
Journal of Applied Mathematics and Physics, 2023, 11, 514-524 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.112031  Feb. 22, 2023 514 Journal of Applied Mathematics and Physics 
 

 
 
 

Computational Physics of Mathematica and 
Geometric Calculus 

Edwin Eugene Klingman  

Cybernetic Micro Systems, Inc., San Gregorio, CA, USA 

 
 
 

Abstract 
The latter half of the twentieth century yielded two tools of unprecedented 
power, both of which took decades to mature to their current states. The 
purpose of this research is to apply these to a theory of gravity and develop 
the consequences of the model based on these tools. This paper presents such 
results without mathematical details, which are presented elsewhere. The 
tools are: Geometric Calculus, developed by David Hestenes, circa 1965 and 
Mathematica, released in 1988 by Steven Wolfram. Both tools have steep 
learning curves, requiring several years to acquire expertise in their use. This 
paper explains in what sense they are optimal. 
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1. Introduction 

A theory of physics is a model of reality, typically expressed as a mathematical 
model. The theorist then faces the problem of choosing the most appropriate 
class of mathematics. For example, Einstein’s general relativity, based on con-
cepts of curved spacetime, led to 4-dimensional Differential Geometry as the 
model preferred by most, whereas the choice of most quantum theorists has been 
that of Hilbert spaces that may be infinite dimensional. These formalisms and un-
derlying ontological concepts of time and space are incompatible with each other, 
leading to a century-long effort to reconcile gravity theory with quantum theory. 
The current state of quantum gravity theory [1] is far from reconciled. 

Both relativity and quantum theory began a century ago and were fully for-
mulated by mid-century. This effectively insured that advances in math and 
modelling post-1990 have had relatively little effect on the base theories. On the 
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other hand, the current unsatisfactory state of quantum gravity theory suggests 
that current tools may be of value in resolving the issues. The goal of this paper 
is to present two relatively recent mathematical tools that are available to quan-
tum gravity theorists and other physicists. 

David Hestenes [2] developed Geometric Calculus, an extension of Clifford’s 
Geometric Algebra, of 1870. Physical theories have been based on algebra and 
geometry as two separate academic fields; physics equations are formulated al-
gebraically, including vector calculus operators, and geometric images are often 
drawn to accompany the equations and to illustrate the meaning of the algebraic 
terms. This approach worked well for centuries, requiring only that the physicist 
master algebra and geometry separately. Hestenes changed this in a manner that 
is not immediately obvious: his geometric algebra is formulated such that every 
mathematical entity has both geometric and algebraic meaning. In 3 spatial di-
mensions, we consider scalars, vectors, bivectors, and trivectors, each of which 
has a well-defined geometric nature and an algebraic representation, while alge-
braic operators include , , , , ,+ − ∗ ÷ ⋅ ∧  and i. The standard operators , , ,+ − ∗ ÷  
need no introduction, while the vector operations ⋅  and ∧  are generally fa-
miliar to physicists. The geometric product is defined for two vectors, a and b: 

ab a b a b= ⋅ + ∧                         (1) 

A dot product of two vectors yields a scalar, a b⋅ , and a wedge product yields 
a bivector, a b∧ . Observe that geometric algebra allows one to add “unlike ent-
ities” (“apples and oranges”) in the multi-vector equation. Finally, the duality 
operator, i, transforms one geometric algebra entity into its dual, for example 

( )a b i a b∧ = − ×                         (2) 

The bivector a b∧  is a 2-dimensional entity obtained by rotating a into b 
which has an area but no defined shape, and a direction of rotation; a into b or b 
into a: a b b a∧ = − ∧ . On the right of Equation (2) the duality operator operates 
on the 1D cross product, a vector, transforming it into the 2D bivector dual to it. 
Note that dot product operating on two 1D vectors yields a 0D scalar, while the 
wedge operation on two 1D vectors yields a 2D bivector. This “raising and lo-
wering” effect can be extended to any dimension, but we will herein limit our-
selves to 4D scenarios. 

2. Fundamental Principles 

To demonstrate the power inherent in this math we consider the primordial 
field of the universe, ψ , which we assume to exist at the moment of creation 
[3]. The primordial nature implies that nothing else existed at this moment, 
hence, if the field is to interact, as it must, to evolve into our current Universe, 
the field must interact with itself; nothing else exists to interact with. This yields 
the Self-Interaction Principle represented by the Self-Interaction equation: 

ψ ψψ∇ =                           (3) 

where ψ  represents the primordial field and ∇  represents the change opera-
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tor. If the field depends upon parameter ξ , the change operator becomes 

ξ∇ → ∂ , which leads to two formal solutions for Equation (3): a scalar solution 
( ) 1ψ ξ ξ −= −  and a vector solution ( ) 1ψ −=ξ ξ . Associate the scalar field with 

time timeξ =  and the vector field as a function of position r . Defining pri-
mordial field ( ) ( ), ,t i tψ = +G r C r  with corresponding operator t∇ = + ∂∇ , 
Equation (3) becomes 

( )( ) ( )( )t i i i+ ∂ + = + +G C G C G C∇                 (4) 

A Hestenes’ Geometric Calculus expansion of this equation immediately leads 
to the following: 

Self-Interaction equations 

2

0
t

t

i i

i i

⋅ = ⋅ − ⋅
⋅ = ⋅

∂ − × = × + ×

× + ∂ =

G G G C C
C G C

G C G C C G
G C

∇
∇

∇

∇

                  (5) 

Since ψ  is the primordial field, its components G  and C  are fields and 
the terms ⋅G G  and ⋅C C  represent the field energy density of these fields, 
while ×G C  represents Poynting-like momentum. We define ρ  as the densi-
ty of the equivalent mass. Substituting this into Equation (5) we obtain: 

Heaviside equations 

0

t

t

ρ

ρ

⋅ = −
⋅ =
× = − + ∂

× = −∂

G
C
C v G
G C

∇
∇
∇

∇

                      (6) 

identical to Heaviside’s 1893 formulation [4] of gravity G  and gravitomagnetic 
field C . Note that the concept of field strength is absent in the derivation, other 
than the implicit assumption of strong fields existing at the big bang. Heaviside’s 
equations derived by linearizing Einstein’s equations are erroneously labeled the 
weak field approximation to Einstein’s equations and have led physicists to re-
gard Einstein’s geometric equations as the “true” physics. But Heaviside’s for-
mulation is equivalent to Einstein at all field strengths, holds at all scales, in-
cluding the particle scale, and clearly shows the dependence on mass density ρ. 
Equations (6) are based on gravitational fields ( ), tG r  and ( ), tC r ), however 
the field equation 0⋅ =C∇  implies that we can make use of vector identity 

0⋅ × =A∇ ∇  to replace C  with a potential vector × A∇  and derive the 
gauge field Eqns used by Yang-Mills [5]. 

3. Inverse Operations in Solving Equations 

The inverse differential 1−∇  is used frequently in solving electromagnetic field 
equations, and is defined in terms of Green’s functions: 

( )1 1f r− −∇ ⇒ ∫                         (7) 

A simpler solution to gravitomagnetic field equations is [6] the recently in-
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troduced inverse curl: 

( ) ( )1−× = ×r∇  and ( ) ( ) 1−× = ×r∇                 (8) 

Allowing relatively simple calculation of the induced field circulation: 
3d x× = − ∫C P∇                        (9) 

( )( ) 3r
 × × = − × ⇒ = − × 
 

Pr C r C r p∇               (10) 

where P  is momentum and p  is momentum density of the local field. Geo-
metric approaches, such as Einstein’s general relativity are unable to define local 
field density and instead use concepts such as “quasi local mass” which I treat in 
[7]. The concept of local field density is well defined in the Heaviside approach 
to the gravitational field. As seen in Equation (10) the C-field contains angular 
momentum density proportional to frequency, i.e., C is the characteristic fre-
quency of the local angular momentum density: 3d ~x = − ×∫ C r P L . The mi-
nus sign represents left-handed circulation of the field induced by P . 

Based on the above it is quite easy to calculate the C-field at an arbitrary ob-
servation point, O, as shown in Figure 1. Observe that we have drawn the phys-
ical objects as 3D objects. A local momentum vector P  induces a local field 
circulation, × = −C p∇ , where the local momentum is shown as a red arrow 
and the circulation as a bivector centered on the momentum. 

Gravitomagnetic loops in an ultra-dense turbulent gravity field can “recon-
nect” to produce a coaxial balanced field dynamics as seen in Figure 1(a). The 
bivector ×C∇  is circulation of the C-field. The magnitude of the square of the 
field, ⋅C C  is local field energy density (of the spin), and is easily computed at 
any point in time, as the traveling energy density induced by momentum density  

 

 
Figure 1. (a) Two coaxial anti-parallel momenta move apart from a reconnection event at 
the origin. The momenta are represented by red arrows, the local field mass density by 
the sphere on the red arrow, and the local field circulation by the disc surrounding the 
sphere. The xy-plane defines the region where induced fields cancel each other. (b) Two 
parallel momenta, with accompanying induced C-field circulations, interact with respect 
to observation point O. 
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p . This energy can be plotted at the observation point over time, and due to cy-
lindrical coaxial symmetry can be visualized as the strength of field energy at 
point O due to P  from ( )0t =P  to ( )∞P  as seen in Figure 2. 

In [8] I construct the physics of ijh  for a dynamic spatially homogeneous 
anisotropic Bianchi vacuum model that solves Einstein’s equations in terms of 
the physically real primordial field, otherwise devoid of matter. Kasner derived 
the solution to 0Rµν =  in 1921. Narlikar and Karmarkar’s later formulation is: 

( )
1 22 2 2 2

1
d d 1 dj

D p
j

j
s c t nt x

−

=

= − +∑ .                 (11) 

While Equation (11) is subject to constraints on jp , the meaning of parame-
ter n has been obscure. I interpret n to be primordial field ( )C t  induced by 
momentum jp , assumed to exist because of a reconnection event. 

4. Aspects of Mathematica for Hestenes’ Geometric Calculus 

In 1988 Steven Wolfram [9] released Mathematica 1.0 which has evolved to the 
current version 13.1. Of particular interest to us is the fact that Mathematica 
supports 2D graphics and 3D graphics at the fundamental level, with common 
geometries “built-in” in parametrizable fashion. These objects can be readily 
mapped into Geometric Calculus formulations as shown in section 3. 

Mathematica models allow a degree of certainty regarding physical equations 
that is absent when the equations are solved by hand. In such cases one gains 
certainty by reviewing the logic of the system until convinced that no logical er-
rors exist. If the Mathematica model produces stable behaviors where one ex-
pects stable behaviors, one rather quickly exercises modes of behavior that hand 
solutions do not exercise. 

 

 
Figure 2. The C-field energy density as a function of time as measured at the observation 
point in Figure 1(a) with respect to a reconnection event in an anisometric open universe 
described by the Kasner metric. The time axis is mapped onto the reconnection axis cor-
responding to the z-axis. 
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In addition, Mathematica provides the ability to manipulate parameters “live” 
based on a large variety of “controls” and to observe the resultant behaviors 
from easily selectable 3D perspectives. These aspects allow exploration of beha-
vioral details hidden from the analytic solver of equations. 

The system readily supports algebraic computations of the type discussed 
above. In other words, the inverse curl operation allows us to work with the field 
C , it’s energy density ⋅C C , and its circulation ×C∇ . Note that the helical 
structure of the circulating C-field is encompassed by term e ~ ei iCtθ  where θ   

is a dimensionless parameter and C has dimensions of frequency, 1~
t

. This  

circulating wave behavior is known as U(1)-symmetry. The solution to Max-
well’s field wave equations has U(1) symmetry, ( ) ( )e ~ cos sini iθ θ θ+ . In other 
words, the propagating field has helical structure. 

The physical regimes of interest are ultra-high-density gravitational fields, 
exemplified by big bang and atom-atom collisions at CERN. Both such regimes 
are extremely turbulent such that collisions of helices, including self-intersection 
occurs, potentially forming tori. In such cases the symmetry is essentially U(1) × 
U(1) as illustrated in Figure 3. 

The speed at any point on the helix is constant as is shown in Figure 4(a). 
Our U(1) × U(1) conceptual model shows every circle disconnected from every 
other circle; not a helix. To reflect the physical ontology of the torus, we desire 
helical flow lines. The tangent, and hence flow velocity, has the same definition, 
and since the radius is constant around the U(1) circle, the velocity is constant. 
The parametric helix is ( ) ( ){ }cos ,sin ,t t t=r r  hence, the Mathematica model 
for Figure 4(a) is: 

x[t_]:= Cos[t]; y[t_]:= Sin[t]; z[t_]: = t;              (12) 

velocities = Table [{{x’[θ], y’[θ], z’[θ]}},{θ, 0, 4π, π/180}]//N     (13) 

ListPlot[Table[{velocities[[n]][[1]].velocities[[n]][[1]], n},{n, 361}]]//N  (14) 

Figure 4(b) shows the value of the velocity squared. In comparison, velocity 
of any point of a helix has constant magnitude. We elaborate on simple helical 
flow because it is easy to grasp and yet differs from toroidal flow, despite that we 
constructed a torus from a helix, by curving the helix until its ends join; this 
joining changes U(1) helical symmetry to U(1) × U(1) symmetry of the torus.  

 

 
Figure 3. (a) U(1) (circles) centered on red U(1) circle yield; (b) torus with U(1) × U(1) 
symmetry. 

https://doi.org/10.4236/jamp.2023.112031


E. E. Klingman 
 

 

DOI: 10.4236/jamp.2023.112031 520 Journal of Applied Mathematics and Physics 
 

 
Figure 4. Unlike the constant velocity of helical flow, the [squared] velocity of toroidal flow is smoothly distributed between 
minimum and maximum velocities. Velocities here range from ~6.5 to ~11 as the parametric path is followed from zero to 360 
degrees. This differs from the velocity of the helix because the size of the torus has changed, nevertheless, this distribution of 
velocities represents any size torus. 

 
We show the difference in Figure 4(b) by plotting the velocity of the “helical” 
flow around the torus. 

If the donut retains a circular cross section, we might initially guess that the 
flow velocity would have constant magnitude like the helix. We investigate why 
this is not the case. 

Creation of the model, representative of the theory, is an immediate realiza-
tion of a behavioral mechanism, almost every point of which can be examined, 
typically visually. One creates the model, then brings it to “life” in Mathematica 
Dynamic Modules that can be manipulated in unlimited fashion via analog and 
digital controls. 

For example, the primordial field model was not created based on tangents on 
a manifold, but the tangents exist, and when one reasons about flow on a mani-
fold it is useful to consider these tangents. In fact, one can partition the velocities 
at key points on the manifold based on intuitive understanding of the flow re-
quirements imposed by conservation of momentum. The mass flow of the to-
roidal field energy in U(1) × U(1) circulates around the hole and through the 
hole in the torus. If the torus is horizontally flat in the xy-plane and centered on 
the z-axis of the frame, the torus has in effect two equators, an outer equator and 
an inner equator. One can intuitively derive flow behavior in the horizontal 
plane and in a vertical plane that contains the z-axis. Surprisingly, even using 
color-coded visualization techniques, the dynamic flow on such a curved mani-
fold is too complex to be confident that one’s equations correctly describe such 
flow. In Figure 5 a flow path is depicted in black with points in the flow shown by 
red and green arrowheads, with red arrows when the flow is above the equators 
and green arrows when the flow is below (with outer equator shown in white). 

The dynamic visualization of the field behavior intuitively confirms the “cor-
rectness” of the model/theory, but the flow is shown for the local velocity con-
sisting of both horizontal and vertical components of velocity. Separating these  
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Figure 5. Highlighting specific points on a given U(1) × U(1) path for a toroidal flow. 

 
components make a complicated dynamic even more complicated. Once, how-
ever, one is convinced of the theory’s correctness, then one can perform experi-
ments on the model, that is, make measurements. 

5. Measurements on a Dynamic Model 

Rather than complicating the visual dynamic flow further, by dividing it into two 
components as it flows around the torus, I decided to simply print out the values 
of the horizontal and vertical components of velocity at every point. Since I typ-
ically employ 360 points for each U(1) path, and can, via Mathematica controls, 
determine the speed of simulation, it is quite simple to walk my way around the 
path, slowing down at each of the critical points (the red and green arrow heads 
in Figure 5) examining the velocity components, equatorial vertical velocities 

iz ozv v=  with o iv v>  and corresponding horizontal components o iv vθ θ>  
with 

0o oz θ= +v v v  and i iz iθ= +v v v .                (15) 

We thereby build a table as seen in Table 1. The radii are defined in Figure 6, 
with ir  the inner radius, or  the outer radius, and R the radius to the core of 
the torus. 

At any point on the manifold the velocity Zθ= +v v v . If we square both sides, 
term 0Zθ ⋅ =v v  since θv  and Zv  are orthogonal, hence 

2 2
Zv v vθ= +                         (16) 

For example, at 30˚ the velocity is 2 29 9 12.7279220+ =  while at 90˚ 
2 23 9 9.48v = + = . We see from the table that the measurements confirm the 

intuitively derived relations based on the conservation of momentum reasoning. 
In short, the dynamic visualization of the field behavior intuitively confirms the 
correctness of the model/theory, while the measurement access to arbitrary pa-
rameters can serve as proof of the flow model worked out by conservation equa-
tions and the U(1) × U(1)-symmetry. When these measurements on the model 
agree in detail with intuitively and/or analytically derived behavior, the feeling is 
as if one has “struck gold”. One can only sincerely thank David Hestenes and 
Steven Wolfram for their contributions to this task. 
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Figure 6. The radii ri, ro, and R used in measurements in Table 1. 

 
Table 1. Measurement of velocity components. 

deg 0 30 60 90 120 150 180 210 

θv  10.8 9 10.8 3 10.8 9 10.8 3 

Zv  0 9 0 9 0 9 0 9 

v  10.8 12.7279 10.8 9.48 10.8 12.72 10.8 9.48 

radi R ro −R −ri R ro −R ri 

6. Summary and Conclusions 

The current paradigms of relativistic and quantum math precede the advent of 
modern computers, whereas Hestenes’ development of a calculus of geometric 
algebra, based on ab a b a b= ⋅ + ∧  has the property that every entity has both 
algebraic and geometric meaning. Thus, theoretical equations can be represented 
both algebraically and geometrically, a claim that no other mathematical formal-
ism can match. As computational power began to reach Everyman, post-1980, 
Wolfram designed an equation solver of monstrous proportions and it has evolved 
into a first-class tool for solving, calculating, and displaying 3D objects associated 
with geometric calculus. Mathematica solves the algebra and displays the geo-
metry as it was designed to do. 

A theory is a model. One can create a theory centered in any of many mathe-
matical disciplines and try to analyze one’s theory and make predictions. It is 
typically the case that the theory arose in one’s mind, and was translated into 
equations in one’s head, and these equations are used to predict behavior. One 
can make reasonable progress based on intuitive models in one’s mind, but 
when this is complemented with a stable model implementing the theory, the 
predicative power is significantly enhanced. Based on the self-interaction of the 
primordial field I have derived Heaviside’s equations which are iteratively equiv-
alent to Einstein’s general relativity of “curved spacetime” and have shown that a 
century of relativistic paradox and perplexity are resolved by this approach. I have 
reinterpreted dynamic metrics in this context as hinted at in section 3. 

Other treatments of physics based on Mathematica exist [10]. An excellent 
treatment based on Geometric Algebra is [11]. 

A recent paper [12] states that “Modern cosmological models are formulated 
in the framework of field theory [however] fields do not evolve per se—a solu-

https://doi.org/10.4236/jamp.2023.112031


E. E. Klingman 
 

 

DOI: 10.4236/jamp.2023.112031 523 Journal of Applied Mathematics and Physics 
 

tion to field equations specifies the field content in the entire spacetime.” This is 
true for quantum field theory, in which specific fields occupy all of space, with 
excitations in the field giving rise to specific particles, but contrasts with our 
primordial field theory wherein the field does evolve through self-interaction. 

Eckstein and Horodecki further state that, while modern physics is founded 
on two mainstays; mathematical modeling and empirical verification, a contra-
diction exists, as any experiment performed in a physical system is—by necessi-
ty—invasive and thus establishes inevitable limits to the accuracy of any mathe-
matical model. As hinted at in this paper, the tools of Geometric Calculus and 
Mathematica have recently been applied to quantum gravity. A cosmological anal-
ysis based on an extension of the Kasner metric has produced a dynamic un-
iverse, empty of matter, and a topological variant has been produced with the goal 
of deriving fermions from the primordial field. Evolution of the field into fun-
damental particles is essentially unmeasurable, so the experiments are downstream, 
involving particle interactions of the type produced at CERN-LHC. In this case, 
the limits on accuracy of the mathematical model are of little consequence; the 
model should exhibit a mass-gap, half-integral spin, and discrete charge. This has 
been accomplished and is in process of submission. 
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