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Abstract 
The Gibbs-like variational methodology is applied to the heterogeneous sys-
tems with rigid pyroelectric or pyromagnetic domains. The processes of de-
polarization/demagnetization are taken into account by assuming the spatial 
mobility of the interfaces. The simplest configuration of flat interface sepa-
rating rigid pyroelectric half-spaces permits explicit analysis of morphological 
stability. 
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Introduction 

We consider the equation of quasi-statics evolution of heterogeneous system con-
sisting of solid nondeformable (rigid) electrically or magnetically polarized do-
mains. By the model of Gibbs [1], heterogeneous systems are conglomerates of 
macroscopic subdomains, separated by macroscopic interfaces of zero thickness. 
The Gibbs models and his variational principles allow analyzing both the condi-
tions of equilibrium and the conditions of stability of heterogeneous systems. 

When dealing with liquid or gaseous systems the problems of equilibrium and 
stability mostly to analysis of nonlinear systems of algebraic equations. Gibbs in-
troduced a novel thermodynamic potential playing a crucial role when consi-
dering systems with mass exchange between the domains. The mass exchange is 
of primary importance when dealing with phase transformations between the 
subdomains. The potential, responsible for equilibrium with respect to mass ex-
change was coined as chemical potential. Later on, it is occurred that, when 
dealing with solid deformable phases, the concept of scalar chemical potential of 
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Gibbs of liquid or gaseous phases should be replaced with tensorial chemical 
potentials (see, Grinfeld [2]). 

When dealing with solid deformable phases, the required calculations become 
considerably more difficult; in order to suppress difficulties with the calculations 
the formal techniques of covariant tδ δ -differentiation on moving manifolds 
have been used (see monographs [2] [3]). 

The next step in dealing with heterogeneous systems is to include the effects 
of electric polarization and magnetization. 

Pyroelectric or pyromagnetic substances are those which possess electric or 
magnetic moments even in the absence of external electric or magnetic macros-
copic fields; several approaches to macroscopic modeling of such substances are 
presented in monographs [4] [5] [6]. Currently dominating scheme of theoreti-
cal analysis is presented in the classical monographs of Landau and Lifshitz 
(1963) which includes various fundamental concepts of thermodynamics. Many 
brilliant physicists, including Einstein himself, emphasized that thermodynamics 
is the only discipline fundamentals that will not be overthrown. On the other 
hand, there are several competing formulations of the thermodynamics funda-
mentals of macroscopic systems with electric or magnetic polarizations. These 
formulations are not equivalent to each other, and they lead to different conclu-
sions, sometimes, incompatible with each other. Interested reader can find dis-
cussion of different formulation in Rosensweig, R. E. (1985). 

Our own analysis, based on the Gibbs variational principles was presented in 
the series of publications [7] [8] [9] [10] [11]. 

For the computational simplicity, we assume that the polarization/magnetization 
densities remain fixed inside each subdomain; such models have been analyzed 
in [7]. However, they are different in different subdomains. Thus, the polariza-
tion/magnetization vectors experience finite jumps across the boundaries (see, 
Figure 1). 

Due to the assumption of rigidity, in such models, the material particles can-
not move. At the same time, the interfaces between the boundaries are able to 
migrate. That migration happens not due to the migration of the materials particles  

 

 
Figure 1. Models of heterogeneous systems with polarized phases. 
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but due to the processes of depolarization or demagnetization of the substances 
at the interfaces. In this sense, the boundaries between the polarized domains 
remind the phase transformations between different phases. Following standard 
nomenclature, we call these zones of continuity simply different domains (de-
spite some linguistic inconveniences). 

For the sake of simplicity, we assume that out of the boundaries the polariza-
tion/magnetization vectors are fixed constants. Moreover, we assume, for sim-
plicity, that density of polarization is uniform within each domain of smooth-
ness. For the same reason of computational simplicity, the surface tension is 
neglected. We distinguish between rigid pyroelectric domains and rigid pyroe-
lectric phases. Pyroelectric domains or substances are characterized as those 
having fixed polarization vectors per unit volume P . The free energy density 
ψ  per unit volume may depend upon the absolute temperature T only. At fixed 
temperature of the heterogeneous system the function ψ  appears to be a constant. 

However, generally speaking, the vectors P  within different domains differ 
from each other. The same is true regarding the constant free energy densities 
ψ  within different domains. 

Now, what is going on at the interfaces between different domains? This de-
pends upon the nature of the domain. More specifically, two different situations 
should be distinguished. The first one can be coined as the “chemical” interface. 
In this situation polarization of the adjacent particles of the bordering domains 
remains unchanged. In the opposite situation, one of the adjacent particles can 
change its polarization in favor of the polarization of its neighbor. In this case, 
the macroscopic boundary between the domains “moves” with respect to the 
domains. This situation is exactly the same as the situation with different phases. 
Therefore, the boundary between such domains is called the phase boundary. In 
other words, we deal with migration of the interface between two domains. 

Maybe, the simplest example of such a system is the heterogeneous system 
consisting of a single domain having a common boundary with vacuum or with 
the domain having zero polarization. This system can appear as a result of con-
densation of gas of polarized molecules on the rigid substrate (see, Figure 2). 

This problem has been analyzed in the publication [7] [8] [9]. The simplest 
configuration of this sort is the crystalline layer with flat boundary parallel to the 
substrate. Such a boundary can be morphologically stable or unstable depending 
on the orientation of the polarization vector P  to the boundary normal stable 
or N . Namely, it was demonstrated in Grinfeld [7] that the crystal boundary is 

 

 
Figure 2. Pyroelectric rigid crystal, growing on substrate. 
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morphologically unstable if the normal component of the polarization ⊥P  is 
bigger than the tangential component of polarization P� : 

⊥ >P P�                            (I) 

The surface tension suppresses the instability for sufficiently short wavelengths 

critk  such that 

22

2 crit
σ

⊥=
π

−k P P�                      (II) 

The goal of this paper is to establish the analogy of the relationship (I) for the 
case of phase interface separating two pyroelectric domains of the shape of 
half-spaces. 

1. Quasi-Static Model of the Heterogeneous System with  
Pyroelectric Domains 

Out of the interfaces equation of electrostatic reads 

0i
i D∇ =                          (1.1) 

where iD  is the electrostatic displacement vector. 
The electrostatic boundary conditions read 

[ ] 0ϕ +

−
=                          (1.2) 

and 

0i
iD N

+

−
  =                          (1.3) 

where iN  is the field of unit normal to the interface; ϕ  is the field of elec-
trostatic potential. 

We remind the identities for the electric field 

i iE ϕ= −∇                          (1.4) 

and the electric displacement iD  

4 4i i i i iD E P Pϕ= + = ∇ + π−π                  (1.5) 

Combining Equations (1.1), (1.5), we arrive at the bulk equation 

( )4 0i i
i Pϕ∇ −∇ + =π                     (1.6) 

Since polarization is supposed constant inside each domain, the bulk Equation 
(1.6) reduces to the Laplace equation 

0i
i ϕ∇ ∇ =                          (1.7) 

The interface electrostatics condition (1.3) reduces to the following one: 

4i i
i iN P Nϕ

+ +

− −
   ∇  π=                     (1.8) 

The electrostatics boundary conditions (1.2), (1.3) should be satisfied at any 
interface—chemical or phase interface. At the same time, one more condition 
equilibrium should be satisfied at the phase interface. It is the analogy of the con-
dition of equality of the chemical (Gibbs) potentials of the adjacent phases in the 
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classical thermodynamics of liquid/gaseous phases. 
In the case of rigid pyroelectric phases, it has appeared that the Gibbs poten-

tial should be replaced with the more sophisticated notion and requires the in-
troduction of the so-called Gimel cardinal tensor ij  defined as 

1 1 1
8 4 4

k k
ij k k ij i jE E E D z D E ≡ Ψ + −

π π π
+ 

 
            (1.9) 

The equation of equilibrium across the phase boundary between the rigid 
domains reads 

0i j
ij N N

+

−
  =                        (1.10) 

If the surface energy is taken into account, Equation (1.10) should be replaced 
vid the following one: 

( )i j k
ij N N N bαβ

αβσ ξ
+

−
  =                  (1.11) 

where ( )kNσ  is dependence of the surface energy density upon orientation of 
the normal vector kN ; αβξ  and bαβ  are the metrics and the curvature tensors 
of the interface. 

Typically, the process of establishing the “chemical” equilibrium is considera-
bly slower than the process of establishing the electrostatic equilibrium. In other 
words, the velocity C of migration of the boundaries between the domains is 
quite slow. In this case, instead of Equation (1.11) of phase equilibrium, it makes 
sense to use the linear kinetics equation 

( )i j
ijC N N Bα

ακ σ
+

−
 = − −  ,                (1.12) 

where κ  is the kinetics constant, determining the rate of establishing “chemi-
cal” equilibrium. 

Also, we use the following notation: iz  are the spatial coordinates (the Latin 
(spatial) indexes run values 1, 2, 3), ijz  is the spatial metrics, used for raising 
and lowering spatial indexes; the spatial covariant differentiation is denoted as 

i∇ . Let ( ),i iz z tαξ=  be the equation of the mobile interface between the do-
mains; the Greek (surface) indexes run the values 1, 2. The shift-tensor ( ).

. ,iz tα ξ  
is defined as ( ) ( ).

. , ,i iz t z t α
α ξ ξ ξ≡ ∂ ∂ . The surface metrics ( ), tα

αβξ ξ  defined 
as ( ) . .

. ., i j
ijt z z zα

αβ α βξ ξ ≡  it is for raising and lowering the Greek indexes. We use 
the notation α∇  for the surface covariant differentiation based on the tensors 

ijz  and αβξ . 

2. Linearization in Vicinity of Equilibrium Piecewise  
Uniform Configuration 

Consider the configuration consisting of two domains with the shape of two 
half-spaces with the common flat phase interface. Assume that all equations of 
electrostatics and “chemical” (phase) equilibrium are satisfied inside each do-
main and across the interface. We use degree a mark “ � ” for the parameters 
characterizing this configuration and call it the main configuration. In particu-
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lar, we use notation ( ) ( ). ., ,i i iz z Nαξ ξ� � �  for the equation of the interface, the 
shift tensor, and the spatial components of the unit normal in this configuration; 
also we use notation , iEϕ± ±

� � , for the electric potential and electric field in each 
of the domains in this configuration. 

By definition the interface velocity C, vanishes in the main configuration. As-
sume now that the boundary between the domains slightly deviates from the 
ideal plane. Then the condition of “chemical” equilibrium (1.11) will not be sa-
tisfied anymore, and the process of depolarization will occur at the boundary 
between the adjacent domains. As a result, the velocity C of the interface will not 
be equal to zero anymore. Therefore, the electrostatic potential also becomes func-
tion of time t. The Laplace bulk Equation (1.7) obviously implies 

0i
i t

ϕ∂
∇ ∇ =

∂
                        (2.1) 

Applying the tδ δ -differentiation of the boundary conditions of electrostat-
ics (1.2), (1.3) and using properties of this operation [3] [4], we get, respectively: 

[ ]4 0i
iC P N

t
ϕ +

+

−
−

∂  + π = ∂ 
                   (2.2) 

and 

4i
i N P C

t
α

α
ϕ +

+

−
−

∂   ∇ = − ∇   ∂ 
π                 (2.3) 

Differentiating the kinetics Equation (1.12), we get, neglecting the surface tension 

( )

1

. .
. .

1 1 1 1
4 4 4 4

1
4

jk k k i jk k k i
j i

i j j i
i j

EE E E ECK E D E E D N N
t t t t t t

D E z N z N Cα
α α

δ
δ

++
−

− −

+

−

∂ ∂ ∂ ∂ ∂ − = − − + +  ∂ ∂ ∂ ∂ ∂  π π π π 

  π
− + ∇

 (2.4) 

Equation (2.4) can be rewritten as follows 

( )1 . .
.. . .4 j i j i j

i i j i j
CK E E D z z D E z N C
t t

β α
β α

δ ϕ
δ

+
+−

−
−

∂   = − + ∇ + ∇   ∂ 
π   (2.5) 

as implied by the following chain: 

( )

( )( )

( )( )

1 .
.

1 .
.

1 . .
.. . .

1

4

4

4

4

jk i j i jk
i i i j

jj i j i j
i i i j

j ij i j i j
i i j i j

j

EECK D E D N N D E z N C
t t t

ECK D E D N N D E z N C
t t

CK D E D z z z D E z N C
t t

CK E
t

α
α

α
α

β α
β α

δ
δ

δ
δ

δ ϕ
δ

δ
δ

+
+−

−
−

+
+−

−
−

+
+−

−
−

−

∂ ∂
 = − + + ∇   ∂ ∂ 

∂ 
 → = − + + ∇   ∂ 

∂   → = − + + − ∇ + ∇   ∂ 

π→

π

=

π

π

( ) . .
.. . .
i j i j

i i j i jE D z z D E z N C
t

β α
β α

ϕ +
+

−
−

∂   − + ∇ + ∇   ∂ 

(2.6) 

Let us introduce the following notation 
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( ) . .
. . ..,j j i i j i j

i i jR E E D z z Y D E z Nβ α α
β± ± ± ± ± ± ±≡ − + ≡           (2.7) 

Using (2.7), we can rewrite Equation (2.5) as follows: 

14 j
j

CK R Y C
t t

α
α

δ ϕ
δ

+
+−

−
−

∂   = ∇ + ∇   ∂ 
π              (2.8) 

Using the notation G tϕ≡ ∂ ∂ , we can rewrite the bulk Equation (2.1) and 
the boundary conditions (2.2), (2.3) as follows 

0i
i G∇ ∇ =                          (2.9) 

[ ] [ ]4 0i
iG C P N++

− −
π+ =                   (2.10) 

[ ] 4i
iG N P Cα

α

++

− −
 ∇ = − ∇ π                 (2.11) 

At last, the kinetics Equation (2.5) implies that 

14 j
j

CK R G Y C
t

α
α

δ
δ

+ +−

− −
   = ∇ + ∇   π              (2.12) 

Consider solutions of this system of the following form: 

( ) ( )
( )

( ) ( )

e for 0
, , e

e for 0

e

a
a

a
a

z k
t ik za

z k

t ik za

k z
G z z t

k z

C z t S k

η

η

−
+−

−

−

Φ >= 
Φ <

=

           (2.13) 

The boundary conditions (2.10), (2.11) imply, respectively: 

[ ]4 i
iP N S+

+ − −
πΦ −Φ = −                   (2.14) 

and 

( ) ( ) 4
k

k k i P S
k

αα +

+ − −
Φ π Φ + =                 (2.15) 

Equations (2.14), (2.15) imply the following values of ±Φ : 

[ ]

[ ]

2

2

i
i

i
i

k
P N i P S

k

k
P N i P S

k

αα

αα

++
+ − −

++
− − −

 
 Φ = − +   

 
 

 Φ = +   
 

π

π

              (2.16) 

Using solutions (2.16), we can rewrite (2.13) as follows: 

( )
[ ]

[ ]

( ) ( )

2 e for 0

, , e

2 e for 0

e

a
a

a
a

z ki
i

t ik za

z ki
i

t ik za

k
P N i P S z

k
G z z t

k
P N i P S z

k

C z t S k

αα

η

αα

η

++ −
− −

−

++

− −

−

 
 − + >    = 

   + <    
 

=

π

π
  (2.17) 

The solution (2.17) obviously implies that 
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( )
[ ]

[ ]

( ) ( )

2 for 0

,0, e

2 for 0

, e

a
a

a
a

i
i

t ik za

i
i

t ik za

k
P N i P S z

k
G z t

k
P N i P S z

k

C z t S k

αα

η

αα

η

++

− −
−

++

− −

−

 
 − + >    = 

   + <   

π 



=

π



    (2.18) 

Also, we get, using Equations (2.17): 

( )

( ) [ ]

( ) [ ]

. . .
. . .

.
.

.
.

2 for 0

e

2 for 0

a
a

k k k
i k i k i i i i

k
i i k

t ik z

i
i i i

G GG G G N N z z N z
z z

k
k N ik z P N i P S z

k

k
k N ik z P N i P S z

k

β β
β β

β αα
β

η

β αα
β

δ

++

− −
−

++

− −

∂ ∂
∇ = ∇ = ∇ + = − +

∂ ∂
  

 − − + >      = 
   − − + <    


π


π  (2.19) 

We, then, get the following relationships: 

( ) [ ]

( )

.
.

. . .
. . .

k
i i k

k k k j j
i k i k j i k k i

k
k N ik z P N i P

k

k k
z z P k N P N i P k z N N

k

β αα
β

α βα β α
α δ δ

++

− −

+ + +

− − −

 
 − − +   

 

     = − + +     

  (2.20) 

and 

( ) [ ]

( )

.
.

. . .
. . .

k
i i k

k k k j j
i k i k j i k k i

k
k N ik z P N i P

k

k k
z z P k N P N i P k z N N

k

β αα
β

α βα β α
α δ δ

++

− −

+ + +

− − −

 
 − − +   

 

     = − − +     

 (2.21) 

as implied by the chains: 

( ) [ ]

[ ] [ ]

[ ] [ ]

[ ]

.
.

. .
. .

. .
. .

. .
. .

k
i i k

k k
i k k i i i

k k
i k i k i i

k
i i k i

k
k N ik z P N i P

k

k k
k N P N P N ik z k N i P ik z i P

k k
k

k N P N ik z P N ik P N k z P
k

k k
z P k N P N i k z

k

β αα
β

β α β αα α
β β

β α β αα
β α β

α ββ α β
β

++

− −

+ ++ +

− − − −

+ ++ +

− − − −

+ +

−−

 
 − − +   

 

   = − + + −   

   = − + + +   

 = − +  [ ]( )
( )

.
.

. . .
. . .

k k
k k i

k k k j j
i k i k j i k k i

P N k z P N

k k
z z P k N P N i P k z N N

k

α
α

α βα β α
α δ δ

++

− −

+ + +

− − −

 +  

     = − + +     
 

and 

( ) [ ]

[ ] [ ]( )

.
.

. .
. .

k
i i k

k k
i k i i k i

k
k N ik z P N i P

k

k k
k N P N z P i k z P N N k P

k

β αα
β

α ββ α β α
β α

++

− −

+ ++ +

− −− −

 
 − − +   

 

   = − + − +   
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[ ] [ ]( )
( )

. .
. .

. . .
. . . ,

k k
i i k i k i

k k k j j
i k i k j i k k i

k k
z P k N P N i k z P N N k P

k
k k

z z P k N P N i P k z N N
k

α ββ α β α
β α

α βα β α
α δ δ

+ ++ +

− −− −

+ + +

− − −

   = − − +   

     = − − +     

 

respectively. 
Using the relationships (2.20), (2.21), we can rewrite (2.19) as follows 

( ). . .
. . .20

e 2
a

at ik z k j j
i i k i k j i k k iz

k k k
G S k P z z N N i z N N

kk
α βη α β αα δ δ

+−
= ± −

 
   ∇ = − ± +  

π


 
(2.22) 

The kinetics Equation (2.12) implies 
14 i

iK S R G ik Y Sα
αη

+ +−

− −
   = ∇ −   π               (2.23) 

Combining (2.20), (2.21), we get 

( )14 i i
i iK S R G R G ik Y Y Sα α

αη− + + − − + −= ∇ − ∇ − −π          (2.24) 

and then 

( )

( )

( )

1 . . .
. . .2

. . .
. . .2

4 2

2

k j j i
i k i k j i k k i

k j j i
i k i k j i k k i

k k k
K S S k P z z N N i z N N R

kk

k k k
P z z N N i z N N R

kk

k
i Y Y

k

α βα β αα

α βα β αα

α αα

η δ δ

δ δ

+−
+−

+

−−

+ −

     = − + +     
 

   − − − +  

π π

π


 

− − 


(2.25) 

Using (2.25), we proceed as follows 

( )

( ) ( ) ( )

1 . .
. . 2

.
.

2

2

k i i
i k i k

k j j i i
j i k k i

k k
K P z z N N R R

K k k

k k
i P z N N R R i Y Y

k k

α βα β

α α αα α

η

δ δ

+−
+ −−

+

+ − + −−

 
   = − −   

 


π


 + + + − −   
 

(2.26) 

Using (2.7), (2.26), we get 

[ ]( )( ) ( )
[ ]( ) ( )( )
( )

1 .
.

. . .
. . .

.. ..

2 Im

2

k i i
i k i

k i i k k k k i
i k i k

i j i j
i j i j

K k z P N k P N R R k Y Y

k z P N k P N E E E D E D z z

k
D E z N D E z N

k

β α α α
β α α

α α β
α α β

α αα

η
++−

+ − + −− −

++
+ − + + − −− −

+ + − −

 = + + − − 

 = + + − + + + 

− −
π

 (2.27) 

and 

[ ] ( )

[ ] ( )

1 .
.

. . .
. . .

2 Re k i i
i i k

k i k k i
i i k k

k k
K z P k N P N R R

k

k k
z P k N P N E E D z z

k

α ββ α

α ββ α β
β

η
+ +−

+ −−−

++ +

−− −

 
 = − −   

 
 

  = − − +     
 

  (2.28) 
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We proceed as follows 

( )2 2Re 2 k P P Kη ⊥π= − �                   (2.29) 

where 

,i
i

k
P P N P P

k
αα+ +

⊥ − −
   ≡ ≡   �                 (2.30) 

The relationship (2.29) is implied by the following chain: 

( )

( )

( )

( )

1 . . .
. . .

. . .
. . .

. .
. .

. .
. .

2 Re j i k k i
i i j k

i k k i
i k

j i k k i
i j k

k k
i k j

k k
K z P k N P N E E D z z

k

k k
z P E E D z z

k

k N P N E E D z z

k k
z P E E D z k P

k

α ββ α γ
γ

α ββ α γ
γ

γ
γ

α ββ α β β

η
++ +−

−− −

++

− −

++

− −

++

−− −

 
    = − − +      

 

  = − +   

  − − +   

    = − + −     

( )2 24 4 4

j i
i

j i
j i

N E N

k k
P P k P N P N k P P

k
α β α β

++

−

+ + ++

⊥−− − −
π π

  

      = − + = −       π �

 
Next, we will demonstrate that the imaginary part of the decrement η  va-

nishes. First, we get 

( ) [ ] ( )
( )

1 . .
. ..

..

2 Im

1
2

i i k i i k
i k k i

i j j
i j i j

K D D z k P N E E k z P N

k z D E N D E N

α α
α α

α
α

η
++−

+ − + −− −

+ + − −

 = − + + +  

π
− −

  (2.31) 

as it follows from the chain: 

( ) [ ] ( )
( ) ( )

( )

1 . . . .
. . . .

. .
. .

.. ..

2 Im

1
2

i i k k k k k i j
i k k i j

i i k k k k i
i k i

i j i j
i j i j

K E E k z P N E D E D z z k z P N

E E k P N E D E D z z k P N

k D E z N D E z N

α β α
α β α

α β α
α β α

α α
α

η
++−

+ − + + − −− −

+ +

+ − + + − −− −

+ + − −π

 = + − + + +  

   + + − + + +   

− −
 

( ) [ ] ( )
( ) ( )
( ) [ ] ( )

( )

. .
. .

.. ..

. .
. ..

..
1

2

i i k k k k k j
i k k j

i i i j i j
i i j i j

i i k i i k
i k k i

i j j
i j i j

E E k z P N E D E D z k P N

E E k P N k D E z N D E z N

D D z k P N E E k z P N

k z D E N D E N

α α
α α

α α α
α α

α α
α α

α
α

++
+ − + + − −− −

+

+ − + + − −−

++
+ − + −− −

+ + − −

 = + − + + +  

 + + − − 

 = − + + +

π

 

− −
 

For further transformation of Imη  we have to use the equations of electros-
tatic equilibrium. 

Let iE+  be the field in the half-space “+” and the iP±  polarizations in the 
half-space. We can express all other fields in terms of iE+  and the .iP±  For the 
field iE−  we get 

4i i j i
jE E P N N

+

− + −
 = +  π                   (2.32) 

as implied by the chain: 
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( )
( )

. . . .
. . . .

. .
. .

. .
. .4

4

i j i j i i j i j i
j j j j j

j j i j i
j j

j i j i j i
j j j

i j i
j

E E E N N z z E N N E z z

E E N N E z z

E N N P N N E z z

E P N N

γ γ
γ γ

γ
γ

γ
γ

δ− − − − −

+

+ +−

+

+ +−
+

+ −

= = + = +

 = − + 

 = + + 

 =  π+

π
 

Using (2.32), we get 

2 4i i i j i
jE E E P N N

+

+ − + −
π  + = +                  (2.33) 

Using (2.33), we proceed as follows: 

( ) 2 4i i j j
i j jE E N E N P N

+

+ − + −
 +  π= + ,             (2.34) 

( ) ( )4 2k k k k j k k
jD D P P P N N E

+

+ − + − +−
 + = + + + π ,         (2.35) 

( ) ( )( ). .
.. .. 4 2k k k k k

k kk z D D k z P P Eα α
α α+ − + − ++ = + +π           (2.36) 

Combining (2.32)-(2.46), we get 

( )
( ){ }

.
..

.
.. 4 4 4

k j k j
k j j

k j k k l
k j l

k z D E N D E N

k z P E N E P P N

α
α

α
α

+ + − −

+ +

+ + −− −
π

−

   = − +   π π
       (2.37) 

as implied by the following chain: 

( )
( ) ( )( ){ }
( ) ( )( ){ }
( ) ( ) ( )

.
..

.
..

.
..

.
..

4 4 4 4

4 4 4

4 4 4 4

k j k j
k j j

j k k k l k k l
k j l j l j

j k k k k l
k j j l j

j k k k k k k l
k j j l

k z D E N D E N

k z N E P E E P N N P E P N N

k z N E P E E P E P N N

k z N E P E E P E E P P N

α
α

α
α

α
α

α
α

+ + − −

+ +

+ + + + − +− −

+

+ + + + − + −

+

+ + + + − + + − −

π π

−

   = + − + + +   

 = + − + +  

 = + − + −

π π

π

+  

π π

π π π π{ }
( ){ }.

.. 4 4 4

j

k j k k l
k j l

N

k z P E N E P P Nα
α

+ +

+ + −− −
   = − +   π π π

 

Combining these relationships, we get 

( ) ( )( ).
..

. . .
.. .. ..

4 2 8 2

2 4 2 0

k k k k k j
k j

j k k j k j
j k k j k j

k z P P E P E P N

E N k z P k z P P N k z P E N

α
α

α α α
α α α

+

+ − + − + −

+ + + +

+ +− − − −

 − + + + −  

       + + − =       

π π

π
 (2.38) 

as implied by the following chain: 

( )( )
( )

( ){ }
( ) ( )

( )

.
..

.
..

.
..

.
..

4 2

2 4

2 4 2

1
2

k k k j
k j

k j j
k j j

k j k k l
k j l

k k j i i k
k j i

k j k j
j j

k z P P E P N

k z P E N P N

k z P E N E P P N

k z D D P N E E P N

D E N D E N

α
α

α
α

α
α

α
α

+

+ − + −

+ +

+− −

+ +

+ + −− −

++

+ − + −− −

+ + − −

 − + +  

   + +   

   − − +   

   = − +

π

π

π

+ +   

π



− − 
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( ) ( )
( )
( )( )
( )

( ){ }

. .
.. ..

.
..

.
..

.
..

.
..

1
2

4 2

2 4

2 4 2

k k j k i i
k j k i

k j k j
k j j

k k k j
k j

k j j
k j j

k j k k l
k j l

k z D D P N k z P E E N

k z D E N D E N

k z P P E P N

k z P E N P N

k z P E N E P P N

α α
α α

α
α

α
α

α
α

α
α

++

+ − + −− −

+ + − −

+

+ − + −

+ +

+− −

+ +

+ + −− −

  = − + + +   

− −

 = − + +  

   

π

π

π+ +   

   − − +   π

 

( ) ( )

( )

( ) ( )
( )

.
..

. .
.. ..

.
..

1
2

1
2

k k j i i k
k j i

k j k j
j j

k k j k i i
k j k i

k j k j
k j j

k z D D P N E E P N

D E N D E N

k z D D P N k z P E E N

k z D E N D E N

α
α

α α
α α

α
α

++

+ − + −− −

+ + − −

++

+ − + −− −

+ + − −

   = − + + +    
− − 


  = − + + +

π
− −

π

  

 

( )( )
( )

( ){ }

.
..

.
..

.
..

4 2

2 4

2 4 2

k k k j
k j

k j j
k j j

k j k k l
k j l

k z P P E P N

k z P E N P N

k z P E N E P P N

α
α

α
α

α
α

+

+ − + −

+ +

+− −

+ +

+ + −− −

 = − + +  

   + +   

   − − +   

π

π

π

 

and, at last, we get the required relationship: 

( ) [ ] ( )
( )

1 . .
. ..

..

2 Im

1
2

0

i i k i i k
i k k i

i j j
i j i j

K D D z k P N E E k z P N

k z D E N D E N

α α
α α

α
α

η
++−

+ − + −− −

+ + − −

 = − + + +  

− −
π

=

   (2.39) 

Thus, the increment/decrement factor η  appears to be real. The relation 
Im 0η = , implied by Equation (2.39), shows that small morphological distur-
bances can either exponentially decay or grow, but do not include any oscillatory 
components. 

Combining (2.29), (2.39), we arrive at our main result: 

2 2

2
P P

k K
η

⊥= −
π �                      (2.40) 

In terms of the original notation i
iP P N

+

⊥ −
 ≡   , P P k kα

α

+

−
 ≡  � , we can 

rewrite Equation (2.40) as follows: 

( ) ( )2 2

2
i

iP N P k k
k K

α
α

η
+ += −

π
               (2.41) 

If the phase “minus” is not polarizable, Equation (2.41) reduces to the main 
result of Grinfeld, 1999 [7]: 

( ) ( )2 2

2
i

iP N P k k
k K

α
α

η
+ += −

π
               (2.42) 

relating to the pyroelectric crystal in vacuum. 
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3. Discussion and Conclusions 

Based on the variational approach of Gibbs [1], we analyzed the problem of 
equilibrium and stability of rigid heterogeneous systems with pyroelectric phases 
(domains). For the case of interface, separating two rigid pyroelectric domains, 
we establish the rate of growth/decay of small morphological disturbances (Equ-
ation (2.40)). The established kinetic relation (2.40) shows that the normal com-
ponent P⊥  of the polarization jump destabilizes flat interface, whereas the tan-
gential component P�  stabilizes it. 

Our analysis, based on linearization of the master system, does not permit ex-
ploring big deviations from the initial flat geometry. These deviations can be ex-
plored with the help of the full master system (1.1 - 1.9, 1.12). It is natural to ex-
pect that spikes will appear in the late stage of evolution of small disturbances 
(compare with the paper [12] of Banerjee et al. (2013)). 
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