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Abstract 
In this article, we study the ability of error-correcting quantum codes to in-
crease the fidelity of quantum states throughout a quantum computation. We 
analyze arbitrary quantum codes that encode all qubits involved in the com-
putation, and we study the evolution of n-qubit fidelity from the end of one 
application of the correcting circuit to the end of the next application. We 
assume that the correcting circuit does not introduce new errors, that it does 
not increase the execution time (i.e. its application takes zero seconds) and 
that quantum errors are isotropic. We show that the quantum code increases 
the fidelity of the states perturbed by quantum errors but that this improve-
ment is not enough to justify the use of quantum codes. Namely, we prove 
that, taking into account that the time interval between the application of the 
two corrections is multiplied (at least) by the number of qubits n (due to the 
coding), the best option is not to use quantum codes, since the fidelity of the 
uncoded state over a time interval n times smaller is greater than that of the 
state resulting from the quantum code correction. 
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1. Introduction 

Currently, the largest obstacle to the development of quantum computing is 
still the control of quantum errors. Since the beginnings of quantum compu-
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ting in the 90 s of the last century, one of the main research goals was to solve 
this stumbling block. To address the problem, two fundamental tools were de-
veloped: quantum error correction codes [1]-[6] in combination with fault to-
lerant quantum computing [7]-[13]. These studies culminated in the proof of the 
quantum threshold theorem, which reads as follows: a quantum computer with a 
physical error rate below a certain threshold can, through application of quan-
tum error correction schemes, suppress the logical error rate to arbitrarily low 
levels. However, the proof of this theorem depends on the discretized treatment 
of quantum errors, inherited from the construction of quantum codes. 

We believe that the quantum error model used for the proof of the quantum 
threshold theorem is not general and that the techniques developed to control 
quantum errors do not verify the golden rule of error control: correct all small 
errors exactly. For example, in the case of the coding of a qubit by means of the 
5-qubit code [14] [15], it is argued, using error discretization and the fact that 
this code exactly corrects errors in any of the qubits, that the error probability 
goes from p to p2 once the correction circuit has been applied. But what is ac-
tually happening is that the probability of an error (small with high probability) 
in all qubits is 1 and that the code cannot correct these simultaneous errors. 
Then, an error occurs with probability 1 and, once the correction circuit is ap-
plied, it becomes undetectable. 

Therefore, it is necessary to perform an analysis of quantum errors regardless 
of their discretization. The procedure we suggest is to consider quantum errors 
as continuous random variables and characterize them by their corresponding 
density functions. In this article, we analyze a specific type of error: isotropic 
quantum errors. An isotropic error of an n-qubit Φ  is one in which the proba-
bility of the state after the error,  Ψ , only depends on the distance between the 
two states, Ψ −Φ , and not on the direction in which the imprecision  Ψ  
occurs with respect to Φ . Isotropic errors are easy to analyze due to their cen-
tral symmetry with respect to Φ . 

In [16] we have studied the ability of an arbitrary quantum code to correct 
these errors, using the variance as the error measure. If Φ  is the n-qubit with-
out error state,  Ψ  the state resulting from a disturbance modeled by an iso-
tropic quantum error and Φ  the result of applying the quantum code correc-
tion circuit, assuming that it does not introduce new errors, the result that we 
proved in [16] is the following: 

( ) ( ) ,V VΦ ≥ Ψ

 
where ( ) 2

V E  Φ = Φ −Φ  
   and ( ) 2V E  Ψ = Ψ −Φ   are the variances of 

the corrected state Φ  and the disturbed state Ψ  respectively. This means that 
no quantum code can handle isotropic errors, or even reduce their variance. 

In the present work we are interested in analyzing the ability of quantum 
codes to increase fidelity against isotropic errors. Fidelity allows a better measure 
of quantum errors, since it takes into account that quantum states do not change 
if they are multiplied by a phase factor, while the variance used in [16] does not 
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consider phase invariance. 
We represent n-qubits as points of the unit real sphere of dimension 2 1d −  

(where 2nd =  [17]) { }2 1 2 | 1d dS x x− = ∈ = , taking coordinates with respect 
to the computational basis 0 , 1 , , 2 1n −  , 

( )0 1 2 3 2 2 2 1, , , .d dx ix x ix x ix− −Ψ = + + +                (1) 

We consider quantum computing errors as random variables with density 
function defined on 2 1dS − . In [16] we mention that it is easy to relate this repre-
sentation to the usual representation in quantum computing by density matrices 
and that the representation through random variables is in fact more accurate. 

We define the variance of a random variable X as the mean of the quadratic 
deviation from the mean value µ  of X, ( ) 2V X E X µ = −  . In our case, 
since the random variable X represents a quantum computing error, the mean 
value of X is the n-qubit Φ  resulting from an errorless computation. Without 
loss of generality, we will assume that the mean value of every quantum compu-
ting error will always be 0Φ = . To achieve this, it suffices to move Φ  into 
0  through a unitary transformation. Therefore, using the pure quantum states 

given by Formula (1), the variance of X will be 

( ) [ ] ( )2 1

2
0 02 2 2 2 d .dS

V X E E x x f x x−
 = Ψ −Φ = − = −  ∫        (2) 

Obviously the variance satisfies ( ) [ ]0,4V X ∈ . In [18] an expression for the 
variance of the sum of two independent errors on 2 1dS −  is given. This expres-
sion is proved for isotropic errors and conjectured in general: 

( ) ( ) ( ) ( ) ( )1 2
1 2 1 2 .

2
V X V X

V X X V X V X+ = + −            (3) 

Considering the representation of errors through random variables, the defi-
nition of fidelity is just 

( ) ( ) ( )2 1

22 2 2 2 2
0 1 0 1 d .dS

F X E E x x x x f x x−
   = Ψ Φ = + = +    ∫       (4) 

Then, the problem we want to address is the following: Let 0Φ  be an 
m-qubit and Φ  the corresponding n-qubit encoded by an ( ),n m -quantum 
code  . Suppose that the coded state Φ  undergoes an error, becoming the 
state Ψ . To fix the error, the code correction circuit is applied and the final 
state Φ  is obtained. While Φ  is a pure state, Ψ  and Φ  are random va-
riables (mixed states). 

We also want to study the alternative of not using quantum codes. In this case, 
we suppose that the initial state 0Φ  suffers an error, becoming the state 0Ψ . 
State 0Ψ  is also a random variable. Then our goal is to compare the fidelities of 
Ψ , Φ  and 0Ψ : 

( ) ( ) ( )
2 22

0 0 0, and .F E F E F E    Ψ = Ψ Φ Φ = Φ Φ Ψ = Ψ Φ        
 

 
In order to compare the fidelities we will assume that the corrector circuit of 
  does not introduce new errors and it does not increase the execution time. In 

https://doi.org/10.4236/jamp.2023.112034


J. Lacalle et al. 
 

 

DOI: 10.4236/jamp.2023.112034 558 Journal of Applied Mathematics and Physics 
 

other words, what we are doing is estimate the theoretical capacity of the code to 
correct quantum computing errors. 

In the case of isotropic errors we shall prove that 

( ) ( ) ( )0 .F F FΨ ≥ Φ ≥ Ψ                     (5) 

This result leads us to the conclusion that the best option to optimize fidelity 
against isotropic errors is not to use quantum codes. This result goes in the same 
direction as that obtained in [16], which indicates that quantum codes do not 
reduce the variance against isotropic errors. 

However, the most widely used model of errors in quantum computing is qu-
bit-independent errors. The study of this type of quantum error is much more 
complex than that of isotropic errors, because it lacks the symmetry. Despite this 
technical difficulty, we have proved in [19] that the 5-qubit code [14] [15] is not 
able to reduce the variance against qubit independent errors. This result, togeth-
er with those obtained in [16] and in this article, clearly reveals the difficulty of 
the quantum error control challenge and strongly points out that the continuous 
nature of quantum errors cannot be ignored. 

There are many works related to the control of quantum computing errors, in 
addition to those already mentioned above. General studies and surveys on the 
subject [20]-[27], about the quantum computation threshold theorem [28] [29] 
[30] [31], quantum error correction codes [32] [33] [34] [35], concatenated 
quantum error correction codes [36] [37] and articles related to topological 
quantum codes [38] [39]. Lately, quantum computing error control has fo-
cused on both coherent errors [40] [41] and cross-talk errors [42] [43]. Finally, 
we cannot forget the hardest error to control in quantum computing, the 
quantum decoherence [44]. As we have commented above, these quantum 
computing errors can be analyzed in the framework of random variables that has 
been set in [16] [18]. Thus, the general considerations stated in the conclusions 
section of the present work would also affect the study of the behaviour of these 
errors. 

The outline of the article is as follows: in section 2 we study the fidelity of the 
quantum stages Ψ , 0Ψ  and Φ ; in section 3 we prove the relationship be-
tween them given by Formula (5); finally, in section 4 we analyze the conclu-
sions that can be obtained from the main result. 

2. Analysis of Fidelity 

Given a ( ),n m -quantum code  , the following parameters are defined: 
2nd =  is the dimension of  , 2md ′ =  and d ′′  is the number of discrete 

errors that   corrects. 
First we study how the fidelities of the quantum states Ψ  and Φ , which are 

n-qubits encoded with the quantum code  , can be compared with the fidelity 
of the state 0Ψ , which is an unencoded m-qubit state. The working scheme in 
these two scenarios is illustrated in Figure 1. We assume that the   correction  
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Figure 1. Uncoded/coded work scheme. 
 

circuit, which is applied after each quantum gate in the coded algorithm, does 
not introduce new errors and is ideally applied in time 0t = . In this way, we 
study the theoretical capacity of   to control isotropic errors, that is, its capac-
ity to increase the fidelity of the final state Φ  with respect to Ψ . Furthermore, 
we can compare the fidelity of Φ  with the fidelity of the final state 0Ψ  which 
is obtained in a scheme without the quantum code  . 

We analyze the isotropic error as a decoherence error over a unit of time. This 
unit corresponds to the time it takes to apply a quantum gate in the coded algo-
rithm. To compare it with the uncoded algorithm we have to bear in mind that 
the unit of time in this case will be at most the n-th part of the unit of time in the 
coded algorithm. To relate the probability distributions in both cases we use the 
following equality of variances: 

( ) ( )1 2 ,nV E V E E E= + + +  
where E is the decoherence error during a unit of time in the coded algorithm 
and 1 2, , , nE E E  are independent decoherence errors corresponding to a unit 
of time in the uncoded algorithm. Using the following generalization of Formula 
(3) (proven in [18]), 

( )1 2 2 2 1 ,
2

n
u

n
v

V E E E  + + + = − − 
 

                (6) 

where uv  is the variance of each of the independent errors, we obtain the fol-
lowing relation of uv  with the variance cv  of the error E: 

12
2 2 1 2 2 .

2 2

n
u c

c u

nv v
v v

−   = − − ⇔ = −   
   

            (7) 

In the case of the normal probability distribution defined in [16] [18], with the 
density function 

https://doi.org/10.4236/jamp.2023.112034


J. Lacalle et al. 
 

 

DOI: 10.4236/jamp.2023.112034 560 Journal of Applied Mathematics and Physics 
 

( ) ( )
( ) ( )( )

2

0
2

0

2 2 !! 1, ,
2 1 2 cos

n d d

d
f σσ θ

σ σ θ

− −

+ −π
=             (8) 

where the parameter σ  belongs to the interval [ )0,1 , the above variances have 
a very simple expression and are independent of the dimension: ( )2 1c cv σ= −  
and ( )2 1u uv σ= − . The relationship between them given in Formula (7) trans-
lates into a very simple relationship between the corresponding sigma parame-
ters: 

1 .n
c u c

n
uσ σ σ σ= ⇒ =                      (9) 

From now on we are going to follow the same scheme as the one proposed in 
[16] to calculate the variances of states Ψ  and Φ . Nevertheless, this time we 
will use it to calculate the fidelities of these states and the fidelity of the state 

0Ψ . 

2.1. Fidelity of Ψ and Ψ0 

The state Ψ , described in Cartesian coordinates in Formula (1) can be written 
in spherical coordinates as follows: 

( )

( ) ( ) ( )
( ) ( )

0 2 3
0 1 2 2

2 2

0 1

2 1 0 2 2

0 , ,
, , , ,

0 2

sin sin cos for all 0 2 2,

sin sin .

d
d

d

j j j

d d

x j d

x

θ θ
θ θ θ

θ

θ θ θ

θ θ

−
−

−

−

− −

≤ ≤
Ψ =  ≤ ≤

= −

π

π

≤ ≤

=







  
On the other hand, the translation of Formula (4) into spherical coordinates is 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
0 0 1 0 1cos sin cos 1 sin sin .F X E Eθ θ θ θ θ   = + = −      (10) 

Theorem 1. The fidelity of the isotropic random variable Ψ  with density 
function ( )0f θ  is given by 

( ) ( )
( ) ( ) ( )

1
2 2

0

2
1 4 1 sin ,

2 1 !!

d
dF d E

d
θ

−

 Ψ = − −
π

−             (11) 

where ( ) ( ) ( )2 2
0 0 0 00

sin sin dd dE fθ θ θ θ
π

  =  ∫ . 
Proof. We have to calculate the expected value of an expression that depends 

only on the angles 0θ  and 1θ . Furthermore, the isotropic density function de-
pends only on the angle 0θ . Therefore, using Formula (10): 

( ) ( ) ( )

( )
( )

( )
( ) ( )

( )
( ) ( ) ( )

2 2 3 2 2 1
0 1 10

1
2

0

1
2

0

1 sin sin d

2 2 2 !!
1 2 sin

2 4 !! 2 1 !!

2
1 4 1 sin .

2 1 !!

d d d

d
d

d
d

F S E

d
E

d d

d E
d

θ θ θ

θ

θ

− −

−

−

π
 Ψ = −  

−
 = −  − −

 = − −

π

π
 −

∫

 
Note that we have used equalities from the Appendix.  
Corollary 1. The fidelity of the isotropic random variable Ψ  with normal 

distribution ( )0,n cf σ θ  is equal to 
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( ) ( ) 2
2 1 1

.cd
F

d
σ+ −

Ψ =                     (12) 

Proof. Using the definition of the normal distribution given in Formula (8) 
and some results from the Appendix: 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

( )

( ) ( )

1
2 2

0

1
2

2
2

2
1 4 1 sin

2 1 !!

2 2 2 !! 2 1 !!
1 4 1 1

2 1 !! 2 !!2

1 111 1 .

d
d

d

cd

c
c

F d E
d

d d
d

d d

dd
d d

θ

σ

σ
σ

−

−

 Ψ = − −  −

− −
= − − −

−

+ −−
= − − =

π

π
π

π
 

 
Theorem 1 and Corollary 1 also apply to state 0Ψ , just substituting the pa-

rameter d by d'. 
Corollary 2. The fidelity of the isotropic random variable 0Ψ  with density 

function ( )0f θ  is equal to 

( ) ( )
( ) ( ) ( )

1
2 2

0 0

2
1 4 1 sin ,

2 1 !!

d
dF d E

d
θ

′−
′ ′Ψ = − −  ′ −

π
          (13) 

where ( ) ( ) ( )2 2
0 0 0 00

sin sin dd dE fθ θ θ θ
π′ ′  =  ∫ . Furthermore, if the probability 

distribution of 0Ψ  is normal with density function ( )0,n uf σ θ , the fidelity is 
equal to: 

( ) ( ) 2
2

0

1 1
.ud

F
d

σ′+ −
Ψ =

′
                   (14) 

To compare the fidelities of 0Ψ  and Φ  we need to obtain their values as a 
function of their variances uv  and cv , respectively. The relationship between 
these variances, obtained in Formula (7), allows us to relate the fidelities of these 
states. 

Theorem 2. The fidelity of the isotropic random variable 0Ψ  with density 
function ( )0f θ  satisfies 

( )
2

2
0

2 21 .
2 1 2

u
u

vdF v
d

 ′ −  Ψ ≥ − −   ′ −   
               (15) 

Proof. First we prove, in a similar way as in Theorem 1, the following: 

( ) ( ) ( )

( ) ( )
( )
( )

( ) ( )
( )
( )

2 1

2 2 3 2 2 1
0 0 1 10

2 1
1 12 3 2 2 3 0

0 1 10 2 3
1 10

2 1
1 12 0

0 0 2 3
1 10

1 sin sin d

sin d
1 sin sin d

sin d

sin d
1 sin

sin d
d

d d d

d
d d d

d

d

S d

F S E

S E

f

θ θ θ

θ θ
θ θ θ

θ θ

θ θ
θ θ

θ θ
′−

π

π

′ ′ ′− −

′−
′ ′ ′− −

′−

′−

′−

π

π

π

π

 Ψ = −  

 = −  

= −

∫

∫
∫

∫

∫
∫

∫  

Then, using the formulas in the Appendix, we obtain: 
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( ) ( )2 2
0 0

2 21 sin .
2 1
dF E
d

θ
′ − Ψ = −   ′ −  

Using Jensen's inequality we obtain a lower bound for ( )2
0sinE θ   : 

( )( ) ( )( )
( ) ( )
( ) ( )
( )

2 2
0 0

2
0 0

2
0 0

2
0

1 cos 1 cos

1 cos 2cos

2 2cos sin

sin .u

E E

E

E

v E

θ θ

θ θ

θ θ

θ

  − ≤ −    
 = + − 
 = − − 

 = −  

 

And then: 

( ) ( )( )
2

22
0 0sin 1 cos .

2
u

u u
v

E v E vθ θ     ≤ − − = −        
Substituting the previous lower bound of ( )2

0sinE θ    into the formula of 
( )2

0F Ψ , the proof is concluded: 

( )
2

2
0

2 21 .
2 1 2

u
u

vdF v
d

 ′ −  Ψ ≥ − −   ′ −     

2.2. Fidelity of Φ  

The formula for the fidelity of the state Φ  is very similar to that of the state 
Ψ , Formula (11). The proof, though, is more complex because the quantum 
code   is involved. 

Theorem 3. The fidelity of the isotropic random variable Φ  with density 
function ( )0f θ  is equal to 

( ) ( )
( ) ( ) ( )

1
2 2

0

2
1 4 sin ,

2 1 !!

d
dF d d E

d
θ

−π
 ′′Φ = − −  −

            (16) 

where ( ) ( ) ( )2 2
0 0 0 00

sin sin dd dE fθ θ θ θ
π

  =  ∫ . 
Proof. Taking into account Theorem 3 and Corollary 1 of [16], the fidelity of 

Φ  is 

( ) ( )2 22
0 0 1 1 11 ,F E P d E P E   ′′Φ = Φ Π Ψ + − Φ Π Ψ     



 
where 0P  and 1P  are the probabilities of measuring the syndromes 0 and 1 
respectively, 0Π  and 1Π  are the (normalized) projectors corresponding to 
the discrete errors 0E I=  and 1E  associated with the aforementioned syn-
dromes and 1 1 0 2E E d ′Φ = = . 

The first expected value in the above expression is equal to ( )2F Ψ  by the 
Formula (10) and so, using Theorem 1, we obtain: 

( ) ( )

( )
( ) ( ) ( )

2 2 2
0 0 0 1

1
2

0

1 sin sin

2
1 4 1 sin .

2 1 !!

d
d

E P E

d E
d

θ θ

θ
−

   Φ Π Ψ = −  

= − −
π

 −

 

The second expected value in the formula is 
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( ) ( ) ( ) ( )( )2 2 2 2 2
1 1 1 0 2 1 2 2 1sin sin 1 sin sin .d d dE P E E θ θ θ θ′ ′ ′− +

   Φ Π Ψ = −    


 

Then, using the Appendix, we obtain: 

( ) ( )

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( )

2 2
0 2 1

2 2 1 2 2 1
0 0 1 2 1 2 1 2 2 10 0

2
0

1
2

0

sin sin

sin sin d sin d

2 2 !! 2 3 !! 2 2 !! 2
sin 2 2

2 1 !! 2 2 !! 2 2 1 !! 2 2 2 !!

2
sin 4 .

2 1 !!

d

d d d d
d d d d

d d
d

d
d

E

E S

d d d d
E

d d d d d d

E d d
d

θ θ

θ θ θ θ θ

θ

θ

′−

′− − +
′ ′ ′− − −

π

−

π

′−

−

  

 =  

′− − −
 =   ′ ′− −

π
− + − −

  ′= − −

π

π


∫ ∫







 

In a similar way, 

( ) ( ) ( ) ( )
( ) ( )

1
2 2 2

0 2 1 0

2
sin sin sin 4 1 .

2 1 !!

d
d

dE E d d
d

θ θ θ
−

′+    ′= − −    −
π



 

With the last two results, the following expression is obtained: 

( ) ( )
( )

1
2 2

1 1 1 0

2
sin 4 .

2 1 !!

d
dE P E E

d
θ

−

   Φ Π Ψ =    −
π


 

Ans finally we get the result: 

( ) ( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

2 22
0 0 1 1 1

1
2

0

1
2

0

1

2
1 sin 4 1 1

2 1 !!

2
1 sin 4 .

2 1 !!

d
d

d
d

F E P d E P E

E d d
d

E d d
d

θ

θ

−

−

   ′′Φ = Φ Π Ψ + − Φ Π Ψ     

  ′′= − − − −  −

  ′′= −
π

−  −

π



 
 

If the probability distribution of Ψ  is normal the fidelity of Φ  has a much 
simpler expression. 

Corollary 3. If Ψ  has a normal probability distribution with parameter cσ  
the fidelity of Φ  satisfies 

( ) ( ) 2
2 1 1

.cd
F

d
σ′+ −

Φ =
′

                     (17) 

Proof. To prove the result, it is enough to substitute the value of the integral 
( )2

0sin dE θ    from the Appendix in Theorem 3 and noticing that d d d′ ′′= . 
To compare the fidelities of 0Ψ  and Φ  we need to obtain ( )2F Φ  as a 

function of the variances cv  of the state Ψ . 
Theorem 4. If the state Ψ  has an isotropic distribution with density func-

tion ( )0f θ  such that 

( )( ) ( ) ( )0 0 00
1 cos cos 0,fθ θ θ

π
− ≥∫                 (18) 

then the fidelity of Φ  satisfies 
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( )2 1 .
2 1 c
d dF v
d

′′−
Φ ≤ −

′ −
                      (19) 

Proof. First we prove, in the same lines of the proofs of Theorems 1 and 2, the 
following: 
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Now, using Formula (18), we obtain the following lower bound: 

( ) ( )( ) ( )( )

( )

2
0 0 0

0

sin 1 cos 1 cos

1 cos .
2
c

E E

v
E

θ θ θ

θ

   = − +   

 ≥ − = 
 

The proof is concluded by introducing the previous lower bound in the ex-
pression previously obtained for ( )2F Φ . 

3. Relationship between the Fidelity of the States Ψ0 , Φ  
and Ψ  

The results obtained in the previous section allow us to state the following theo-
rem. 

Theorem 5. If the state Ψ  has an isotropic distribution, the following rela-
tionship between the fidelities of Φ  and Ψ  holds: 

( ) ( )2 2 .F FΦ ≥ Ψ                       (20) 

Proof. Theorems 1 and 3 allow us to prove the result directly, taking into ac-
count that 1d d d ′′− ≥ − . 

To compare the fidelities of states 0Ψ  and Φ  we use Theorems 2 and 4. 
However, we shall need to establish a previous result. 

Lemma 1. Given n∈ , 2n ≥ , and x∈ , 0 4x≤ ≤ , the following holds 
true: 

( )
2

, 2 2 1 0.
2 2

nx xg n x x
    = − − − − ≥           

Proof. The change of variable 1
2
xy  = − 

 
 allows us to better analyze the 

function: 

( ) [ ] [ ]2, 1 2 and 0,4 1,1 .ng n y y y x y= + − ∈ ⇔ ∈ −  
Property 1, 2 ny y≥  for all [ ]1,1y∈ −  allows us to conclude that ( ), 0g n y ≥  
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for all [ ]1,1y∈ −  and this in turn implies 

( ) [ ], 0 for all 0, 4 .g n x x≥ ∈  
 

The previous lemma allows us to obtain the main result of this article. 
Theorem 6. If states 0Ψ  and Ψ  have isotropic distributions with variances 

uv  and cv  respectively and the density function of Ψ  satisfies Formula (18), 
the following relationship between the fidelities of 0Ψ  and Φ  holds true: 

( ) ( )2 2
0 .F FΨ ≥ Φ                       (21) 

Proof. Theorems 2 and 4 allow us to prove the result, just by checking that the 
following inequality holds: 

22 2 .
2 1 2 1 2

u
c u

vd d dv v
d d

 ′′ ′− −  ≥ −   ′ ′− −     
Taking into account that d d d′ ′′= , the above inequality is equivalent to the 

following: 
22 .

2
u

c u
v

v v
d

  ≥ −   ′′     
The fact that 2d ′′ ≥  is enough to prove the first of the following two inequa-

lities: 
2 22 .

2 2
u u

c u u
v v

v v v
d

    ≥ − ≥ −     ′′      
Substituting the value of cv  given in Formula (7) and using the function 
( ),g n x  of Lemma 1 yield 

( )
2

, 0.
2
u

c u u
v

v v g n v ≥ − ⇔ ≥ 
   

Finally, Lemma 1 allows us to conclude the proof, using the fact that the va-
riance [ ]0,4uv ∈ . 

If the isotropic distributions of Ψ  and 0Ψ  are normal the condition given 
in Formula (18) for Theorems 4 and 6 is not necessary. Indeed, Corollaries 1, 2 
and 3 clearly imply that 

( ) ( ) ( )0 .F F FΨ ≥ Φ ≥ Ψ                    (22) 

On the other hand, the condition given by Formula (18) for Theorems 4 and 6 
is a sufficient condition. However, it is not necessary since it has been obtained 
by underestimating the fidelity of 0Ψ  and overestimating that of Φ . The con-
dition holds for very general isotropic distributions, such as density functions 
( )0f θ  that satisfy 

( )0 00 for all , .
2

f θ θ  = ∈


π

π

 
Figure 2 shows the curves of ( )2

0F Ψ , ( )2F Φ  and ( )2F Ψ  for normal  
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Figure 2. Representation of fidelities as a function of σ . 
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isotropic distributions and 5n =  ( 32d = ), in the extreme cases 16d ′ =  
( 2d ′′ = ) and 2d ′ =  ( 16d ′′ = ). 

The conclusion of the study carried out in the present work, in view of the re-
sults summarized in Formula (22), is that the best option to obtain the highest 
fidelity against isotropic errors is not to use quantum codes. On the other hand, 
the improvement of the fidelity of Φ  versus that of Ψ  seems to be closely re-
lated to the dimension of the subspaces to which these states belong: d ′  for Φ  
versus d for Ψ  (see Theorems 1 and 3 and Corollaries 1 and 3). 

4. Conclusions 

In this article we have analyzed the ability of quantum codes to increase fidelity 
of quantum states affected by isotropic decoherence errors. The results obtained, 
despite being those expected for this type of quantum errors, are not good 
enough from the point of view of error control in quantum computing. The abil-
ity of quantum codes to reduce errors does not make up for the multiplication of 
the number of gates that they require. This fact implies that the best option 
against isotropic errors is not to use quantum codes. This result is similar to that 
obtained in [16] (quantum codes do not reduce the variance of isotropic errors) 
and in [19] (the 5-qubit quantum code does not reduce the variance of qubit in-
dependent errors). The latter is more worrying since it negatively affects the 
standard model of error in quantum computing. For this reason, to study the 
behavior of fidelity in this case seems a priority. 

Taken altogether, these results strongly suggest that continuous errors must 
be taken into account, since it is not possible to ensure that the golden rule of 
error control “correct all small errors exactly” is fulfilled. Therefore, the study of 
the stochastic model of quantum errors, focused on discrete errors, must be ex-
tended to continuous errors. 

For future research, we believe that the continuous quantum computing error 
model should be further developed. The results on the ability of quantum 
codes to increase the fidelity or to reduce the variance of quantum errors 
should be extended to other types of error. It is also important to develop 
models of the behavior of quantum errors in highly entangled quantum sys-
tems. We need to achieve a better understanding of the error behavior in this 
type of systems since they are capital in quantum computing. Finally, all these 
approaches should lead to a reformulation of fault-tolerant quantum computing 
for continuous errors. 
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Appendix 

The values of the integrals that have been used throughout the article are in-
cluded in this Appendix. 
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Starting from the first integral, the surface of a unit sphere of arbitrary even 

(2d) or odd (2d − 1) dimension can be calculated. 
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