
γ γ

θ

γ

− ∆∂ ∂
=

∂
π

+ +
∂

+

 (14) 

( ) ( ){ ( ) ( )

( ) ( ) ( ) ( ) }

' * '' ' *
11 12

' ' *' * '
21 22

21 e
cos

e

z

z

i k zl l l
l l s s l l s az z

l l l

i k z
l l s a l l a a

A A
i A A A A A A

z tv cn

A A A A A A

µ µ µ µµµ σ µµ σ

µ µ µ µµµ σ µµ σ

ω
γ γ

θ

γ γ

∆

∆

π∂ ∂
+ = +

∂ ∂

+ +
   (15) 

( )

( )

( )

( )
( ){ ( )

( ) ( ) ( )}

2 ' ' *' ' 2
1 2

' '' * '''' ''
2

21 e
cos

zi k zs s s
s l s s l az z

s s s

s a a s

A A
i A A A A

z tv cn

A A A

µ µ
µ µµµ σ µµ σ

µ µ

µ µ µµµ µ

ω
γ γ

θ

γ

− ∆∂ ∂
+ = +

+

π
∂ ∂  (16) 

where 
' 3 '3

1 1'
1 24 a p a p

a
pps

µσ µ σ µ µ
µµ σ χ χ χ χ

γ
εε

 
≡ −


π  − 

, 
' 3 '3

1 2' '
2 224 a p a p

a a
pps

µσ µ σ µ µ
µµ σ µµχ χ χ χ

γ γ
εε

 
≡ − +  − 

π


, 

' '3
1 1'

11 1 24 p p
l l

pps

µ σ µ
µµ σ µσ χ χ

γ χ
εε

 
≡ −  − 

π , 
' '3
2 2'

12 1 24 p p
l l

pps

µ σ µ
µµ σ µσ χ χ

γ χ
εε

 
≡ −  − 

π , 

' '3
1 1'

21 2 2 * *4 p p
l l

p ps

µ σ µ
µµ σ µσ χ χ

γ χ
ε ε

 
≡ −π   − 

, 
' '3
2 2'

22 2 2 * *4 p p
l l

p ps

µ σ µ
µµ σ µσ χ χ

γ χ
ε ε

 
≡ −π   − 

 

' '3
1 1' '

1 1 2 * *4 p p
s s s

p ps

µ σ µ
µµ σ µµ µσ χ χ

γ γ χ
ε ε

 
≡ + −


π  − 

, 
' '3
2 2'

2 2 * *4 p p
s s

p ps

µ σ µ
µµ σ µσ χ χ

γ χ
ε ε

 
≡ −  − 

π . 

The system (14)-(16) can also be simplified if we introduce new variables as 
( ) ( ) ( )' '2 ( ) 2e , e

z zi k z i k z
a a s sA A A Aµ µ µ µ∆ ∆≡ ≡                (17) 

Assuming the “week” wave mismatch between waves at Stokes and anti-Stokes 
frequencies, that is 

( )

( )

( )
( )

' '
, , '

,
,

1 ,
2

z
a s a s

a sz
a s

A A k A
z t

µ µ
µ

µν

∂ ∂ ∆
+

∂ ∂
                 (18) 

and after bringing all variables to the unitless form, the system of nonstationary 
equations simulating CARS can be rewritten as follows: 

( )

( )

( )

( ) ( ) ( ) ( ) ( ){ }

' '

2' ' * ' ' ' ' ' * ' ''' 2 ' ' ''
1 2 2

1a a
z
a

a l s a l a a s s a

A A
z tv

i C A A C A A C A A A

µ µ

µ

µ µ µ µ µµµ µµ µµ µ

∂ ∂
+

∂ ∂

= + +

 







      

       (19) 

( ) ( ){ ( ) ( )

( ) ( ) ( ) ( ) }

' ' ' * ' ' '' ' *
11 12

' ' ' ' ' ' *' * '
21 22

1l l
l l s s l l s az

l

l l s a l l a a

A A
i C A A A C A A A

z tv

C A A A C A A A

µ µ µ µµµ µµ

µ µ µ µµµ µµ

∂ ∂
+ = +

∂ ∂

+ +

 

     



 

     

        (20) 
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( )

( )

( )

( ) ( ) ( ) ( ) ( ){ }

' '

2 ' ' ' ' * ' ' ' * ' ''' ' 2 ' ''
1 2 2

1s s
z
s

s l s s l a s a a s

A A
z tv

i C A A C A A C A A A

µ µ

µ

µ µ µ µ µµµ µµ µµ µ

∂ ∂
+

∂ ∂

= + +

 







      

      (21) 

where ( ) ( )' '
, , 0a s a sA A Aµ µ≡ , 0l lA A A≡ , 0t t τ≡  ( 0A  and 0τ  are the peak am-

plitude and characteristic pulse duration of the pump, 0 0z cτ= , c is the speed of 
light in vacuum), 

( ) ( )
' ' 20

1 1 0
2

cos
a

a az
a a

z
C A

cn
µµ µµ σ

µ µ

ω
γ

θ
π

≡ ; ( ) ( )
' ' 20

2 2 0
2

cos
a

a az
a a

z
C A

cn
µµ µµ σ

µ µ

ω
γ

θ
π

≡ ; 

( ) ( )
' '' ' '' 20

2 2 0
2

cos
a

a az
a a

z
C A

cn
µµ µ µµ µ

µ µ

ω
γ

θ
π

≡ ; ' ' 20
11 11 0

2
cos

l
l lz

l l

z
C A

cn
µµ µµ σω

γ
θ

π
≡ ; 

' ' 20
12 12 0

2
cos

l
l lz

l l

z
C A

cn
µµ µµ σω

γ
θ

π
≡ ; ' ' 20

21 21 0
2

cos
l

l lz
l l

z
C A

cn
µµ µµ σω

γ
θ

π
≡ ;        (22) 

' ' 20
22 22 0

2
cos

l
l lz

l l

z
C A

cn
µµ µµ σω

γ
θ

π
≡ ; ( )

' ' 20
1 1 0

2
cos

s
s sz

s s

z
C A

cn
µµ µµ σ

µ

ω
γ

θ
π

≡ ; 

( )
' ' 20

2 2 0
2

cos
s

s sz
s s

z
C A

cn
µµ µµ σ

µ

ω
γ

θ
π

≡ ; ( )
' '' ' '' 20

2 2 0
2

cos
s

s sz
s s

z
C A

cn
µµ µ µµ µ

µ

ω
γ

θ
π

≡ ; 

3. Asymptotic Solutions in a Form of Simultons at  
Frequencies a l sω , ,  

Here, we are looking for stationary solutions for the system mentioned above as 
(the tensors C in (22) are supposed to be previously diagonalized) 

( ) ( ) ( ) ( )
( ) ( ),'

, ,, e a si
a s a sA z t B

µ ξµ µ ξ Φ≡


 



 , ( ) ( ) ( ), e li
l lA z t B ξξ Φ≡



 



 ,        (23) 

where zt zξ ν≡ −




 ; zν  is the velocity of simultons at the frequencies , ,a l sω ; 

( )
, ,a l sB µ  and ( )

, ,a l s
µΦ  are the real amplitudes and phases of the interacting waves, 

respectively. Since we are going to evaluate amplitudes and phases separately, we 
duplicate the system (19)-(21) by using a standard procedure of presenting the 
real and imaginary parts of those equations as different ones: 

( )
( ) ( )2

1
d

sin ,
d

a
a a l s

B
C B B

µ
µ µµµκ

ξ
= − Φ



                 (24) 

( )
( )

( )

( )
( ) ( )( )

2
22

1 2
d

cos
d

a l s
a a a a l a s

a

B B
C C B C B

B

µ µ
µ µ µµµ µµ µµµ

µ
κ κ

ξ
Φ

= Φ + +


       (25) 

( ) ( ) ( )
12 21

d
sin

d
l

l l l l s a
B

C C B B Bµ µµµ µµκ
ξ
= + Φ



               (26) 

( ) ( ) ( ) ( ) ( )2 2
12 21 11 22

d
cos

d
l

l l l s a l l s l l aC C B B C B C Bµ µ µ µµµ µµ µµ µµκ κ κ
ξ
Φ

= + Φ + +


    (27) 

( )
( ) ( )2

2
d

sin ,
d

s
s s l a

B
C B B

µ
µ µµµκ

ξ
= − Φ



                 (28) 
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( )
( ) ( )

( )

( )

2
22

1 2 2
d

cos
d

s l a
s s l s a s

s

B B
C B C B C

B

µ µ
µ µµµ µµµ µµ

µ
κ

ξ

 Φ  = + + Φ 
  



        (29) 

where 
( ) ( ) ( )( ), , ,

z zz z
a s a s a sv v v vµ µ µκ ≡ −    , ( )z z z z

l l lv v v vκ ≡ −    ,          (30) 

( ) ( )2 l s a
µ µΦ ≡ Φ −Φ −Φ . 

Then if we introduce the amplitude of simultons as 
( )

( )

( )

( )

2 22

22 2
,a l s

la s

B B B
Q

µ µ

µ µλλ λ
≡ = =                     (31) 

we can reduce the above system to 

2d sin ,
d
Q Qα
ξ
= Φ


                       (32) 

d 2 cos
d

Q Qα β
ξ
Φ

= Φ +


,                    (33) 

Where 
( ) ( )2

1a a aCµ µ µµλ κ≡ − , ( )2
12 21l l l lC Cµµ µµλ κ≡ + ,             (34) 

( ) ( )2
2s s sCµ µ µµλ κ≡ − , ( ) ( )22 a l s

µ µα λ λ λ≡ , 
( )( ) ( ) ( ) ( )( )
( )( ) ( )

2 2
22 2 1 2

2
11

2

2 .

l l s s a s s a a l

l l a a s

C C C C

C C

µ µ µ µµµ µµµ µµ µµ

µ µµµ µµµ

β κ κ λ κ κ λ

κ κ λ

≡ − − +

+ −
 

The system (32)-(33) can be rewritten as, 

2d sin ,
d
Q Q
x
= Φ                        (35) 

( )d 2cos ,
d

Q
x

βΦ
= + Φ                      (36) 

where x αξ=  , β β α= . The numerical solutions of that system as polarized 
sumultons are shown in Figure 1. 

The transient processes of simultons formation for pulses at the pump, Stokes, 
and anti-Stokes frequencies are shown in Figure 2. 

4. Gain Factor gµ  

It can also be shown that the system of Equations (10)-(21) is consistent with the 
experimental results for CARS by polaritons. To facilitate the analysis we con-
sider the stationary solutions for Stokes and anti-Stokes waves in the constant 
pump approximation. Here we also assume that the processes of SRS lω  and 
the mutual interaction between sω  and aω  dominate other processes. Under 
that assumption the equations (19) and (21) can be reduced to the following 

( )
( )

1 *
1*d

d
a

a s
A

A
z

µ
µκ=



                        (37) 
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( )
( )

1
1 *d

d
s

s a
A

A
z

µ
µκ=



                        (38) 

where 1a aiCν µµκ = − ; 2s siCµµκ = . We have also assumed that tensors were diago-
nalized. 

This system can be converted into the single equation of the second order for, 
for example, the wave at Stokes frequency: 

( )
( )

12
1

2

d
d

s
s a s

A
A

z

µ
µκ κ∗=



                       (39) 
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Figure 1. The numerical solutions of (35)-(36) for polarized sumultons different initial conditions: (a) Q(0) = 0.002, Φ = π; (b) 
Q(0) = 0.001, Ф = π; (c) Q(0) = 0.0015,, Ф = π. 
 

Finally, if we introduce the gain factor as 
( ) ( ) ( ) ( )1 0 egz

s sA z Aµ µ=  ,                    (40) 

Then we would obtain g after substituting (40) in (39): 

( ) ( )

( ) ( ) ( ) ( )

( )

1 1
* 2 2

1 2

1
2

2 20
1 0 2 0

2 2 2
0 0

2 2
cos cos

8 ;

a s a s

a a s
a sz z

a a s s

g C C

z z
A A

cn cn

z A cn

µµ µµ

µµσ µµσ
µ µ µ µ

κ κ

ω ω
γ γ

θ θ

ω χ

π π

≈ =

 
=  
 

≈ π

           (41) 

(here we assumed that the pump was strong enough to provide 
2

1 1 2

z

a s
kC C

 ∆
 
 

 ). 

As the experimental data for this gain, we used the following [56]: pulse width 
of the pulsed Ar+ laser  30 ps, the peak output power ≈ 2.5 kW, the wavelength 
was 514.5 nm, the cross-section ≈ 10−18 cm−2, 110 cmfγ

−≈ , and 810 esuχ −≈ . 

In [57] the nonlinear medium was zinc blende ZnS, in which the polariton fre-
quencies were in the rage 200 - 400 cm−1. Both the experimental results for the 
gain factor in [55] and calculations based on (41) have resulted in g ≈ 1 and are 
shown in Figure 3. 

5. Conclusion 

In this paper, we theoretically showed that in the case of transient SRS by polaritons,  
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Figure 2. The computer simulation of transient processes for unitless intensities for (a) 
pump; (b) Stokes, and (c) anti-Stokes. 
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Figure 3. Gain factor versus polariton frequency in zinc blende ZnS. The red dots cor-
respond to the experimental points ([57]); blue solid lines are the result of a calculation 
based on ([41]). 

 
there is a possibility of occurrence of simultaneously propagating ultrafast stable 
pulses (simultons) not only at different frequencies but with different polariza-
tions as well. It was found that those polarizations are mutually perpendicular 
and perpendicular to the direction of propagation. Such features can be used in 
optoelectronics in polarization filters and as an analog of bits in digital optical 
communication systems. 
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