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Abstract 
This paper presents an extended lifetime probability distribution based on the 
alpha power transformation. We refer to the proposed distribution as “the 
Alpha Power Topp-Leone (APTL) distribution”. Mathematical properties of 
the APTL distribution such as the density and cumulative distribution func-
tions, survival and hazard rate functions, quantile function, median, moments 
and its relative measures, probability weighted moment, moment generating 
function, Renyi entropy, and the distribution of order statistics were derived. 
The method of maximum likelihood estimation was employed to estimate the 
unknown parameters of the APTL distribution. Finally, we used two real data 
sets obtained from the literature to illustrate the applicability of the APTL 
distribution in real-life data fitting. 
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1. Introduction 

Lifetime distributions play important roles in the statistical modelling of real-life 
phenomena such as survival studies in biological sciences and reliability theory 
in engineering. Many lifetime distributions have been developed and widely ap-
plied to model real data sets in the field of biological sciences, engineering, actu-
arial sciences, demography, and more. In many cases, there have been scenarios 
where the classical lifetime distributions fail to provide a good fit in data analysis. 
In other to address this pitfall, the attention of researchers has recently been fo-
cused on the need to develop more flexible distributions that can handle any 
sophisticated data. Several methods of generalization of lifetime distributions 
have been introduced in the literature. Some of these methods include the expo-
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nentiated Weibull family by [1], the Marshall-Olkin extended family by [2], the 
transmuted-G family by [3], the Kumaraswamy-G family by [4], the beta-G fam-
ily by [5], the T-X family by [6], the Weibull-G family by [7], the T-R{Y} family 
by [8] and many others. 

Recently, [9] introduced a new method for generating lifetime distributions 
and called it the “alpha-power transformation method”.  

Let ( )F x  be the Cumulative Distribution Function (CDF) of a continuous 
random variable X, then the alpha-power transformation of ( )F x  for x R∈  
is defined as 

( )
( )

( )

, 1 , if 0, 1, , 1
, , if 1

F x

APTF x
F x

−
>






= −
=

≠
ξα α αα ξ α
ξ α

,             (1) 

and the corresponding Probability Density Function (PDF) associated with (1) is 
defined as 

( ) ( ) ( )

( )

,log , , if 0, 1
, , 1

, , if 1

F x

APT

f x
f x

f x





> ≠
= −

=

ξα ξ α α α
α ξ α

ξ α
,         (2) 

where ( ),F x ξ  is known as the baseline distribution with parameter vector ξ . 
The authors considered the CDF of the exponential distribution as the baseline 
distribution in (1) and (2) to develop the Alpha-Power Exponential (APE) dis-
tribution. 

The alpha-power transformation method defined in (1) and (2) has attracted 
the attention of researchers to introduce more flexible generalizations of existing 
classical lifetime distributions. [10] proposed the alpha-power Raleigh distribu-
tion, [11] introduced the alpha-power Weibull distribution, [12] developed the 
alpha-power Lindley distribution, [13] introduced the alpha-power transformed 
extended exponential distribution, [14] proposed the alpha-power inverted ex-
ponential distribution, [15] studied the alpha-power inverse Lindley distribution, 
[16] developed the alpha-power transformed power Lindley distribution, [17] 
proposed the alpha-power Pareto distribution, [18] developed the alpha-power 
inverse Weibull distribution, [19] proposed the alpha-power inverse Lomax dis-
tribution, [20] introduced the alpha-power Gompertz distribution, amongst many 
others. 

In this paper, we employed the same method of generalization and in particu-
lar, considered the case where the baseline distribution ( ),F x ξ  follows the 
one-parameter Topp-Leone distribution. 

The one-parameter Topp-Leone distribution with shape parameter 0>λ  is 
defined by its cumulative distribution function as 

( ) ( )21 1 ,F x x = − − 
λ

                     (3) 

and the density function obtained as 

( ) ( ) ( )
122 1 1 1 .f x x x
−

 = − − − 
λ

λ                  (4) 
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By inserting (3) and (4) into (1) and (2), we define the cumulative distribution 
function of the Alpha Power Topp-Leone (APTL) distribution as 

( )

( )

( )

21 1

2

1, if 0, 1
, , 1

1 1 , if 1

x

APTLF x

x

 − −   −
> ≠

= −

 






 − − = 

λ

λ

α α α
α λ α

α

.          (5) 

The corresponding density function of the APTL distribution is defined as 

( )
( ) ( ) ( )

( ) ( )

21 1 12

12

log 2 1 1 1 , if 0, 1
1, ,

2 1 1 1 , if 1

x

APTL

x x
f x

x x

 − − −  

−

 − −






− > ≠ −=
 − − − = 

λ
λ

λ

α λ α α α
αα λ
λ α

. (6) 

The density function in (6) can be expressed in series representation following 
the generalized binomial expansion defined as 

( ) ( )1
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1
1 1 .j j

j
Z Z

j
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−

=
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− = − 
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                (7) 

Using the Taylor’s series expansion for the expression 
( )21 1 x − −  

λ

α , we have  
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substituting these expressions into (6), we have 

( ) ( ) ( ) ( )
( )

1
2 1

0 0

1 log1 12 1 .
1 !

jk
k

APTL
j k

j
f x x

jk

+
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αλλ
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     (8) 

We noticed at the time of writing, that the alpha power transformation me-
thod has not been employed to generalize any unit distribution, thus, the moti-
vation for this paper. It is, therefore, important to remark that the APTL distri-
bution is the first-lifetime distribution belonging to the alpha power transformed 
family of distributions that has its support on a unit interval [0, 1]. Other non-nested 
generalized lifetime distributions with support [0, 1] are found in the works of 
[21]-[27]. It is hoped that the APTL distribution will be a strong competitor unit 
distribution in fitting data sets defined on a unit interval. 

The organization of this paper is structured as follows: In Section 2, we present 
the mathematical properties of the proposed APTL distribution. Section 3 dis-
cusses the maximum likelihood method of estimation of the unknown parame-
ters of the proposed APTL distribution. In Section 4, we considered two data sets 
defined on a unit interval to illustrate the applicability of the proposed APTL 
distribution in real-life data fitting. Finally, in Section 5, we gave a concluding 
remark. 
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2. Mathematical Properties of the APTL Distribution 

In this Section, we studied some mathematical properties of the APTL distribu-
tion which include; the survival, hazard rate and quantile functions, moments, 
moment generating function, probability weighted moment, Renyi entropy, and 
the distribution of order statistics. 

2.1. Survival, Hazard Rate and Quantile Functions of the APTL  
Distribution 

The survival, hazard rate and quantile functions of the APTL distribution are 
respectively defined from (3) and (4) as follows 

( ) ( )
( )
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2

, , 1 , ,

1

, if 0, 1
1

1 1 1 , if 1
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The quantile function of the APTL distribution is obtained by solving the sys-
tem of equation ( ), ,F x q=α λ , 0 1q< < , i.e. 

( )21 1
1

1

x

q
 − −   −

=
−

λ

α
α

, 

( ) ( ) ( )21 1 log log 1 1x q − − = + −   
λ

α α , 
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1 1
log

q
x

 + −  − = −  
  

λ
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α

, 

( )
( )

1 21
log 1 1

1 1
logq

q
x

  + −   = − −  
    

λ
α
α

.              (11) 

The median of the APTL distribution is obtained by substituting 0.5q =  in 
as 

( ) ( )
( )

1 21

0.5

log 1 log 2
1 1

log
x

  + −
 = − −  
    

λ
α

α
. 
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Table 1 presents numerical computation of some quantiles from the APTL 
distribution for varying values of the parameters. 

Table 1 validates the claim that random samples from the APTL distribution 
fall within the unit interval.  

Figure 1 and Figure 2, respectively, display some graphical presentation of 
the density and hazard rate functions of the APTL distribution for varying values 
of the parameters. 

Figure 1 shows that the density plot of the APTL distribution accommodates 
a decreasing, left-skewed, right-skewed and symmetric shapes, whereas, the plots 
displayed in Figure 2 indicates that the hazard function of the APTL distribu-
tion exhibits an increasing, bathtub and upside-down bathtub shaped hazard 
properties. 

2.2. The rth Moment of the APTL Distribution 

Let X be a continuous random variable following a known probability distribu-
tion with density function ( )f x , then the rth moment about the origin of X is 
defined as 

 
Table 1. Some quantiles of the APTL distribution for varying values of the parameters. 

U ( )0.5, 4= =α λ
 ( )0.5, 4= =α λ

 ( )0.5, 4= =α λ
 ( )0.5, 4= =α λ

 
0.05 0.1006 0.2498 0.1429 0.3036 

0.1 0.1468 0.3083 0.2068 0.3747 

0.2 0.2189 0.3871 0.3021 0.4672 

0.3 0.2818 0.4485 0.3797 0.5356 

0.4 0.3423 0.5033 0.4493 0.5934 

0.5 0.4035 0.5557 0.5151 0.6458 

0.6 0.4683 0.6088 0.5798 0.6958 

0.7 0.5399 0.6652 0.6464 0.7458 

0.8 0.6238 0.7290 0.7187 0.7990 

0.9 0.7330 0.8095 0.8058 0.8620 

 

 
Figure 1. Density plots of the APTL distribution. 
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Figure 2. Hazard plots of the APTL distribution. 

 

( ) ( )d , 1,2,3,4,r rE X x f x x r
∞

−∞

= =∫  .               (10) 

By inserting the density function in (8) into (10), we obtain an expression for 
the rth moment about the origin of the APTL distribution as 

( ) ( ) ( ) ( )
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1 log1 12 1 d ,
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E X x x x
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using the generalized binomial expansion in (7), we obtain 
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Since, 
1

0

1d .
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r mx x
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+ =
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Consequently, the first four rth moment about the origin of the APTL distribu-
tion are obtained from (12) as 
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Other moment related measures such as the variance ( 2σ ), skewness ( kS ) 
and kurtosis ( sK ) are obtained using the following expressions  

( ) ( )

( ) ( )

( )( )
( ) ( ) ( )

( )( )

22
2 1

3
3 2 1 1

3
2 2

2 1

2 4
4 3 1 3 1 1

22
2 1

,

3 2
,

4 6

variance

skewness

kurtosis
3

.

k

s

S

K

′ ′= −

′ ′ ′ ′− +
=

′ ′−

′ ′ ′ ′ ′ ′− + −
=

′ ′−

σ µ µ

µ µ µ µ

µ µ

µ µ µ µ µ µ

µ µ

 

Table 2 shows the numerical computation of the first four rth moments, va-
riance ( 2σ ), measures of skewness ( kS ) and kurtosis( sK ) of the APTL distribu-
tion. 

Table 2 reveals that the APTL distribution can be negatively skewed ( )0kS < , 
positively skewed ( )0kS > , approximately symmetric ( )0kS ≈ , leptokurtic 
( )3sK > , platykurtic ( )3sK <  and mesokurtic ( )3sK ≈ . This result supports 
the claim in Figure 1. 

2.3. Moment Generating Function of the APTL Distribution 

Generating functions are known to determine the distribution of a random va-
riable, while the moments of a random variable can be obtained from either the 
derivatives of the generating function, or, the coefficients in the power series ex-
pansion of the generating function [28] [29]. 

Let X be a continuous random variable following a known probability distri-
bution with density function ( )f x , then the moment generating function of X 
is defined as 

( ) ( )e e d .tx tx
XM t E f x x

∞

−∞

 = =  ∫                 (13) 

The definition in (13) was extended by [30] through a generalized method for 
generating moments of continuous random variables, including positive and neg-
ative real number powers of the random variable. 

 
Table 2. Moments of the APTL distribution at varying values of the parameters. 

α  λ  1′µ  2′µ  3′µ  4′µ  2σ  kS  sK  

0.2 

0.5 0.1301 0.0487 0.0256 0.0159 0.0318 1.9392 6.5900 

1.0 0.2341 0.0968 0.0521 0.0324 0.0420 1.1358 3.6468 

3.0 0.4526 0.2425 0.1462 0.0960 0.0377 0.3225 2.4520 

0.9 

0.5 0.2084 0.0922 0.0524 0.0339 0.0488 1.1928 3.6056 

1.0 0.3263 0.1614 0.0963 0.0639 0.0549 0.6055 2.4246 

3.0 0.5367 0.3291 0.2204 0.1570 0.0411 −0.0353 2.1961 

1.5 

0.5 0.2391 0.1107 0.0643 0.0422 0.0535 0.9886 3.0990 

1.0 0.3606 0.1874 0.1150 0.0777 0.0574 0.4399 2.2178 

3.0 0.5663 0.3613 0.2491 0.1814 0.0406 −0.1825 2.3087 
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By the Maclaurin series expansion of the exponential function, we have 

( )
e ,

!
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so that (13) now becomes 

( ) ( )d .
!
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tM t x f x x
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= −∞

= ∑ ∫                    (14) 

Hence, by inserting the density function in (8) into (14), we obtain the mo-
ment generating function of the APTL distribution as 
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2.4. Probability Weighted Moments (PWMs) of the APTL  
Distribution 

Suppose X is a continuous random variable from a known probability distribu-
tion with density function ( )f x , and cumulative distribution function ( )F x , 
[31] defined the ( ), ths r  PWMs of X as 

( )( ) ( ) ( ), d ,s sr r
s r E X F x x f x F x x
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= = ∫ρ             (16) 

combining the expression in (5) and (6), we have 
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Using the generalized binomial expansion on the term 
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substitute (18) into (16) and employing similar approach used in the moment, 
we obtain the ( ), ths r  PWMs of the APTL distribution as 

( )
( ) ( ) ( ) ( )

( )

1

, 1
0 0 0 0

1 1 log2 11 12 .
! 11

km j n k

s r s
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js mk
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αλλρ
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2.5. Renyi Entropy of the APTL Distribution 

Entropy is an imperative concept in probability theory with extensive applica-
tions in various areas such as physics, communication, signal processing, etc. An 
entropy of a random variable X is defined as the degree of uncertainty associated 
with X. The Renyi entropy of X is defined in [32] as 

( ) ( )1 log d , 0, 1.
1R f x x

∞

−∞
= > ≠

− ∫ ξτ ξ ξ ξ
ξ

           (19) 

Suppose X is associated with the density function defined in (6), then the Renyi 
entropy of X is obtained as follows 
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substituting these expressions into (19), yields 
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2.6. Distribution of Order Statistics of the APTL Distribution 

Let ( )1 2, , , nX X X  be random samples of size n from a known probability dis-
tribution. Suppose :r nX  denotes the rth order statistics, then the density function 
of :r nX  is defined by 
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:
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n r j r j
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Using similar approach in PWMs, we define the distribution of order statistics 
of APTL distribution as follows 
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Inserting these expressions into (21), yields 
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The sth moment of the rth order statistics of :r nX  is obtained as 
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3. Parameter Estimation 
Maximum Likelihood Estimation 

Let ( )1 2, , , nx x x  be a random sample of size n from the APTL distribution 
with density function ( )f x , defined in (6), then the likelihood function is ob-
tained as 
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( ) ( ) ( ) ( ) ( )2

1

1 1 12

1 1 1

,

log
2 1 1 1 ,

1
i

n

i
i

n
n n n xn

i i
i i i

L x f x

x x
λ

λα
λ α

α

=

 − − −  

= = =

=

     = − − −        −     

∏

∏ ∏ ∏
 (24) 

taking the natural logarithm of (24), we obtain 
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minimizing the log-likelihood function in (25) with respect to the parameters, 
yields 
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This system of equations does not exist in closed form, and thus, cannot be 
solved analytically. In such case, an iterative scheme is adopted. Here, the “fit-
distrplus” package in R software program is employed to obtain the solutions of 
the system of equations. 

4. Data Analysis 

In this section, we considered two real data sets defined on unit interval to illu-
strate the applicability of the APTL distribution in real-life data fitting. The fit of 
the APTL distribution will be compared with ones attained by some existing unit 
distributions. Moe specifically, the competitor distributions are defined in terms 
of their density function as 

1) Unit-Weibull Distribution (UWD) proposed by [26], 

( ) ( ) ( )11, , log exp log ;f x x x
x

−  = − − − 
β βα β αβ α  

2) Unit-Gompertz Distribution (UGD) proposed by [33], 

( ) ( ) ( )11, , e ;
x

f x x
−− −− +=
αβαα β αβ  

3) Log-weighted exponential distribution proposed by [34], 

( ) ( )( )1, , exp 1 e ;xf x x −+
= − − αβαα β β β

α
 

4) Topp-Leone Distribution (TLD) proposed by [35], 

( ) ( ) ( )
12, 2 1 1 1 .f x x x
−

 = − − − 
λ

λ λ  

Data Set 1:  
The first data set comprises of trade share data reported in [23]. The trade 

share data set consists of the following values: 
0.140501976, 0.156622976, 0.157703221, 0.160405084, 0.160815045, 0.22145839, 

0.299405932, 0.31307286, 0.324612707, 0.324745566, 0.329479247, 0.330021679, 
0.337879002, 0.339706242, 0.352317631, 0.358856708, 0.393250912, 0.41760394, 
0.425837249, 0.43557933, 0.442142904, 0.444374621, 0.450546652, 0.4557693, 
0.46834656, 0.473254889, 0.484600782, 0.488949597, 0.509590268, 0.517664552, 
0.527773321, 0.534684658, 0.543337107, 0.544243515, 0.550812602, 0.552722335, 
0.56064254, 0.56074965, 0.567130983, 0.575274825, 0.582814276, 0.603035331, 
0.605031252, 0.613616884, 0.626079738, 0.639484167, 0.646913528, 0.651203632, 
0.681555152, 0.699432909, 0.704819918, 0.729232311, 0.742971599, 0.745497823, 
0.779847085, 0.798375845, 0.814710021, 0.822956383, 0.830238342, 0.834204197, 
0.979355395. Details of this data set can be accessed in [36]. 

Data Set 2:  
The second data set contains records of ordered failure of components used in 

[37]. The data sets are as follows:  
0.0009, 0.004, 0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252, 

0.1404, 0.1498, 0.175, 0.2031, 0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 0.6143. 
Figure 3 presents the box plots for the two data sets.  
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Figure 3 reveals that Data Sets 1 and 2 are both right-skewed. A close look at 
the box plot for Data Set 1 suggests the presence of an outlier, while the box plot 
for Data Set 2 indicates that there are no outliers in the data set. 

The Log-likelihood (LogL), Akaike Information Criterion (AIC), Kolmogo-
rov-Smirnov (K-S), Crammer-von-Mises (W*) and Anderson Darling (A*) test 
statistics with their corresponding p-value will be considered as model selection 
criteria. 

In model selection based on the aforementioned criteria, the model with the 
highest value of log-likelihood and the least value in terms of the Akaike Infor-
mation Criterion (AIC), Kolmogorov-Smirnov (K-S), Crammer-von-Mises (W*) 
and Anderson Darling (A*) test statistics is considered to be the most appropri-
ate model to fit the data set under study. Table 3 and Table 4 indicate that the 
proposed APTL distribution has the highest log-likelihood value as well as the least 
value in terms of the Akaike Information Criterion (AIC), Kolmogorov-Smirnov 
(K-S), Crammer-von-Mises (W*) and Anderson Darling (A*) test statistics values, 
thus, making the proposed APTL distribution more appropriate model than the 
competitor distributions in fitting the two real-life data sets. Figure 4 and Figure 
5 display the empirical and fitted PDFs and CDFs of the models for the two data 
sets. 

 
Table 3. Summary statistics for Data Set 1. 

Model Estimates LogL AIC K-S W* A* 

APTLD α = 0.0958 
λ = 0.8349 

16.8009 −29.6017 
(0.9237) 

0.1157 
(0.9464) 

0.0381 
(0.9817) 

0.2259 

UWD 
α = 0.1598 
β = 1.7269 16.4575 

−28.9150 
(0.8335) 

0.1318 
(0.8625) 

0.0531 
(0.9284) 

0.3117 

UGD 
α = 0.7741 
β = 0.2782 

14.7625 
−25.5251 
(0.7093) 

0.1494 
(0.5911) 

0.0996 
(0.5991) 

0.6509 

LWED 
α = 0.0003 
λ = 0.7807 

16.4330 
−28.8659 
(0.8120) 

0.1351 
(0.8689) 

0.0521 
(0.9069) 

0.3371 

TLD λ = 0.5112 15.6167 
−29.2337 
(0.4481) 

0.1848 
(0.5390) 

0.1114 
(0.5878) 

0.6638 

 
Table 4. Summary statistics for Data Set 2. 

Model Estimates LogL AIC K-S W* A* 

APTLD α = 0.4159 
λ = 3.3735 

14.4209 −24.8417 
(0.9808) 

0.0575 
(0.9262) 

0.0416 
(0.8713) 

0.3764 

UWD 
α = 1.3396 
β = 1.7346 

14.2436 
−24.4871 
(0.9210) 

0.0682 
(0.8049) 

0.0617 
(0.7427) 

0.5034 

UGD 
α = 0.6162 
β = 1.0921 

10.8759 
−17.7518 
(0.4235) 

0.1098 
(0.2535) 

0.2076 
(0.1897) 

1.4468 

LWED 
α = −0.00002 

λ = 2.6578 
13.0830 

−22.1659 
(0.5108) 

0.1025 
(0.4376) 

0.1356 
(0.4408) 

0.8576 

TLD λ = 2.7391 13.9202 
−24.8404 
(0.7258) 

0.0859 
(0.6495) 

0.0878 
(0.6538) 

0.5931 
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Figure 3. Box plots for the two data sets. 

 

 
Figure 4. The empirical and fitted PDFs and CDFs of the models for Data Set 1. 

 

 

Figure 5. The empirical and fitted PDFs and CDFs of the models for Data Set 2. 
 

In Figure 4 and Figure 5, we observe that the fit of the APTL distribution 
matches closer to the fit of the data sets than the rest competitor distributions. 
This result further supports the claim that the APTL distribution provides the 
best fit for the two data sets under study. 

5. Conclusion 

In this paper, we have introduced a new probability distribution which we called 
“the Alpha Power Topp-Leone (APTL) distribution”. Some mathematical prop-
erties of the APTL distribution were derived. The graphical plots of the density 
function indicate that the APTL distribution exhibits a decreasing (reversed-J), 
left-skewed, right-skewed unimodal, and symmetric shapes, while the hazard 
rate function displays an increasing, bathtub, and inverted bathtub (upside-down) 
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shapes. These features make the APTL distribution a suitable model for fitting da-
tasets that exhibits these traits. We employed the method of maximum likelihood 
estimation to estimate the unknown parameters of the APTL distribution. Finally, 
two real data sets were used to illustrate the potentiality of the APTL distribution 
in real-life data fitting defined on a unit interval. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Mudholkar, G.S. and Srivastava, D.K. (1993) Exponentiated Weibull Family for Ana-

lyzing Bath Tub Failure Rate Data. IEEE Transactions on Reliability, 42, 299-302.  
https://doi.org/10.1109/24.229504 

[2] Marshall A.W. and Olkin, I. (1997) A New Method for Adding a Parameter to a Fam-
ily of Distributions with Applications to the Exponential and Weibull Families. Bio-
metrika, 84, 641-652. https://doi.org/10.1093/biomet/84.3.641 

[3] Shaw, W. and Buckley, I. (2009) The Alchemy of Probability Distributions: Beyond 
Gram-Charlier Expansions, and a Skew-Kurtotic Normal Distribution from a Rank 
Transmutation Map. ArXiv: 0901.0434. 

[4] Cordeiro, G.M. and De Castro, M. (2011) A New Family of Generalized Distribu-
tions. Journal of Statistical Computation and Simulation, 81, 883-898. 
https://doi.org/10.1080/00949650903530745 

[5] Eugene, N., Lee, C. and Famoye, F. (2002) The Beta-Normal Distribution and Its 
Applications. Communications in Statistics-Theory and Methods, 31, 497-512. 
https://doi.org/10.1081/STA-120003130 

[6] Alzaatreh, A., Lee, C. and Famoye, F. (2013) A New Method for Generating Fami-
lies of Continuous Distributions. METRON, 71, 63-79. 
https://doi.org/10.1007/s40300-013-0007-y 

[7] Bourguignon, M., Silva, R.B. and Codeiro, G.M. (2014) The Weibull-G Family of 
Probability Distributions. Journal of Data Science, 12, 53-68. 
https://doi.org/10.6339/JDS.201401_12(1).0004 

[8] Alzaatreh, A., Lee, C. and Famoye, F. (2014) T-Normal Family of Distributions: A 
New Approachto Generalize the Normal Distribution. Journal of Statistical Distri-
butions and Applications, 1, Article No. 16. https://doi.org/10.1186/2195-5832-1-16 

[9] Mahdavi, A. and Kundu, D. (2017) A New Method for Generating Distributions with 
an Application to Exponential Distribution. Communications in Statistics-Theory and 
Methods, 46, 6543-6557. https://doi.org/10.1080/03610926.2015.1130839 

[10] Malik, A.S. and Ahmad, S.P. (2017) Alpha Power Rayleigh Distribution and Its Ap-
plication to Life Time Data. International Journal of Enhanced Research in Man-
agement and Computer Applications, 6, 212-219. 

[11] Nassar, M., Alzaatreh, A., Mead, M. and Abo-Kasem, O. (2017) Alpha Power Wei-
bull Distribution: Properties and Applications. Communications in Statistics-Theory 
and Methods, 46, 10236-10252.https://doi.org/10.1080/03610926.2016.1231816 

[12] Dey, S., Ghosh, I. and Kumar, D. (2018) Alpha-Power Transformed Lindley Distri-
bution: Properties and Associated Inference with Application to Earthquake Data. 
Annals of Data Science, 6, 623-650. https://doi.org/10.1007/s40745-018-0163-2 

https://doi.org/10.4236/jamp.2023.111018
https://doi.org/10.1109/24.229504
https://doi.org/10.1093/biomet/84.3.641
https://doi.org/10.1080/00949650903530745
https://doi.org/10.1081/STA-120003130
https://doi.org/10.1007/s40300-013-0007-y
https://doi.org/10.6339/JDS.201401_12(1).0004
https://doi.org/10.1186/2195-5832-1-16
https://doi.org/10.1080/03610926.2015.1130839
https://doi.org/10.1080/03610926.2016.1231816
https://doi.org/10.1007/s40745-018-0163-2


J. C. Ehiwario et al. 
 

 

DOI: 10.4236/jamp.2023.111018 330 Journal of Applied Mathematics and Physics 
 

[13] Hassan, A.S., Mohamed, R.E., Elgarhy, M. and Fayomi, A. (2018) Alpha Power 
Transformed Extended Exponential Distribution: Properties and Applications. Jour-
nal of Nonlinear Science sand Applications, 12, 62-67. 
https://doi.org/10.22436/jnsa.012.04.05 

[14] Unal, C., Cakmakyapan, S. and Ozel, G. (2018) Alpha Power Inverted Exponential 
Distribution: Properties and Applications. Gazi University Journal of Science, 31, 
954-965. 

[15] Dey, S., Nassar, M. and Kumar, D. (2019) Alpha Power Transformed Inverse Lind-
ley Distribution: A Distribution with an Upside-Down Bathtub-Shaped Hazard Func-
tion. Journal of Computational and Applied Mathematics, 348, 130-145. 
https://doi.org/10.1016/j.cam.2018.03.037 

[16] Hassan, A.S., Elgarhy, M., Mohamd, R.E. and Alrajhi, S. (2019) On the Alpha Power 
Transformed Power Lindley Distribution. Journal of Probability and Statistics, 2019, 
Article ID: 8024769. https://doi.org/10.1155/2019/8024769 

[17] Ihtisham, S., Khalil, A., Manzoor, S., Khan, S.A. and Ali, A. (2019) Alpha-Power 
Pareto Distribution: Its Properties and Applications. PLOS ONE, 14, e0218027. 
https://doi.org/10.1371/journal.pone.0218027 

[18] Basheer, A.M. (2019) Alpha Power Inverse Weibull Distribution with Reliability Ap-
plications. Journal of Taibah University for Science, 13, 423-432.  
https://doi.org/10.1080/16583655.2019.1588488 

[19] ZeinEldin, R.A., Ahsan ul Haq, M., Hashmi, S. and Elsehety, M. (2020) Alpha Pow-
er Transformed Inverse Lomax Distribution with Different Methods of Estimation 
and Applications. Complexity, 2020, Article ID: 1860813.  
https://doi.org/10.1155/2020/1860813 

[20] Eghwerido, J.T. (2021) The Alpha Power Teissier Distribution and Its Applications. 
Afrika Statistika, 16, 2731-2744. https://doi.org/10.16929/as/2021.2733.181 

[21] Akata, I.U., Opone, F.C. and Osagiede, F.E.U. (2023) The Kumaraswamy Unit- 
Gompertz Distribution and Its Application to Lifetime Dataset. Earthline Journal of 
Mathematical Sciences, 11, 1-22. https://doi.org/10.34198/ejms.11123.122 

[22] Opone, F.C. and Iwerumor, B.N. (2021) A New Marshall-Olkin Extended Family of 
Distributions with Bounded Support. Gazi University Journal of Science, 34, 899-914.  
https://doi.org/10.35378/gujs.721816 

[23] Bantan, R.A.R., Jamal, F., Chesneau, C. and Elgarhy, M. (2021) Theory and Appli-
cations of the Unit Gamma/Gompertz Distribution. Mathematics, 9, Article 1850. 
https://doi.org/10.3390/math9161850 

[24] Chesneau, C. and Opone, F.C. (2022) The Power Continuous Bernoulli Distribution: 
Theory and Applications. Reliability: Theory and Application, 17, 232-248.  
https://doi.org/10.24412/1932-2321-2022-471-232-248  

[25] Opone, F.C. and Osemwenkhae, J.E. (2022) The Transmuted Marshall-Olkin Extended 
Topp-Leone Distribution. Earthline Journal of Mathematical Sciences, 9, 179-199.  
https://doi.org/10.34198/ejms.9222.179199 

[26] Mazucheli, J., Menezes, A.F.B., Fernandes, L.B., De Oliveira, R.P. and Ghitany, M.E. 
(2019) The Unit-Weibull Distribution as an Alternative to the Kumaraswamy Dis-
tribution for the Modeling of Quantiles Conditional on Covariates. Journal of Applied 
Statistics, 47, 954-974. https://doi.org/10.1080/02664763.2019.1657813 

[27] Chesneau, C., Opone, F.C. and Ubaka, N. (2022) Theory and Applications of the 
Transmuted Continuous Bernoulli Distribution. Earthline Journal of Mathematical 
Sciences, 10, 385-407. https://doi.org/10.34198/ejms.10222.385407 

https://doi.org/10.4236/jamp.2023.111018
https://doi.org/10.22436/jnsa.012.04.05
https://doi.org/10.1016/j.cam.2018.03.037
https://doi.org/10.1155/2019/8024769
https://doi.org/10.1371/journal.pone.0218027
https://doi.org/10.1080/16583655.2019.1588488
https://doi.org/10.1155/2020/1860813
https://doi.org/10.16929/as/2021.2733.181
https://doi.org/10.34198/ejms.11123.122
https://doi.org/10.35378/gujs.721816
https://doi.org/10.3390/math9161850
https://doi.org/10.24412/1932-2321-2022-471-232-248
https://doi.org/10.34198/ejms.9222.179199
https://doi.org/10.1080/02664763.2019.1657813
https://doi.org/10.34198/ejms.10222.385407


J. C. Ehiwario et al. 
 

 

DOI: 10.4236/jamp.2023.111018 331 Journal of Applied Mathematics and Physics 
 

[28] Nduka, E.C. and Igabari, J.N. (2007) A Modified Generalized Generating Func-
tion (GGF). Global Journal of Mathematical Sciences, 6, 93-95. 
https://doi.org/10.4314/gjmas.v6i2.21414 

[29] Stuart, A. and Ord, J.K. (1998) Kendall’s Advanced Theory of Statistics. 6th Edition, 
Oxford University Press, New York. 

[30] Matthew, C.M., Oyeka, C.A., Ashinze, M.A. and Igabari, J.N. (2017) Generalized Mo-
ment Generating Function of Random Variables and their Probability Density Func-
tions. American Journal of Applied Mathematics and Statistics, 5, 49-53.  
https://doi.org/10.12691/ajams-5-2-2 

[31] Greenwood, J.A., Landwehr, J.M. and Matalas, N.C. (1979) Probability Weighted 
Moments: Definitions and Relations of Parameters of Several Distributions Expres-
sible in Inverse Form. Water Resources Research, 15, 1049-1054. 
https://doi.org/10.1029/WR015i005p01049 

[32] Rényi, A. (1961) On Measure of Entropy and Information. Proceedings of the 4th 
Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4, Berkeley, 
1 January 1961, 547-561.  

[33] Mazucheli, J., Menezes, A.F.B. and Dey, S. (2019) Unit-Gompertz Distribution with 
Applications. Statistica, 79, 25-43. 

[34] Altun, E. (2019) The Log-Weighted Exponential Regression Model: Alternative to 
the Beta Regression Model. Communications in Statistics-Theory and Methods, 50, 
2306-2321. https://doi.org/10.1080/03610926.2019.1664586 

[35] Topp, C.W. and Leone, F.C. (1955) A Family of J-Shaped Frequency Functions. Jour-
nal of the American Statistical Association, 50, 209-219. 
https://doi.org/10.1080/01621459.1955.10501259 

[36] Stock, J.H. and Watson, M.W. (2007) Introduction to Econometrics. 2nd Edition, 
Addison Wesley, Boston, MA. https://rdrr.io/cran/AER/man/GrowthSW.html  

[37] Nigm, A.M., AL-Hussaini, E.K. and Jaheen, Z.F. (2003) Bayesian One-Sample Pre-
diction of Future Observations under Pareto Distribution. Statistics, 37, 527-536. 
https://doi.org/10.1080/02331880310001598837 

https://doi.org/10.4236/jamp.2023.111018
https://doi.org/10.4314/gjmas.v6i2.21414
https://doi.org/10.12691/ajams-5-2-2
https://doi.org/10.1029/WR015i005p01049
https://doi.org/10.1080/03610926.2019.1664586
https://doi.org/10.1080/01621459.1955.10501259
https://rdrr.io/cran/AER/man/GrowthSW.html
https://doi.org/10.1080/02331880310001598837

	The Alpha Power Topp-Leone Distribution: Properties, Simulations and Applications
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Properties of the APTL Distribution
	2.1. Survival, Hazard Rate and Quantile Functions of the APTL Distribution
	2.2. The rth Moment of the APTL Distribution
	2.3. Moment Generating Function of the APTL Distribution
	2.4. Probability Weighted Moments (PWMs) of the APTL Distribution
	2.5. Renyi Entropy of the APTL Distribution
	2.6. Distribution of Order Statistics of the APTL Distribution

	3. Parameter Estimation
	Maximum Likelihood Estimation

	4. Data Analysis
	5. Conclusion
	Conflicts of Interest
	References

