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Abstract 
In this paper, we present the a posteriori error estimate of two-grid mixed finite 
element methods by averaging techniques for semilinear elliptic equations. We 
first propose the two-grid algorithms to linearize the mixed method equations. 
Then, the averaging technique is used to construct the a posteriori error esti-
mates of the two-grid mixed finite element method and theoretical analysis are 
given for the error estimators. Finally, we give some numerical examples to ve-
rify the reliability and efficiency of the a posteriori error estimator. 
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1. Introduction 

Mixed finite element method is a kind of method in solving partial differential 
equations (PDEs). Mixed methods are based on writing a higher order differen-
tial equation into lower order differential system. The purpose of this article is to 
study the a posteriori error estimate of the mixed finite element methods for the 
following semilinear elliptic equation  

( ), , in  ,u f x u−∆ = Ω                      (1.1) 

with mixed boundary conditions. 2RΩ ⊂  is a convex polygonal domain and 
( ),f x u , a real-valued function on Ω , has continuous first and second deriva-

tives to u. 
The a posteriori error estimates of mixed finite element method have been 

studied extensively in the past several decades for solving many differential 

How to cite this paper: Wen, Y.M., Chen, 
L.P. and Dai, J.J. (2023) A Posteriori Error 
Estimate of Two Grid Mixed Finite Ele-
ment Methods for Semilinear Elliptic Equ-
ations. Journal of Applied Mathematics and 
Physics, 11, 361-376. 
https://doi.org/10.4236/jamp.2023.112020 
 
Received: November 23, 2022 
Accepted: February 4, 2023 
Published: February 7, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.112020
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.112020
http://creativecommons.org/licenses/by/4.0/


Y. M. Wen et al. 
 

 

DOI: 10.4236/jamp.2023.112020 362 Journal of Applied Mathematics and Physics 
 

model problems, for example, the Navier-Stokes equations based on Newton- 
type linearization by Durango and Novo [1], the linear elliptic problems by Lar-
son and Målqvit [2], the Poisson problem about an error estimate in the 

( )div,H Ω  norm of the flux by Carstensen [3], the general convex optimal con-
trol problems by Chen and Liu [4]. In order to combine the advantage of adap-
tive mixed finite element method and the efficiency of two-grid finite element 
method for semilinear elliptic equations, in this study, we proposed the posteri-
ori error estimator for the two-grid mixed finite element methods. 

The two grid method is a widely used numerical method in solving nonlinear 
problems. It was first introduced by Xu [5] [6] to solve the nonsymmetric linear 
and nonlinear elliptic problems. Many numerical methods combined with two-grid 
method were used to solve different model problems, for instance, nonlinear 
reaction-diffusion equations using mixed finite element methods by Chen and 
Chen [7], nonlinear parabolic equations by Chen and Liu [8], the coupled 
Stokes-Darcy system by Sun, Shi, et al. [9], two-dimensional semi-linear elliptic 
interface problems by Chen, Li, et al. [10]. In recent years, the residual-based a 
posteriori error estimates of two-grid finite element methods and finite volume 
methods are investigated for nonlinear PDEs [11] [12]. Adaptive two-grid finite 
element methods based on residual-based a posteriori error estimator are stu-
died in [13]. 

In order to investigate efficient two-grid adaptive mixed finite element me-
thod for semilinear or nonlinear PDEs, in this paper, we study two-grid mixed 
finite element method and its posteriori error estimates for semilinear elliptic 
problem (1.1). We first propose two algorithms for the model problem. Then, 
for both two-grid mixed finite element methods, by using averaging technique, 
the posteriori error estimators are proposed for the flux error in L2-norm. Theo-
retical analysis is given to prove the efficiency and reliability of the error estima-
tors. Two numerical examples are given to verify the theoretical results and from 
the numerical results, we find that the error estimators proposed in this paper 
are efficient and reliable. 

The outline of this paper is organized as follows. In Section 2, we present some 
notations and weak form of the semilinear elliptic Equations (1.1). Two-grid 
mixed finite element methods for the model problem are presented in Section 3. 
In Section 4, we give a theoretical analysis of the reliability and efficiency for the 
posteriori error estimators. Numerical experiments are given to verify the theo-
retical results in Section 5. 

2. Weak Form and Preliminaries 

In this section, we will present some preliminaries and weak form for the semi-
linear model problem (1.1).  

2.1. Preliminary 

We first introduce the standard notations used in this paper. We denote 
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( ) ( ) ( ) ( ){ }, , , ,m p p p nW v L D v L Z m+Ω = ∈ Ω ∈ Ω ∀ ∈ ≤α α α  as Sobolev spaces 
with the norm ,m p⋅ , for integer 0m ≥  and real number 1 p≤ ≤ ∞ ,  

( ), p

pp
mm p L

v D v
≤ Ω

= ∑ α
α  and ( ) ( ){ }, ,

0 : 0m p m pW v W v
∂Ω

Ω = ∈ Ω = . When  

2p = , we denote ( ),2mW Ω  by ( )mH Ω , ( ),2
0
mW Ω  by ( )0

mH Ω , and we will 
use ,2m m⋅ = ⋅  and 0,2⋅ = ⋅ . 

Throughout this paper, we will use letter C to denote a generic positive con-
stant that may represent different values at different places.  

2.2. Weak Form 

In order to introduce a mixed variational formulation on Ω , we first introduce 
the following spaces  

( ) ( ) ( ){ }22 2div, : ,div ,H L L= Ω = ∈ Ω ∈ ΩV v v  

( )2 ,W L= Ω  

( ) ( ){ }1 1: , 0 ,
DDH u H u

Γ
Ω = ∈ Ω =  

with the norms  

( )2 2 1 2
div and ,  , .Wq q q W= + = ∀ ∈ ∈Vv v v v V  

The Lipschitz boundary Γ = ∂Ω  of the bounded domain Ω  is split into a 
closed Dirichlet part DΓ  and possibly empty Neumann part NΓ . Set u= −∇p . 
Rewrite the problem (1.1), we have  

( )div , in ,
, in ,

0, on ,
, on .

D

N N

f u
u

u
g

 = Ω
 = −∇ Ω


= Γ
 ⋅ = Γ

p
p

p n

                   (2.1) 

Here Ng  is given function. 
We define a space { }0 : 0,on N= ∈ ⋅ = ΓV v V v n , the standard mixed varia-

tional form of (2.1) is to find ( ),u V W∈ ×p , such that  

( ) ( ) 0, ,div 0,  ,u− = ∀ ∈p v v v V                (2.2) 

( ) ( )( )div , , ,  .w f u w w W= ∀ ∈p               (2.3) 

where ( ),⋅ ⋅  is the inner product of ( )2L Ω . 
Given W∈µ , the linearised form of (2.2) and (2.3) is  

( ) ( ) 0, ,div 0,  ,u− = ∀ ∈p v v v V               (2.4) 

( ) ( ) ( )( )( )div , , ,  .w f f u w w W′= + − ∀ ∈µ µ µp         (2.5) 

Let h  denote a regular triangulation of the polygonal domain Ω , Th  de-
notes the diameter of the element hT ∈  and { }max Th h= . And for hT ∈ , 
let ( )k

T kP T=   denote the set of algebraic polynomials in ( )2d d =  variables 
on T of total degree ≤ k. 
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The set of all nodes and edges appearing in h  are denoted as   and ε . 

DE∈ε  denotes edges E∈ε  on the boundary DΓ , NE∈ε  denotes edges 
E∈ε  on the boundary NΓ , IE∈ε  denotes edges E∈ε  but E ⊂ ∂Ω/ . 

The space ( )k
h   (possibly discontinuous) of h -piecewise polynomials of 

degree ≤ k is the set of all ( )U L∞∈ Ω  (a set composed of all bounded number 
columns) with k

TTU P∈  for all T in h . Set  

( ) ( ) ( )( )0 0span ,
d

T T x T= ⊕   V  

( ) ( )0 ,W T T=   

( ) ( ) ( ) ( ) ( ){ }and : : 0 .
D

k k k k
h h D h h h hS C S u S u

Γ
= ∩ Ω = ∈ =      

Here ( )C Ω  denotes continuous space. 
Let  

( ){ }
( ){ }

: :  , ,

:  , .

h h T

h h T

T T

W w W T w W T

= ∈ ∀ ∈ ∈

= ∈ ∀ ∈ ∈





V v V v V
 

In this paper, we mainly study h hW W× ⊂ ×V V  as the lowest order Raviart- 
Thomas mixed finite element spaces for the discretization of the flux p  and u, 
we define { }0 : 0,on h h N= ∈ ⋅ = ΓV v V v n  ( 0

HV  has the same definition as 0
hV ). 

Therefore, the discretization of mixed finite element method is to find 
( ),h h h hu W∈ ×p V  such that  

( ) ( ) 0, ,div 0,  ,h h h h h hu− = ∀ ∈p v v v V              (2.6) 

( ) ( )( )div , , ,  .h h h h h hw f u w w W= ∀ ∈p             (2.7) 

2.3. Helmholtz Decomposition and Interpolation Operator 

In order to make theoretical analysis, we need to introduce Helmholtz decom-
position and the interpolation operator   [14]. 

We first define the curl operator as follows [15],  

3 2

2 3

3 31

3 1

2 1

1 2

if  : ,  curl ,

x x

R
x x

x x

 ∂ ∂
− ∂ ∂ 

 ∂∂
Ω→ = ∇× = − 

∂ ∂ 
 ∂ ∂ − ∂ ∂ 

τ τ

ττ
τ τ τ

τ τ

 

2 2 1

1 2

if  : ,  curl ,R
x x

∂ ∂
Ω→ = −

∂ ∂
τ τ

τ τ  

2

1

if  : ,  and 2,  curl .

v
x

v R d v
v
x

∂ 
 ∂ Ω→ = =
 ∂
− ∂ 

 

Then, we can get ( )div curl 0=ϕ  and the Gauss theorem yields the following 
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relation  

( )( )curl d curl d d .x x s
Ω Ω ∂Ω

⋅ = ⋅ + − ⋅ ⋅∫ ∫ ∫ϕ τ ϕ τ τ τ ϕn n         (2.8) 

here n  is outer unit normal vector of ∂Ω , and ( )− ⋅τ τ n n  denotes the tan-
gential component of τ . 

We define an approximation operator ( ) ( )1 1: D D hH SΩ →  . Let { }z z∈ϕ


 
denote the nodal basis of ( )1

hS  , ( )1
z hS∈ϕ   satisfies ( ) 0z x =ϕ  if  

{ }\x z∈  and ( ) 1z z =ϕ , the open patches defined by  
( ){ }: 0z zw x x= ∈Ω <ϕ . 

Then, we modify { }z z∈ϕ


 to be a partition of unity ( )|z z∈ψ    
( \= ∂Ω   denotes the set of free nodes). Find each fixed node \z∈  , 
we choose a node ( )z ∈ζ   and let ( )z z=ζ  if z∈ . In this way, we de-
fine a partition of   into ( )card   classes ( ) ( ){ }:I z z z z= ∈ = ζ , 
where z∈ . For each z∈ , set  

( )
,z

I z∈

= ∑ ζ
ζ

ψ ϕ  

and notice that ( )|z z∈ψ   is a partition of unity. It is required that  

( ){ }: 0 ,z zx xΩ = ∈Ω <ψ  

is connected. 
For ( )1g L∈ Ω  and z∈ , let zg R∈  be  

d
,

d
z

z

z

z
z

g x
g

x
Ω

Ω

=
∫
∫

ψ

ϕ
 

and then define  

.z z
z

g g
∈

= ∑ ϕ


  

We also define local mesh-sizes by h  and hε , where h  denotes the ele-
ment-size, TTh h=  for hT ∈ , and the edge-size ( )diamEEh h E= =ε . 

We also use the orthogonal 2L -projection hP  [16]: hW W→ , which satis-
fies  

1 .hP w w Ch w− ≤                     (2.9) 

Lemma 2.1 ([14]). There exist ( ),h hε -independent constant C such that 
for all ( )1

Dg H∈ Ω  and ( )2f L∈ Ω , there holds 

,g g C g∇ −∇ ≤ ∇                   (2.10) 

( ) ( )2
2

1 2
2d min ,

zz
z z Lf Rz

f g g x C g h f f
ΩΩ ∈∈

 − ≤ ∇ − 
 
∑∫


      (2.11) 

( )1 ,h g g C g− − ≤ ∇                   (2.12) 

( )
( )2

1 2 ,
NL

h g g C g−

Γ
− ≤ ∇ε                (2.13) 

the constants C only depend on Ω , DΓ , NΓ  and the shape of the elements 
and patches.  
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3. Two-Grid Finite Element Methods for Semilinear  
Problems 

In this section, we present two-grid mixed finite element methods for the semi-
linear elliptic problems and analyze the lower and upper bounds of posteriori 
error estimates by averaging techniques. 

The idea of two-grid methods is to solve the semilinear partial differential eq-
uations(PDEs) on the coarse mixed finite element spaces H H h hW W× ⊂ ×V V  
first and then find the solution ( ,h hup ) (or ( ,h hu p )) of a linear PDEs on the 
finer mixed finite element spaces h hW×V . The basic mechanism in these algo-
rithms is to construct two shape-regular subdivision of Ω  as H  and h  with 
different mesh sizes H and h ( h H ). 

Two-grid Algorithm 1 
Step 1: On the coarse mesh H , compute ( ),H H H Hu W∈ ×p V  to satisfy the 

following original nonlinear system:  

( ) ( ) 0, ,div 0,  ,H H H H H Hu− = ∀ ∈p v v v V             (3.1) 

( ) ( )( )div , , ,  .H H H H H Hw f u w w W= ∀ ∈p             (3.2) 

Step 2: On the fine grid h , compute ( ),h h
h hu W∈ ×p V  to satisfy the fol-

lowing linear system:  

( ) ( ) 0, ,div 0,  ,h h
h h h hu− = ∀ ∈p v v v V               (3.3) 

( ) ( )( )div , , ,  .h
h H h h hw f u w w W= ∀ ∈p              (3.4) 

The second two-grid algorithm introduces the Newton linearized procedure 
on the fine mesh to linearize the semilinear system. 

Two-grid Algorithm 2 
Step 1: On the coarse grid H , compute ( ),H H H Hu W∈ ×p V  to satisfy the 

following original nonlinear system:  

( ) ( ) 0, ,div 0,  ,H H H H H Hu− = ∀ ∈p v v v V             (3.5) 

( ) ( )( )div , , ,  .H H H H H Hw f u w w W= ∀ ∈p            (3.6) 

Step 2: On the fine grid h , compute ( ),h h
h hu W∈ × p V  to satisfy the fol-

lowing linear system:  

( ) ( ) 0, ,div 0,  ,h h
h h h hu− = ∀ ∈ p v v v V                (3.7) 

( ) ( )( ) ( )( ) ( )( )div , , , , ,  .h h
h H h H h H H h h hw f u u w f u w f u u w w W′ ′− = − ∀ ∈ p (3.8) 

For semilinear system (3.1) and (3.2) and (3.5) and (3.6), we use the Newton 
iteration to compute ( ),H Hup  in the implementation. 

In averaging techniques, the error estimator is based on a smoother approxi-
mation in ( )21

hS  , the continuous h -piecewise linears approximation to the 
discrete solution hp  (or h

p ), for instance,  

( )21
min ,

h
h

h h
z

S∈
= −η

q
p q  
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which can be served as a computable estimator. 
The triangle inequality shows that zη  is efficient up to higher order terms of 

exact solution p , indeed,  

( )

( )

( )

21

21

21

min

min

min .

h
h

h
h

h
h

h h
z

S

h h

S

h h

S

∈

∈

∈

= −

= − + −

≤ − + −

η






q

q

q

p q

p p p q

p p p q

 

The last term converges as ( )2O h  is of higher order than the error 
( )h O h− =p p . So we have  

h.o.t. .h
z − ≤ −η p p                      (3.9) 

where “h.o.t.” denotes the higher-order term. 
In the following, by using the solution ( ,h hup ) (or ( ,h hu p )), Helmholtz de-

composition and interpolation operator  , we analyze the upper bound of 
h−p p  and h− p p  for the two algorithms.  

3.1. A Upper Bound for the Error of Two-Grid Algorithm 1 

By Helmholtz decomposition, we get the following lemma. 
Lemma 3.1 ([14]). There exist ( )1, H∈ Ωα β  that satisfy boundary condi-

tion 0
DΓ
=α  and 

NΓ
β  is constant  

2 2 2curl   and  ,h h− = ∇ + − = ∇ + ∇α β α βp p p p       (3.10) 

and then  

( ) ( )2
d curl d .h h hx x

Ω Ω
− = − ⋅∇ + − ⋅∫ ∫α βp p p p p p        (3.11) 

In order to estimate the right hand side of (3.11), and using the theoretical 
analysis in [17], we have 

Lemma 3.2. Suppose the u and Hu  are the solutions of (2.2) and (2.3) and 
(3.1) and (3.2), there exists a constant C independent of H such that  

2 .Hu u CH u− ≤                     (3.12) 

We can also get ( )4 3H Lu u CH u
Ω

− ≤ .  
Then, by using the Green’s fromula and Lemma 3.2, we can bound the first 

contribution of (3.11). 
Lemma 3.3. Let p  and hp  are the solutions of (2.2) and (2.3) and (3.3) and 

(3.4), and ( )2, h
NL⋅ ⋅ ∈ Γp n p n . Then we have  

( ) ( ) ( ) ( )

( )2
3

2

2

ˆd

.
N

h
H

N L

x CHh f u f u Ch f u

C h g sε

α α α

α
Ω

Γ

′− ⋅∇ ≤ ∇ + ∇

+ ∂ ∂ ∇

∫ p p
  (3.13) 

Proof. Employ the Green’s formula and 2L -projection hP , we can get the 
first contribution on the right-hand side of (3.11), that  
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( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )( )( ) ( ) ( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )

1 2 3

ˆd d

ˆ ˆdiv d d

ˆ ˆd d

ˆ ˆd d

ˆ d

.

N

N

N

h h

h h

h
h H

H h H H

h

x x

x s

f u P f u x s

f u f u x P f u f u x

s

I I I

Ω Ω

Ω Γ

Ω Γ

Ω Ω

Γ

− ⋅∇ = − ⋅∇ −

= − − − + − ⋅ −

= − + − + − ⋅ −

= − + − + − −

+ − ⋅ −

= + +

∫ ∫
∫ ∫

∫ ∫
∫ ∫
∫

α α α

α α α α

α α α α

α α α α

α α

p p p p

p p p p n

p p n

p p n

 (3.14) 

Here mean value ( )0ˆ h∈α    of ( )1
DH∈ Ωα . Now we estimate the right- 

hand side terms. For 1I , using Lemma 3.2, we conclude that  

( ) ( ) ( )
( )
( )

1

2

ˆ d

ˆ

ˆ ,

H T

H

I f u u u x

Ch f u u u

CHh f u u

α α

α

α

Ω
′= − − −

′≤ − ∇

′≤ ∇

∫
 

here û  is a value between u and Hu . For 2I , employ the inequality (2.9), and 

3I  with Lemma 4.2 of [14], we conclude that  

( )2
2 ,HI Ch f u≤ ∇α  

( )
( ) ( )22

2
3

1 2 3 .
NN

h
N N LL

I C h g C h g s
ΓΓ

≤ − ⋅ ∇ ≤ ∂ ∂ ∇ε εα αp n   (3.15) 

which completes proof. 
Lemma 3.4. Suppose , ∈p q V , ( )2, h

NL⋅ ⋅ ∈ Γp n p n , and h
h∈p V  is the 

two-grid solution satisfying (3.3) and (3.4), for ( )1
Dw H∈ Ω  and 1w∇ = , 

there holds  

( )
( )

( ) ( )

( )
( ) ( )

1
0

2

2

1 2
22

2
2

3 2

sup d

min div

ˆ .

zz

N

h

w H

h
z z Lf Rz

N HL

w x

C C h f

C h g s CHh f u u Ch f u

Ω
∈ Ω

Ω∈∈

Γ

− ⋅∇

 ≤ − + − − 
 

′+ ∂ ∂ + +

∫

∑

p p

p q p q


    (3.16) 

Proof. Employ the Green’s formula, then,  

( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( ) ( ) ( )

d

d d

d d d

div d d

d d .
N

h

h h

h h

h h

w x

w w x w x

w w x w w x w x

w w x w w s

w w x w x

Ω

Ω Ω

Ω Ω Ω

Ω Γ

Ω Ω

− ⋅∇

= − ⋅∇ − + − ⋅∇

= − ⋅∇ − + − ⋅∇ − + − ⋅∇

= − − − + − − ⋅

+ − ⋅∇ − + − ⋅∇

∫
∫ ∫
∫ ∫ ∫
∫ ∫

∫ ∫

 

  

 

 

p p

p p p p

p q q p p p

p q p q n

q p p p

(3.17) 

Employ the inequalities (2.10), (2.11) and (2.13) of Lemma 2.1, the first two 
terms of the right hand side of (3.17) can be written  

( )( ) ( ) ( )2

2
2

2
1

div d min div ,
zz

z z Lf Rz
w w x C h f

ΩΩ ∈∈

 − − − ≤ − − 
 
∑∫


p q p q   (3.18) 
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( )( ) ( )
( ) ( )2 2

3 21 2d ,
N N N

NL L
w w s C h C h g s

Γ Γ Γ
− − ⋅ ≤ − ⋅ ≤ ∂ ∂∫ ε p q n p q n  (3.19) 

( ) ( )d .h hw w x C
Ω

− ⋅∇ − ≤ −∫ q p p q               (3.20) 

And here we have ( ) ( )1 1
hS H⊂ Ω , so we estimate the last term  

( ) dh w x
Ω

− ⋅∇∫ p p  just like estimate ( ) dh x
Ω

− ⋅∇∫ αp p , and by using triangle 
inequality. Therefore, we complete the proof. 

For the second term on the right hand side (3.11), denote ( ) ( )1 2 2 1, ,a a a a= −  
for vectors, then, ( ) ( )curl divq p q p− = −  and use that curl 0p = , let p p=  
and h hp p= , use ( ) ( )d curl dh h

h hp p w x p p w x
Ω Ω

− ⋅∇ = − −∫ ∫  for all  

( ) ( )1 1
h D h N hw S S∈ =   , where ( ) ( ){ }1 1 : 0

NN h h h hS v S v
Γ

= ∈ =  . Therefore, 

we can get the following lemma. 
Lemma 3.5. Let p  and hp  are the solutions of (2.2) and (2.3) and (3.3) and 

(3.4), then,  

( )

( )

( )
( )

( )

( ) ( )
( )

2

2

2

22

2

1 2

1 2

12 2

curl d

min curl

ˆ

.

zz

D

D

h

h
z z Lf Rz

L

h
H L

x

C C h f

C h CHh f u u

Ch f u C h

ε

ε

β

β β

β β

β β

Ω

Ω∈∈

Γ

Γ

− ⋅

 ≤ ∇ − + ∇ − 
 

′+ ∇ ⋅ + ∇

+ ∇ + ∇ ⋅

∫

∑

p p

q p q

q t

p t

       (3.21) 

Proof. Using Lemma 3.2 and Lemma 3.4 and (2.8), let 0=β  on NΓ . So we 
have  

( )
( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )( )( ) ( )

( )

curl d

curl d ( ) curl d

curl d curl d

curl d

curl d d

curl d ,
D

h

h h

h

h

h h

x

x x

x x

x

x s

C x

Ω

Ω Ω

Ω Ω

Ω

Ω Γ

Ω

− ⋅

= − ⋅ − + − ⋅

= − ⋅ − + − ⋅ −

+ − ⋅

≤ − ⋅ − + − − − ⋅ ⋅ −

+ ∇ − + − ⋅

∫
∫ ∫
∫ ∫
∫
∫ ∫

∫

β

β β β

β β β β

β

β β β β

β β

 

 



 



p p

p p p p

p q q p

p p

p q p q p q n n

q p p p

 (3.22) 

By using Lemma 2.1, we get  

( ) ( ) ( ) ( )2

1
2

2
2curl d min curl ,

zz
z z Lf Rz

x C h f
ΩΩ ∈∈

 − ⋅ − ≤ ∇ − − 
 
∑∫ β β β


p q p q  (3.23) 

( ) ( )( )( ) ( )

( ) ( )( )( )
( )

( )
( )

2

2

1 2

1 2

d

,

D

D

D

L

L

s

C h

C h

Γ

Γ

Γ

− − − ⋅ ⋅ −

≤ ∇ − − − ⋅

≤ ∇ ⋅

∫

ε

ε

β β

β

β

p q p q n n

p q p q n n

q t

           (3.24) 

where =t n  denotes unit tangential vector, using curl 0=p , (3.23) can be 
written as  

( ) ( ) ( )2

2
2

1
2curl d min curl ,

zz
z z Lf Rz

x C h f
ΩΩ ∈∈

 − ⋅ − ≤ ∇ − 
 
∑∫ β β β


p q q  (3.25) 
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the last term ( ) curl dh x
Ω

− ⋅∫ βp p  similar to ( ) dh w x
Ω

− ⋅∇∫ p p  of Lemma 
3.4, which completes the proof. 

Combine with Lemma 3.3 and Lemma 3.5, and using Lemma 5.2 of [14], we 
can know ( )

( )2
1 2

N

h

L
h

Γ
⋅ε p n  and ( )

( )2
1 2

NL
h

Γ
⋅ε q n  vanished, we have the fol-

lowing conclusion  
Lemma 3.6. Let p  and hp  are the solutions of (2.2) and (2.3) and (3.3) and 

(3.4), ( )0div h
h∈ p , then, we have,  

( ) ( ) ( )

( ) ( ) ( )
( )

22 21 1

2

2

2

1 2
2

3 2

min min min curl

ˆ .

h h zzh h

N

h h h h
z z Lf RS S z

H N L

C C h f

CHh f u f u Ch f u C h g sε

Ω∈∈ ∈ ∈

Γ

 − ≤ − + − 
 

′+ + + ∂ ∂

∑
q q

p p p q q
    (3.26) 

The last three terms are high order terms compared with error h h−p q . By 
using the inverse inequality, we have the following upper bound result 

Lemma 3.7. Suppose that the discrete hp  satisfies curl 0h =p ,  
( )0div h

h∈ p , then  

( )21
min h.o.t..

h
h

h h h

S
C

∈
− ≤ − +

q
p p p q               (3.27) 

Combined with the efficiency (3.9) of the estimator, we have  
Theorem 3.1. Let p  be the exact solution of (2.2) and (2.3) and h

h∈p V  be 
the solution of (3.3) and (3.4), then, we have  

h.o.t. h.o.t..h
z zC− ≤ − ≤ +η ηp p                (3.28) 

3.2. A Upper Bound for the Error of Two-Grid Algorithm 2 

In this subsection, we will get the upper bounds for Algorithm 2. In order to 
make a theoretical analysis of Algorithm 2, we need to assume that the first de-
rivative of ( )f u  satisfies ( ) 0f u′ <  in this subsection. First, we need the fol-
lowing priori error estimate for approximate solution hu  from Algorithm 2. 

Lemma 3.8. Let u be the exact solution of (2.2) and (2.3) and hu  be the solu-
tion of (3.7) and (3.8), then, we have,  

22
3 .hu u CH u− ≤                      (3.29) 

Proof. Using (2.2) and (2.3) and (3.7) and (3.8), we have  

( ) ( ), ,div 0,h h
h hu u− − − = p p v v  

( )( ) ( )( ) ( ) ( )( ) ( )( )div , , , , .h h
h H h H h H H hw f u u w f u f u w f u u w′ ′− + = − + p p  

Using Taylor expansion for ( )f u  at Hu , let h
hw u u= −  , h

h = − v p p  and 
add the last two equations together to get  

( )( )( ) ( )( )
2 21, , ,

2
h h h h

H Hf u u u u u f u u u u u ′ ′′− − − − = − − 
 

   p p   (3.30) 

where u  is some value between u and Hu . By using the assumption of ( )f u  
as well as the Cauchy inequality, we have the following estimation  

( )4

2 2 22
3 ,h h h

H Lu u C u u u u CH u u u
Ω

− ≤ − − ≤ −    
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which completes the proof.  
Lemma 3.9. Let p  and h

p  are the solutions of (2.2) and (2.3) and (3.7) and 
(3.8). Then  

( ) ( ) ( )
( ) ( )

( )2

22

3 2

2
3 3

2 2
2

d

.
N

h
H

H H

N L

x CH h f u u CH h f u u

Ch f u CHh f u u

C h g s

α α α

α α

α

Ω

Γ

′ ′′− ⋅∇ ≤ ∇ + ∇

′+ ∇ + ∇

+ ∂ ∂ ∇

∫ p p

 (3.31) 

Proof. Employ the Cauchy’s inequality and Poincaré inequality, we have  

( )
( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )( )( )( )( )

( ) ( )

d

d

div d d

d

d

N

N

h

h

h h

h
h H H H

h

x

x

x s

f u P f u f u u u x

s

Ω

Ω

Ω Γ

Ω

Γ

− ⋅∇

= − ⋅∇ −

= − − − + − ⋅ −

′= − + + − −

+ − ⋅ −

∫
∫
∫ ∫

∫

∫





 





α

α α

α α α α

α α

α α



 





p p

p p

p p p p n

p p n

 

( ) ( ) ( )( )( )( )

( ) ( )( )( )(
( ) ( )( )( ))( )

( ) ( )

1 2 3

d

d

d

,
N

h
H H H

h
h H H H

h
H H H

h

f u f u f u u u x

P f u f u u u

f u f u u u x

s

Q Q Q

Ω

Ω

Γ

′= − + + − −

′+ + −

′− + − −

+ − ⋅ −

= + +

∫

∫

∫









α α

α α

α α





p p n

        (3.32) 

here ( )0
h∈α    is the average of α . Similar to 1 3I I− , we can estimate 

1 3Q Q−  as  

( ) ( ) ( ) ( )
( )

( ) ( )

4

2
1

22 2
3 3

1
2

,

h
H H

L

H

Q Ch f u u u Ch f u u u

CH h f u u CH h f u u

α α

α α

Ω

′ ′′≤ − ∇ + − ∇

′ ′′≤ ∇ + ∇



 

( ) ( ) ( )( )
( ) ( )

2
2

2 2
2 ,

H H H

H H

Q Ch f u f u u u

Ch f u CHh f u u

α

α α

′≤ + − ∇

′≤ ∇ + ∇
 

( )
( ) ( )22

2
3

1 2 3 .
NN

h
N N LL

Q C h g C h g s
ΓΓ

≤ − ⋅ ∇ ≤ ∂ ∂ ∇ α αp n  

Here u  is some value between u and Hu , which completes the proof. 
Similar to Lemma 3.4, we have the following result.  
Lemma 3.10. Let p  and h

p  are solutions of (2.2) and (2.3) and (3.7) and 
(3.8), then, we have  

( )

( ) ( )

( )
( ) ( )

( ) ( )

2

2

1 2
22

22 2
3 3

3

2

2

2
2

d

min div

.

zz

N

h

h
z z Lf Rz

N HL

H H

w x

C C h f

C h g s CH h f u u CH h f u u

Ch f u CHh f u u

Ω

Ω∈∈

Γ

− ⋅∇

 ≤ − + − − 
 

′ ′′+ ∂ ∂ + +

′+ +

∫

∑

p p

p q p q





   (3.33) 
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Lemma 3.11. Let p  and h
p  are the solutions of (2.2) and (2.3) and (3.7) 

and (3.8), then, we have  

( )

( )

( )
( )

( ) ( ){
( ) ( ) }

2

2

22

21 2 2 2

1

3 3

2 2
2

2

curl d

min curl

.

zz

D

h

h
z z Lf Rz

HL

H H

x

C C h f

C h CH h f u u CH h f u u

Ch f u CHh f u u

ε

β

β β

β

Ω

Ω∈∈

Γ

− ⋅

 ≤ ∇ − + ∇ − 
 

′ ′′+ ∇ ⋅ + +

′+ +

∫

∑

p p

q p q

q t





   (3.34) 

Combine with Lemma 3.9 and Lemma 3.11, and similar to Lemma 3.6, we fi-
nally get the following result. 

Lemma 3.12. Let p  and h
p  are the exact and numerical solutions satisfy-

ing (2.2) and (2.3) and (3.7) and (3.8) respectively, then,  

( ) ( ) ( )

( ) ( ) ( )
( )

( )

22 21 1

2

22

22 2 2
3 3

2

1 2

3
2

2

min min min curl

.

h h zzh h

N

h h h h
z z Lf RS S z

H H

H N L

C C h f

CH h f u u CH h f u u Ch f u

CHh f u u C h g s

Ω∈∈ ∈ ∈

Γ

 − ≤ − + − 
 

′ ′′+ + +

′+ + ∂ ∂

∑
q q

p p p q q 

  

 (3.35) 

By Lemma 3.12 and similar efficiency result (3.9), we have. 
Theorem 3.2. Suppose h

p  satisfies curl 0h =p  and ( )0div h
h∈  p , then,  

( ) ( )2 21 1
min h.o.t. min h.o.t..

h h
h h

h h h h h

S S
C C

∈ ∈
− + ≤ − ≤ − +  

 q q
p q p p p q    (3.36) 

4. Posteriori Error Estimator with Averaging Technique 

In this section, we use the averaging technique to construct an averaging opera-
tor ( )21: h hS→ V  of posteriori error estimator, and prove h h−p p  (or 

h h− p p ) is very approximation to h−p p  (or h− p p ). In practise, we 
use the averaging operator   to compute the upper bound of the h−p p  (or 

h− p p ). Take Algorithm 1 for instance (all the following conclusions are also 
hold for Algorithm 2). Set  

,h h= −η p p  

then, the minimum zη  is frequently replaced by an upper bound η ,  

.z ≤η η  

From [18], one of a popular averaging operator   is defined, for each node 
z, by  

( ) ( ) 2 ,
z

h h
z w

z R= ∈ p p  

where z z zM= π  with 2 2:z R R→π  being an orthogonal projection and 
linear and continuous averaging zM  being defined as  

( ) d ,
z

h h
z zw

M x w= ∫p p  

where zw  denotes the area of patch zw  related to node z. 
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For the efficiency of estimator η , we have the following result.  
Lemma 4.1 ([18]). There exists a mesh-size independent positive constant C 

with  

.zC≤η η  

According to the relationship between h h−p q  and h h−p p , we con-
clude the following result.  

Theorem 4.1. Let p  and hp  are the exact solution and numerical solutions 
from Algorithm 1 respectively, then, we have  

h.o.t. h.o.t..hC C− ≤ − ≤ +η η p p               (4.1) 

The result also holds for h− p p , i.e.,  

h.o.t. h.o.t..hC C− ≤ − ≤ +η η p p               (4.2) 

5. Numerical Experiments 

In this section, we will validate the a posteriori error estimates of averaging 
technique of two-grid mixed finite element solutions for semilinear elliptic equ-
ations by some numerical examples. Our focus is to deserve the ability of the er-
ror estimates to imitate the convergence behaviour of the error in the 2L -norm. 

To simplify our problem, we consider the following semilinear elliptic equa-
tions with entire boundary ( ): D N∂Ω = Γ Γ = ∅ :  

( )

( )

3div , ,
, ,

0, .

u g x x
u x

u x x

 = − + ∈Ω


= −∇ ∈Ω
 = ∈∂Ω

p
p                   (5.1) 

And use the lowest order Raviart-Thomas mixed finite elements in the im-
plementation. We consider the mesh ,H h  satisfy 2h H=  in the following nu-
merical experiments. 

Example 1: We choose ( )g x  in a way such that the exact solution:  

( ) ( ) ( )1 1 2 21 1 ,u x x x x x= − −  

so we get the explicit expression of ( )g x  as:  

( ) ( ) ( )( ) ( ) ( )( )3
1 1 2 2 1 1 2 22 1 1 1 1 ,g x x x x x x x x x= − + − + − −  

with the domain [ ]20,1Ω = . 
Example 2: We choose ( )g x  in a way such that the exact solution:  

( ) ( ) ( )1 2sin sin ,u x x xπ π=  

so we get the explicit expression of ( )g x  as:  

( ) ( ) ( ) ( ) ( )( )32
1 2 1 22 sin sin sin sin ,g x x x x xπ π π π π= +  

with the L-shape domain ( ) ( ) ( ) ( )1,1 1,1 / 0,1 0,1Ω = − × − × . 
From the numerical results presented in Table 1 and Table 2 for Example 1 

and Table 3 and Table 4 for Example 2, we conclude that error estimators by 
averaging technique is reliable and efficient for both Algorithm 1 and Algorithm 
2. 
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Table 1. A posteriori error of the Algorithm 1 for the example 1. 

H h hu u−  h−p p  η  
h−

η

p p
 

1/2 1/4 0.7435e−03 0.0353 0.0418 0.84 

1/4 1/16 0.0540e−03 0.0093 0.0090 1.03 

1/8 1/64 0.0034e−03 0.0023 0.0022 1.05 

1/16 1/256 0.0002e−03 0.0006 0.0005 1.20 

 
Table 2. A posteriori error of the Algorithm 2 for the example 1. 

H h hu u−   h− p p  η  
h− 

η

p p
 

1/2 1/4 0.7437e−03 0.0353 0.0418 0.84 

1/4 1/16 0.0541e−03 0.0093 0.0090 1.03 

1/8 1/64 0.0034e−03 0.0023 0.0022 1.05 

1/16 1/256 0.0002e−03 0.0006 0.0005 1.20 

 
Table 3. A posteriori error of the Algorithm 1 for the example 2. 

H h hu u−  h−p p  η  
h−

η

p p
 

1/2 1/4 0.0742 1.6684 1.9665 0.85 

1/4 1/16 0.0100 0.4413 0.4674 0.94 

1/8 1/64 0.0017 0.1097 0.1137 0.96 

1/16 1/256 0.0005 0.0274 0.0282 0.97 

 
Table 4. A posteriori error of the Algorithm 2 for the example 2. 

H h hu u−   h− p p  η  
h− 

η

p p
 

1/2 1/4 0.0669 1.6708 1.9978 0.84 

1/4 1/16 0.0062 0.4379 0.4652 0.94 

1/8 1/64 0.0013 0.1093 0.1137 0.96 

1/16 1/256 0.0004 0.0273 0.0282 0.97 

6. Conclusion 

In this paper, we present a posteriori error estimate of two-grid mixed finite 
element method for semilinear elliptic equations by using averaging techniques. 
Theoretical analysis as well as the numerical experiments is provided to prove 
the efficiency and reliability of error estimators. In our following work, we will 
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construct the adaptive two-grid mixed finite element method for the semilinear 
elliptic equations using the posteriori error estimators studied in this paper. 
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