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Abstract 
The main purpose of this paper is to study the dynamic behavior of the ra-
tional difference equation of the fourth order 
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where ,α β  and γ  are positive constants and the initial conditions  

3 2 1 0, , ,y y y y− − −  are arbitrary positive real numbers. Also, we obtain the solu-
tion of some special cases of this equation and investigate the existence of a 
periodic solutions of these equations. Finally, some numerical examples will 
be given to explicate our results. 
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1. Introduction 

Over the last few years, the mathematicians have shown a lot of interest on stud-
ying the behavior of the non-linear difference equations and systems. These stu-
dies have been very productive and helpful to develop the basic theory of of the 
qualitative behaviour of non-linear rational difference equations. This topic ex-
perienced enormous growth in many areas where many real life phenomena 
were modeled using difference equations studies, for examples, from probability 
theory, statistical problems, stochastic time series, electrical network, genetics in 
biology, economics, sociology, etc. [1] [2] [3] [4]. It is known that non-linear 
difference equations are capable of producing a complicated behavior regardless 
its order. Thus, every research that studies the global attractivity, the bounded-
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ness character and the periodicity nature of non-linear difference equations are 
of paramount importance in their own right. The objective of this paper is to in-
vestigate some qualitative behavior of the solutions of the nonlinear difference 
equation: 
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where ,α β  and γ  are positive constants and the initial conditions  

3 2 1 0, , ,y y y y− − −  are arbitrary positive real numbers. Also, we obtain the solution 
of some special cases of this equation. 

In fact, many authors and researchers studied qualitative behaviors of the so-
lution of rational difference equations for example: 

In [5], Amleh et al. investigated the third-order rational difference equation 
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where , , ,a b A B  are non-negative real numbers and the initial conditions are 
non-negative real number. 

In [6] [7] and [8], Cinar investigated the solutions of the following difference 
equations 
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where 1x−  and 0x  are positive real numbers. 
Elabbasy et al. [9] investigated the asymptotic behavior of the solutions of a 

new class of the rational difference equations 
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where 0 1 1 2 3, , , , ,a b b c c c  and [ )4 0,c ∈ ∞  and the initial conditions 3 1, ,ω ω− −  
and 0ω  are arbitrary positive real numbers. 

El-Owaidy et al. [10] have investigated the global behavior of the difference 
equation 
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where the parameters , ,α β γ , and p  are non-negative real numbers and the 
initial conditions 2 1,x x− − , and 0x  are non-negative real numbers. 

El-sayed [11] has investigate the global convergence result, boundedness, and 
periodicity of solutions of the recursive sequence 
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where the parameters , , ,a b c d  and e  are positive real numbers and the initial 
conditions 2 1,x x− −  and 0x  are positive real numbers. 

El-Moneam [12] studied the global stability of the positive solutions of the 
following nonlinear difference equation 
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where the coefficients ( ), , , , , , 0,A B C D b d e∈ ∞ , while ,k l  and κ  are positive 
integers. The initial conditions 1 0, , , , , , ,l kx x x x xκ− − − −    are arbitrary posi-
tive real numbers such that k l κ< < . 

Abo-Zeid [13] solved and studied the global behavior of the well defined solu-
tions of the difference equation 
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where , 0A B >  and the initial values { }, 1, 2,3ix i− ∈  are real numbers. 
Gul [14] investigated the solution of the following difference equation 

( ) { }1
1 0, 0n nz p n−
+ = ∈ = ∪                    (9) 

where 1n n n np a bz cz z= + +  with the parameters , ,a b c  and the initial values 

1 0,z z−  are nonzero quaternions such that their solutions are associated with 
generalized Fibonacci-type numbers. 

Li and Li [15] studied investigate the global asymptotic stability of the follow-
ing difference equation 
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where [ ), 0,p q∈ ∞ , 0, 1r k> ≥  is an integer and initial conditions  
( )1 0, , , 0,kx x x ∈ ∞ . 

In addition, other related results on rational difference equations can be found 
in Refs. [16] [17] [18] and [19] and the references cited therein. 

2. Preliminaries 

Now we recall some results that are given in [2], which will be helpful in our in-
vestigation of the difference Equation (1). 

Let I be some interval of real numbers and let 
1: ,lg I I+ →  

be a continuously differentiable function. Then for every set of initial conditions 

1 0, , ,l ly y y I− − + ∈ , the difference equation 

( )1 1, , , , 0,1, ,n n n n ly g y y y n+ − −= =                (11) 

has a unique solution { }n n l
y ∞

=−
. 

Definition 1. (Equilibrium point) A point y I∈  is called an equilibrium 
point of the difference Equation (1) if 

( ), , , .y g y y y=   
That is, ny y=  for 0n ≥  is a solution of Equation (1), or equivalently, y  

is a fixed point of g. 
Definition 2. (Stability) Let ( )0,y ∈ ∞  be an equilibrium point of the dif-
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ference Equation (1). Then, we have the following: 
(i) The equilibrium point of the difference Equation (1) is called locally stable 

if for every 0ε > , there exists 0δ >  such that for all 1 0, , ,l ly y y I− − + ∈  with 

1 0 ,ly y y y x y δ− −− + + − + − <  
We have 

ny y ε− <  for all n l≥ − . 

(ii) The equilibrium point y  Equation (1) is called locally asymptotically 
stable if y  is locally stable solution of (1) and there exists 0γ > , such that, for 
all 1 0, , ,l ly y y I− − + ∈  with 

1 0 ,ly y y y y y γ− −− + + − + − <  
We have 

lim .nn
y y

→∞
=

 
(iii) The equilibrium point y  of Equation (1) is called a global attractor if 

for all 1 0, , ,l ly y y I− − + ∈ , we have 

lim .nn
y y

→∞
=

 
(iv) The equilibrium point y  of the difference Equation (1) is called a global 

asymptotically stable if it is locally stable, and y  is also global attractor of the 
difference Equation (1). 

(v) The equilibrium point y  of the difference Equation (1) is called unstable 
if y  is not locally stable. 

Definition 3. The linearized equation of (1) about the equilibrium point y  
is the linear difference equation 
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Definition 4. (Periodicity) A sequence { }n n l
y ∞

=−
 is said to be periodic with 

periodic q if n q ny y+ =  for all n l≥ − . 
Definition 5. (Fibonacci sequence) 
The sequence { } { }0

1,1, 2,3,5,8,13,21,i i
F ∞

=
=  , i.e., 1 2i i iF F F− −= + , 2 1F− = , 

1 1F− =  is called Fibonacci sequence. 

Now, assume that the characteristic equation associated with (12) is 

( ) 1
0 1 1 0,l l

l lp p p p pλ λ λ λ−
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Theorem A. Assume that 0 1, , , lp p p R∈ , and { }0,1,2,l∈  . Then 

1
1,

l

i
i

p
=

<∑                          (15) 

is a sufficient condition for the asymptotic stability of the difference equation: 
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1 1 0, 0,1, .n l n l l ny p y p y n+ + −+ + + = =               (16) 

Theorem B. Let [ ],p q  be an interval of real numbers and assume that 

[ ] [ ] [ ]: , , ,g p q p q p q× ←  
is a continuous function satisfying the following properties: 

(a) ( ),g x y  is non-decreasing in x in [ ],p q  for each [ ],y p q∈ , and is 
non-increasing in [ ],y p q∈  for each [ ],x p q∈ . 

(b) If ( ) [ ] [ ], , ,m M p q p q∈ ×  is a solution of the system 

( ),M g M m=  and ( ),m g m M= , 

Then 

.M m=  
Then equation 

( )1 1 3, ,n n ny g y y+ − −=  
has a unique equilibrium [ ],y p q∈  and every solution of this equation con-
verge to y . 

3. Dynamics of Equation (1) 

In this section, we obtain the equilibrium point then we study the local stability, 
global stability of the solutions, and the boundedness of the following difference 
equation 
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where ,α β  and γ  are positive constants and the initial conditions  

3 2 1 0, , ,y y y y− − −  are arbitrary positive real numbers. 

3.1. Local Stability of the Equilibrium Point 

In this subsection, we study the local stability of the equilibrium point of Equa-
tion (1). Equation (1) has a unique equilibrium point and is given by 

,yyy
y y
α

β γ
=

+  
2

,yy
y y
α

β γ
=

+  

( )2 2 .y yβ γ α+ =  

If ( )β γ α+ ≠ , then the only equilibrium point is 0y = . 
Theorem 3.1. Let 

( )2

1 .β γ
αβ γ

+
<

+  
Then the equilibrium point of Equation (1) is locally asymptotically stable. 
Proof. 
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Proof. Let ( ) ( )2: 0, 0,g ∞ → ∞ , be a continuous function defined by 
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So the linearized equation of (1) about 0y =  is 
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It follows by Theorem A that Equation (1) is asymptotically stable if 

( ) ( )2 2 1,αγ αβ
β γ β γ

+ <
+ +  
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( )2 1,
α γ β

β γ

+
<

+  
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( )2

1 .γ β
αβ γ

+
<

+  
The proof is complete.   

3.2. Global Stability of the Equilibrium Point of Equation (1) 

In this subsection, we study the global stability of the positive solutions of (1). 
Theorem 3.2. The equilibrium point y  of Equation (1) is global stability if 

α β≠ . 
Proof. Let ,p q  be a real numbers and assume that [ ] [ ] [ ]: , , ,g p q p q p q× →  

be a function define by 

( ) 1 2
1 2

1 2

, .
w wg w w

w w
α

β γ
=

+  
Then we can see that the function ( )1 2,g w w  is increasing in 1w  and 2w . 

Suppose that ( ),m M  is a solution of the system 
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( ),M g M m=  and ( ),m g m M= . 

Then from Equation (1), we can see that 
2 2

, ,M mM m
M M m m
α α

β γ β γ
= =

+ +  

and then 
2 2 2 ,M M Mβ γ α+ =  
2 2 2 .m m mβ γ α+ =  

Subtracting these two equations, we obtain 

( )( ) ( )2 2 2 2 ,M m M mβ γ α+ − = −
 

and if ( )β γ α+ ≠ , then we see that M m= . 
According to Theorem B the equilibrium point y  is a global attractor of (1). 

The proof is complete.   

3.3. Boundedness of Solutions of Equation (1) 

In this subsection, we look at the boundedness and unboundedness solutions of 
Equation (1). 

Theorem 3.3. Every solution of Equation (1) is bounded if 1α
γ
< . 

Proof. Let { } 3n n
y ∞

=−
 be a solution of (1).It follows from (1) that 

1 3 1 3
1 1

1 3 3

.n n n n
n n

n n n

y y y y
y y

y y y
α α α

β γ γ γ
− − − −

+ −
− − −

 
= ≤ =  +    

Then when 1α
γ
< , we see that 

1 1n ny y+ −≤  for all 0n ≥ . 

Then the sequences { } 3n n
y ∞

=−
 is decreasing and so is bounded from the above 

by { }3 2 1 0max , , ,M y y y y− − −= .   

3.4. Numerical Examples of Equation (1) 

In order to illustrate the results of the previous sections and to support our 
theoretical discussions, we assume some numerical examples in this section. 

Example 1. Figure 1 shows that the zero solution of the difference Equation 
(1) is local stability with the initial conditions 3 14y− = , 2 12y− = , 1 13y− =  
and 0 17y =  and the parameters 7α = , 8β =  and 7γ = . 

Example 2. In Figure 2, we choose the parameters 0.15α = , 0.1β =  and 
0.1γ =  with the initial conditions 3 0.57y− = , 2 1.1y− = , 1 0.3y− =  and 

0 0.5y = . Then, the plot if the behavior of the zero solution of the difference 
Equation (1) is global stability where α β≠ . 

Example 3. In Figure 3, consider the difference Equation (1) with initial con-
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ditions 3 0.57y− = , 2 1.1y− = , 1 0.3y− = , 0 0.5y = . Moreover, choosing the 
parameters 0.015α = , 0.1β =  and 0.1γ = . Then, the plot of the behavior of 
the solution of Equation (1) is bounded as shown in Figure 3. 

 

 
Figure 1. The stable solution corresponding to difference Equation (1). 

 

 
Figure 2. Plot the behavior of the zero solution of (1) is global stable. 
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Figure 3. Sketch the behavior of the solution of (1) is bounded. 

4. Special Cases of Equation (1) 

In this section we investigate the following special case: 
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where ,α β  and γ  are constants and the initial conditions 3 2 1 0, , ,y y y y− − −  
are arbitrary nonzero real numbers. 

4.1. First Case 

In this subsection, we solve the special case of Equation (1) when 1α β γ= = = . 
Theorem 4.1. The solution of the following difference equation 

1 3
1

1 3

,n n
n

n n

y y
y

y y
− −

+
− −

=
+

                      (17) 

is given by the following formulas for 0,1,2,n =  . 

2 3
1

,n
n n

bdy
f b f d−

−

=
+  

2 2
1

.n
n n

acy
f a f c−

−

=
+  

where the initial conditions 3 2 1 0, , ,y d y c y b y a− − −= = = =  are arbitrary posi-
tive real numbers with 2 0y y− ≠ , 3 1y y− −≠ . 

Proof. By using mathematical induction we can proves as follow. For 0n =  
the result holds. Assume that the result holds for 1n − , as follows 

2 4
2 1

,n
n n

acy
f a f c−

− −

=
+  
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2 5
2 1
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n n

bdy
f b f d−
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2 7
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where if  is Fibonacci sequence and { } { }1
1,0,1,1, 2,3,5,8,13,21,i i

f ∞

=−
=  . 

Then, from Equation (17), it follows that 

( )
( )( ) ( )( )

2 1 3 22 4 2 6
2 2

2 4 2 6

2 1 3 2
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3 2 2 1

3 2 2 1
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n n n nn n
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n n n n

n n n n
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f a f c f a f cy x

y
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f a f c f a f c

− − − −− −
−

− −

− − − −

− − − −

− − − −

  
  + +  = =

+ +
+ +

=
+ + +

=
+ + +  

Thus, 

2 2
1

.n
n n

acy
f a f c−

−

=
+  

Similarly, one can prove the other relations. Thus the proof is completed.   
Example 5. Figure 4 shows the behaviour of the solution of Equation (17) 

when the initial conditions 3 0.8y− = , 2 5y− = , 1 3y− =  and 0 2y = . 
 

 
Figure 4. Sketch the behavior of the solution of (17). 
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4.2. Second Case 

In this subsection, we deal with the specific case of the Equation (1) when 
1α β= =  and 1γ = − . 

Theorem 4.2. For 0,1,2,n =  , the solution of difference equation 

1 3
1

1 3

,n n
n

n n

y y
y

y y
− −

+
− −

=
−

                      (18) 

has the following formulas: 

( )
2 3
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−

−
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−  

( )
2 2

1

1
.

n
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f a f c−
−

−
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−  
where the initial conditions 3 2 1 0, , ,y d y c y b y a− − −= = = =  are arbitrary non-
zero real numbers with 2 0y y− ≠ , 3 1y y− −≠ . 

Proof. The results hold for 0n = . Assume that the result holds for 1n − . 

( ) 1
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−
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where if  is Fibonacci sequence and { } { }1

1,0,1,1, 2,3,5,8,13,21,i i
f ∞

=−
=  . 

Now, it follow from Equation (18), that 
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1
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n

n
n n
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y

f b f d−
−

−
=

+  
Hence, we can easily proof the other relations. The proof has been done.   
Example 6. Figure 5 illustrates the solution of Equation (18) when the initial  

https://doi.org/10.4236/jamp.2023.112032


N. A. Bukhary, E. M. Elsayed 
 

 

DOI: 10.4236/jamp.2023.112032 536 Journal of Applied Mathematics and Physics 
 

 
Figure 5. Sketch the behavior of the solution of (18). 

 
conditions 3 0.0007y− = , 2 0.1y− = , 1 3y− = , 0 1.2y = . 

4.3. Third Case 

In this subsection, we study the following special case of Equation (1) when 
1α = , 1β = −  and 1γ = . 

Theorem 4.3. Every solution of the following difference equation 

1 3
1

1 3

,n n
n

n n

y y
y

y y
− −

+
− −

=
− +

                      (19) 

is periodic with period 12. Moreover, the solution of (10) takes the following 
form 

12 3 12 2 12 1, , ,n n ny d y c y b− − −= = =  

12 12 1 12 2, ,n n n
bd acy a y y
b d a c+ += = =
− + − +  

12 3 12 4 12 5, , ,n n ny d y c y b+ + += − = − = −  

12 6 12 7 12 8, , .n n n
bd acy a y y

b d a c+ + += − = =
− −  

where the initial conditions 3 2 1 0, , ,y d y c y b y a− − −= = = =  are arbitrary non-
zero real numbers, and 2 0y y− ≠ , 3 1y y− −≠ . 

Proof. For 0n =  the result holds. Suppose that the result holds for 1n − . 

12 15 12 14 12 13, , ,n n ny d y c y b− − −= = =  

12 12 12 11 12 10, ,n n n
bd acy a y y
b d a c− − −= = =
− + − +  
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12 9 12 8 12 7, , ,n n ny d y c y b− − −= − = − = −  

12 6 12 5 12 4, , .n n n
bd acy a y y

b d a c− − −= − = =
− −  

We see from Equation (19) that 

( )( )
( ) ( )

12 6 12 8
12 4

12 6 12 8

.n n
n

n n

a cy y
y

y y a c
− −

−
− −

− −
= =
− + − − + −  

Thus, 

12 4 .n
acy

a c− =
−  

Similarly, 

2
12 1 12 1

12 3 2
12 1 12 1

.n n
n

n n

bd b
y y b db dy

bdy y bd b bdb
b d

+ −
+

+ −

 
 − + = = =

− + − − + − + − +   
Thus, 

12 3 .ny d+ = −  
Other relations can be found in similar way. Hence, the proof is completed. 

  
Example 7. Figure 6 shows that the solution of Equation (19) has a periodic 

solution with period 12 when the initial conditions 3 0.01y− = , 2 0.3y− = , 

1 0.7y− = , 0 5y = . 
 

 
Figure 6. Sketch the periodicity of the solution of (19). 
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4.4. Fourth Case 

In this subsection, we investigate the following special case of Equation (1) when 
1α = , 1β = −  and 1γ = −  and 2 0y y− ≠ , 3 1y y− −≠ . 

Theorem 4.4. For 0,1,n =  , the solution of the following difference equa-
tion 

1 3
1

1 3

,n n
n

n n

y y
y

y y
− −

+
− −

=
− −

                      (20) 

is periodic with period 6. Moreover, the solution of (20) takes the following form 

6 3 6 2, ,n ny d y c− −= =  
6 1 6, ,n ny b y a− = =  

6 1 6 1, .n n
bd acy y
b d a c+ += =
− − − −  

where the initial conditions 3 2 1 0, , ,y y y y− − −  are arbitrary nonzero real num-
bers, and 2 0y y− ≠ , 3 1y y− −≠ . 

Proof. For 0n =  the result holds. Now, suppose that 0n >  and that our 
assumption holds for 1n − . That is 

6 9 6 8, ,n ny d y c− −= =  
6 7 6 6, ,n ny b y a− −= =  

6 5 6 4, .n n
bd acy y
b d a c− −= =
− − − −  

From Equation (20) we have 

2
6 5 6 7

6 3 2
6 5 6 7

.n n
n

n n

bd b
y y b db dy d

bdy y bd b bdb
b d

− −
−

− −

 
 − − = = = =

− − − + + − − − −   
Also, 

2
6 3 6 5

6 1 2
6 3 6 5

.n n
n

n n

bdd
x x bdb dy b

bdx x bd b bdd
b d

− −
−

− −

 
 − − = = = =

− − + −− −
− −  

Hence, the rest of the relations can be found in similar way. The proof has 
been completed.   

Example 8. We show, in Figure 7, the behavior of the solution of equation 
(20) when the initial conditions 3 0.01y− = , 2 0.3y− = , 1 0.7y− = , 0 5y = . 
Moreover, Figure 7 shows that the solution of Equation (20) has a periodic solu-
tion with period 6. 

5. Conclusion 

In this article we present the qualitative behavior of a rational difference equation. 
Firs, we prove the existence of the equilibrium point. Then it investigated the local 
stability, global stability and studied the boundededness of the difference  
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Figure 7. Sketch the periodicity of the solution of (20). 

 
Equation (1). In Section 4, we obtained the form of the solution of four special 
cases of the difference Equation (1) and investigated the existence of a periodic 
solution of these equations, and we gave interesting numerical examples of each 
of the case with different initial values. 
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