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Abstract 
Formulated Atomization Theorems extend the theory of Atomic AString 
Functions evolving since the 1970s allowing representation of polynomials, 
complex analytic functions, and solutions of linear and nonlinear differential 
equations via Atomic Series over smooth finite Atomic Splines. Noting the 
preservation of analyticity for Ricci and Einstein tensors, special new theo-
rems are formulated for General Relativity representing spacetime field via 
superpositions of flexible finite “solitonic atoms” resembling quanta. The novel 
Atomic Spacetime model correlates with A. Einstein’s 1933 paper predicting a 
new “atomic theory”. The theorems can be applied to many theories of ma-
thematical physics, elasticity, hydrodynamics, soliton, and field theories for 
unified representation of fields via series over finite Atomic AString Func-
tions which may offer a unified theory under research where fields are con-
nected with a common mathematical ancestor. 
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1. Introduction—A Brief History of Atomic AString  
Functions 

Theory of Atomic Functions (AF) [1]-[12] has been evolving since 1967-1971 
when V. L. Rvachev1 and V. A. Rvachev [6] discovered and researched a pulse 
function ( )up x  for which derivative pulses would conveniently be similar to 
the original pulse shifted and stretched by the factor of 2: 

( ) ( ) ( )2 2 1 2 2 1up x up x up x′ = + − − .               (1.1) 

 

 

1Vladimir Logvinovich Rvachev (1926-2005), https://en.wikipedia.org/wiki/Vladimir_Rvachev, Aca-
demician of National Academy of Sciences of Ukraine, author of 600 papers, 18 books, mentor of 80 
PhDs, 20 Doctors and Professors including the author. 
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These and similar atomic functions possess unique properties of infinite dif-
ferentiability, smoothness, nonlinearity, nonanalyticity, finiteness, and compact 
support like splines. The most significant is that other functions like polyno-
mials, sinusoids, exponents, and other analytic functions can be represented via 
a converging series of shifts and stretches of AFs. So, like from “mathematical 
atoms” [6]-[12], smooth functions and solutions of differential equations of ma-
thematical physics [1]-[44] can be composed via AF superpositions, and due to 
that those “atoms” have been called Atomic Functions in the 1970s. They are quite 
similar to widely-used splines but unlike classical polynomial splines [23] [24] 
are infinite differentiable having derivates (1.1) expressed via themselves and are 
sometimes called Atomic Splines [1] [6]-[12]. 

As per a survey [10], while some elements, analogs, or Fourier transformations 
of AFs sometimes named differently (Fabius function [34], hat function, com-
pactly supported smooth function) have been known since the 1930s, the rigor-
ous theory development supported by many books, dissertations, lecture courses 
and hundreds of papers observed in [1]-[12] [21] [22] [23] has started in the 
1970s. The foundation of AF theory has been developed by V. L. Rvachev and V. 
A. Rvachev [6] [7] [8] [25] and enriched by many followers, notably by schools 
of V. F. Kravchenko [9] [10] [11] [12], B. Gotovac, H. Gotovac [26] [33], and the 
author [1] [2] [3] [4] [5] [21] [22] [23] [43] [44]. In 2017, the author noted [2] 
[3] that AF ( )up x  (1.1) is a composite object consisting of two kink functions 
called AStrings [1] [2] [3] [4] [5] making them more generic: 

( ) ( ) ( ) ( )2 1 2 1 .up x AString x AString x AString x′= + − − =         (1.2) 

Moreover, AString is not only a “composing branch” but also an integral of 
( )up x . AString derived from the theory of Atomic Functions is related [2] [4] 

[44] to the Fabius function [34] also known since the 1970s.  
Mutual relationships (1.1), (1.2) imply that theorems and many theories [1]-[12] 

involving AFs can be reformulated via AStrings, and often they simplify the ma-
thematical representations and introduce novel physical models [1] [2] [3] [4] 
[5] [23] [43] [44]. Composing AF pulse (1.1) via kink-antikink pair (1.2) of non-
linear AStrings resembles “solitonic atoms” (or bions) from the theory of soliton 
dislocations [5] [29] [30]. This led to the introduction of Atomic Solitons [3] [5] 
where AString (1.2) becomes a solitonic kink while ( )up x  is a “solitonic atom” 
made of AStrings. The ability of AFs to compose polynomials and analytic func-
tions leads to novel interpretations of spacetime and fields as superpositions of 
Atomic Solitons [1] [2] [3] [4] [5]. 

AString possesses another important property of composing/partitioning a 
line and curves from a superposition of AStrings resembling the ideas of atomic 
spacetime quantization first published in 2018 [3] as an “intuition theory”. This 
paper provides the mathematical formalism of that theory in the form of Ato-
mization Theorems stating how polynomials, analytic functions, solutions of dif-
ferential equations, and finally General Relativity (GR) equations can be represented 
via series over Atomic and AString Functions called Atomic Series [1]. They lead 
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to the concept of AString spacetime quantum/metriant [1] [2] [3] [4] [5] and 
“atomization of spacetime” where “atoms” are assumed to be not conventional 
physical atoms but “mathematical atoms” rooted in the theory of finite Atomic 
Functions. Interestingly, support for the novel theory comes from A. Einstein’s 
1933 paper [17] where he envisaged an “… atomic theory with mathematically 
simplest concepts and the link between them” to solve some “stumbling blocks” 
of continuous field theories to describe quantized fields with finite “regions of 
space” with “discrete energies” [17] [23] indirectly pointing to finite functions 
like Atomic Functions [1]-[12]. 

The Atomization Theorems are not limited to spacetime and can be applied to 
many physical theories including Quantum Mechanics, electromagnetism, elas-
ticity, heat conductivity, soliton, and field theories [16] [18]-[24] [35]-[50] deal-
ing with a distribution of fields in spacetime. A unified representation of fields 
via Atomic Series over finite Atomic and AString Functions may offer a unified 
theory under research now [1] [2] [3] [4] [5] [43] where, like in string theory, 
fields become interconnected having a common mathematical ancestor. 

The paper includes a brief history and description of Atomic and AString 
Functions, 13 theorems with proof including new theorems for General Relativ-
ity leading to the Atomic Spacetime model, and a discussion about further re-
search directions of a unified spacetime and field theory based on Atomic AStr-
ing Functions.  

2. Introducing Simple AString Metriant Function 

Let’s consider the problem of composing a straight x and curved ( )x x�  space-
line via superpositions over some finite metriant functions [1] ( ) [ ], 1,1m x x∈ − : 

( )( ) ( ) ( )( ); k k kk kx am x ka a x x c m x b a∞ ∞

=−∞ =−∞
= − = −∑ ∑�       (2.1) 

composing a spaceline from “elementary pieces” set at regular points ka resem-
bling finite quanta of width 2a (Figure 1). We seek spaceline x to appear not 
only as a Lego-like translation (2.1) but also in “interaction zones” between 
quanta ( 1a = ) (Figure 1(a) and Figure 1(b)): 

( ) ( ) ( )1 1 ;x m x m x m x≡ + − + + + +� �  

1 1 1 1, , .
2 2 2 2

x m x m x x     ≡ − + + ∈ −          
             (2.2) 

Reformulated for derivatives ( ) ( )p x m x′= , the problem leads to a “partition 
of unity” [2]-[7] to represent a constant via a series of finite pulses: 

( ) ( ) ( )1 1 1 ;p x p x p x≡ + − + + + +� �  

1 1 1 11 , , .
2 2 2 2

p x p x x     ≡ − + + ∈ −          
             (2.3) 

It can be achieved with polynomial splines but it leads to a “polynomial trap” 
problem [24] imposing artificial polynomial order on spacetime models and not 
being able to compose a smooth curve ( )x x�  of any polynomial order. Instead,  
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 1. (a) Lego model with interaction zones; (b) Desired metriant function and its 
derivative; (c) Expansion of space by the sum of metriant functions; (d) Emergence of line 
y = x by summing two metriant functions in “interaction zone”. 
 
seeking a solution amongst finite functions for which derivatives are expressed 
via the functions themselves  

( ) ( )( ) ( ) ( )p x f p x cp ax b dp ax b′ = = + + −              (2.4) 

yields so-called atomic function (AF) ( )up x  [1]-[12] discovered in the 1970s. 
The desired metriant function ( )m x  would be the integral of ( )up x  called 

AString in 2017 [2] [3]: 

( ) ( ) ( ) ( ) ( ) ( )
0

, d , .
x

kp x up x m x up x x AString x x AString x k= = = ≡ −∑∫  (2.5) 

AString shaped as a kink (Figure 1) can compose both straight and curved 
lines from “elementary pieces” resembling quanta and leading to novel Atomic 
Spacetime models [1]-[5] described later. While AString was obtained in 2017 
from spacetime and AF theories, it is a generic function that can also be used in 
many theories including Atomic Machine Learning [44].  

3. Atomic and AString Functions 

Let’s describe Atomic [1]-[12] and AString [1] [2] [3] [4] [5] Functions in more 
detail.  

3.1. Atomic Function 

Atomic Function (AF) (V. L. Rvachev, V. A. Rvachev, 1971, [6]) ( )up x  is a fi-
nite compactly supported non-analytic infinitely differentiable pulse function 
(Figure 2) with the first derivative expressible via the function itself shifted and 
stretched by the factor of 2: 
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(a) 

 
(b) 

 
(c) 

Figure 2. (a) Atomic function pulse with its derivative and integral (AString) (b) Atomic 
Function pulse (“solitonic atom”) in 2D (c) Two Atomic Function pulses (“solitonic 
atoms” or “atomic solitons”). 
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( ) ( ) ( ) ( )2 2 1 2 2 1 for 1, 0 for 1.up x up x up x x up x x′ = + − − ≤ = >    (3.1) 

With exact Fourier series representation [1] [2] [3] [4] [5] [7]-[12]  

( )
( )

( )1 1

1sin 21 e d , d 1,
2 2

k
itx

kk

t
up x t up x x

t

−
∞

−=−

∞

∞ −
= =

π ∏∫ ∫         (3.2) 

the values ( )up x  can be calculated with computer scripts [2] [4] [9] [10] [11] 
[12] [43] [44]. 

Higher derivatives ( )nup  and integrals mI  can also be expressed via ( )up x  
[6]-[12] [25] [26]  

( ) ( )
( )

( )
1

22
2 2 1 112 2 2 1 2 , , , 1;

n
n n

n n n
k k k k kkup x up x kδ δ δ δ δ δ

+

−=
= + + − = − = =∑  

( ) ( )2
2 1,2 1 2 ;mC m m

mI x up x x− −= − + ≤  

( ) ( ) ( )
( )

2
1

1 1
2 2 1 , 1;

1 !
m

m
C m

m

x
I x up x

m

−
− + −

= − + >
−

 

( ) ( ) ( ) ( )1 1
1 12 2 ; .I x up x I x up x− − ′= − =             (3.3) 

AF satisfies partition of unity [1]-[12] to exactly represent the number 1 by 
summing up individual overlapping pulses set at regular points… −2, −1, 0, 1, 
2… (Figure 3(a)): 

( ) ( ) ( ) ( ) ( )2 1 1 2 1.up x up x up x up x up x+ − + − + + + + + + ≡� �     (3.4) 

This property is related to the following double symmetry [1]-[12]: 

( ) ( ) [ ] ( ) ( ) [ ], 1,1 ; 1 1, 0,1 .up x up x x up x up x x= − ∈ − + − = ∈     (3.5) 

Generic AF pulse of width 2a, height c, and center positions b, d has the form 

( ) ( )( ) ( ), , , , 0 , d .
a

a
up x a b c d d c up x b a cup x a x ca

−
= = + ∗ − =∫   (3.6) 

Multi-dimensional atomic functions [2]-[8] [24] [27] (Figure 3 and Figure 4) 
can be constructed as either multiplications or radial atomic functions: 

( ) ( ) ( ) ( ), , ,up x y z up x up y up z=  

( ) ( )2 2 2 3, , , d d d .x y zup r up x y z cup x y z ca
a a a

 = + + = 
 ∫∫∫     (3.7) 

3.2. AString Function 

AString function (Figure 4) (Eremenko, [2] [3], 2018) was proposed as both an 
integral (3.3) and “composing branch” of ( )up x  (§2): 

( ) ( ) ( ) ( )2 1 2 1 .AString x AString x AString x up x′ = + − − =       (3.8) 

While AString was derived from the theory of Atomic Functions, a similar 
function was introduced by Fabius in 1966; Fabius function [34] is specially 
shifted and stretched AString [3] [44]. 

AString has a form of a solitary kink (Figure 4(a)) which can compose a 
straight line y x=  both between and as a translation of AString kinks (Figure 
4(c)) leading to spacetime “atomization”/quantization ideas (§2, 6): 
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(a) 

 
(b) 

 
(c) 

Figure 3. (a) Partition of unity with atomic functions; (b) Representation of flat surface 
via summation of Afs; (c) Curved surface as a superposition of “solitonic atoms”. 
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) Atomic string function (AString); (b) Atomic function as a combination of 
two AStrings; (c) Representation of a straight line segment by summing of AStrings. 
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1 1 1 1, , ;
2 2 2 2

x AString x AString x x     ≡ − + + ∈ −          
 

( ) ( ) ( )
( ) ( )

2 1

1 2

x AString x AString x AString x

AString x AString x

≡ + − + − +

+ + + + +

�

�
       (3.9) 

The Elementary AString kink function can be generalized in the form  

( ) ( )( ), , , , 0 .AString x a b c d d c AString x b a= = + ∗ −        (3.10) 

Importantly, the Atomic Function pulse (3.6) can be presented as a sum of 
two opposite AString kinks (Figure 4(b)) making AStrings and AFs deeply re-
lated to each other: 

( ), , , , , , , , , .
2 2 2 2
a a a aup x a b c AString x b c AString x b c   = − + + −   

   
 (3.11) 

3.3. Atomic Solitons 

Being solutions of special kinds of nonlinear differential equations with shifted 
arguments (3.1), (3.8), AStrings and Atomic Functions possess some mathemat-
ical properties of lattice solitons [29] [30] [31] [32] and have been called Atomic 
Solitons [2] [3] [4] [5]. AString is a solitonic kink whose particle-like properties 
exhibit themselves in the composition of a line (3.9) and kink-antikink “atoms” 
(3.8) (Figure 4). Being a composite object (3.8) made of two AStrings, AF 

( )up x  is not a true soliton but rather a solitonic atom, like “bions” or “disloca-
tion atoms” [2] [4] [29] [30], as described in [2] [4]. 

4. Atomic Series, Atomic Splines, and “Mathematical Atoms” 

Atomic and AString Functions (Atomics, or Atomic Splines) possess unique ap-
proximation properties described later in §5, 6. Like from “mathematical atoms” 
[6]-[12], as founders called them, flat and curved smoothed surfaces/functions 
(Figure 3) can be composed of a superposition of Atomics via the so-called Ge-
neralized Taylor’s Series [7] [8] [9] [25] [26] (or simply, Atomic Series [1]) with 
an exact representation of polynomials of any order 

( )1 ;
4 2

k k
k k

kkup x AString x k x=+∞ =+∞

=−∞ =−∞

 − ≡ − ≡ 
 

∑ ∑  

2
21 ,

64 36 4
k
k

k kup x x=+∞

=−∞

   − − ≡   
  

∑  

( )
( )( ) ( )( )( )

2

2 2 1 2 2 1 .

kn n
kk

k n n
kk

x C up x k

C AString x k AString x k

=+∞ −
=−∞

=+∞ − −
=−∞

≡ −

= − + − − −

∑

∑
 (4.1) 

Importantly, despite infinite sums in (4.1) only a limited number of neigh-
boring finite “atoms” are required to calculate a polynomial value at a given 
point. 

Polynomial representations (4.1) mean that Atomics can also represent/atomize 
any analytic function [29] (a function representable by converging Taylor’s se-
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ries via polynomials) with calculable coefficients: 

( )
( ) ( ) ( )

( )

0 0 0

0
2

!

, , , .

m
km m m

m m km m m k

lmk
mk l l lmk l

mk

y
y x x B x B C up x k

m
x b

c up AString x a b c
a

∞ ∞ ∞ =+∞ −
= = = =−∞

∞ =+∞

=−∞ =−∞

= = = −

 −
= = 

 

∑ ∑ ∑ ∑

∑ ∑
 (4.2) 

Analytic functions [29] represent a wide range of polynomial, trigonometric, 
exponential, hyperbolic, and other functions, their sums, derivatives, integrals, 
reciprocals, multiplications, and superpositions. Therefore, they all can be “ato-
mized” via superpositions of Atomic and AString Functions with a predefined 
degree of precision, which is the most important property.  

Instead of sums (4.1), and (4.2), we will be using short notation with localized 
basis atomic functions ( )kA x  and function values ky  at node k assuming 
summation over repeated indices k:  

( ) ( ) ( ) ( ), ,; , , .k k
k ky x A x y f x y z A x y z f= =            (4.3) 

5. Atomization Theorems 

Being compactly supported solitonic spline-like functions, Atomic and AString 
Functions (Atomics, or Atomic Splines) possess unique properties. Starting from 
known theorems [6]-[12] extended here for recently introduced AStrings, the 
formulated Atomization Theorems [1] [23] provide a mathematical formalism 
for the representation of polynomials, elementary and complex analytic func-
tions, and solutions of linear and nonlinear differential equations including 
General Relativity via Atomic Series over Atomic Splines. 

5.1. Polynomial Atomization Theorem 

AStrings and Atomic Functions are non-analytic [29]—cannot be represented by 
polynomials via converging Taylor’s series [1]-[12] [29]. But, interestingly, the 
opposite is true—polynomials can be exactly represented by Atomics leading to 
the following most important theorem proven in the 1970s [7] [8] [9] and gene-
ralized here for AStrings. 

Theorem 1 (Polynomial atomization theorem). Polynomials of any order can 
be exactly represented via a series of Atomic and AString Functions. 

Proof. Following [7] [8] [25] [26] and taking n-derivative of a polynomial nx  
leads to a constant: ( )( )nnx c=  which, due to the partition of unity (3.4) and 
(4.1) can be represented via a sum of shifted pulses ( )up x . Integrating nI  that 
sum n-times and noting (3.3) that integrals of ( )up x  are expressed via the 
function itself and polynomials lead to the same polynomial nx , now expressed 
via the sum (4.1) of ( )up x  with some constant calculable coefficients kC : 

( )( ) ( ) ,
n kn

kx c up x k c=+∞

=−∞
= − ≡∑  

( )( ) ( )2 .k kn n
n kk kx I c up x k C up x k=+∞ =+∞ −

=−∞ =−∞
= − = −∑ ∑        (5.1) 

Because ( )up x  is a sum of two AStrings (3.8), generic polynomial ( )nP x  
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can be expressed via AFs and AStrings with known constant coefficients [7] [8]: 

( )

( )

1
1

, , , .

kn n
n n kk

l
l l ll

x kaP x x a x a C up
a

AString x a b c

=+∞−
=−∞

=+∞

=−∞

− = + + + ≡  
 

=

∑

∑

�
      (5.2) 

Proof obtained. This theorem can be easily understood intuitively—because 
Atomics derivatives and integrals are expressed via themselves, it is possible to 
adjust Atomic Splines coefficients so that sections of polynomials would be re-
produced exactly. Here are some well-known presentations (4.1) of some poly-
nomials [1]-[12] depicted in Figure 5: 

( )1 ,
4 2

k k
k k

kkup x AString x k x=+∞ =+∞

=−∞ =−∞

 − ≡ − ≡ 
 

∑ ∑  

2
21 ,

64 36 4
k
k

k kup x x=+∞

=−∞

   − − ≡   
  

∑  

( )
( )( ) ( )( )( )

2

2 2 1 2 2 1 .

kn n
kk

k n n
kk

x C up x k

C AString x k AString x k

=+∞ −
=−∞

=+∞ − −
=−∞

≡ −

= − + − − −

∑

∑
  (5.3) 

While these series contain infinite sums, in real calculations, due to the locali-
ty of ( )up x , only a few neighboring pulses contribute to a value at a given point 
(Figure 5). Rather than using recurrent calculations, it is convenient to calculate 
coefficients via computer scripts [2] [4] [44]. This fundamental theorem signifies 
the difference between Atomic Splines and widely-used polynomial splines [22] 
[23] which, due to Strang-Fix condition [41], can only exactly reproduce poly-
nomials up to the order of a spline (eq parabola for a quadratic spline). With a 
limited number of neighboring pulses (5.1) around a given point, Atomic 
Splines can exactly fit a polynomial of any order.  
 

 
Figure 5. Representing sections of polynomials with AStrings and atomic functions— 
cubic parabola via 8 atomic functions. 
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The physical meaning of this theorem is that spacetime and fields described by 
polynomials can be exactly represented via shifts and stretches of Atomic AStr-
ing Functions (Atomic Splines). Because AString resembles spacetime quan-
tum/metriant (§2), spacetime field can be interpreted as some weighted super-
positions of flexible overlapping quanta [1] [2] [3] [4] [5] (§2, 6, 7). 

5.2. Analytic Atomization Theorem 

The ability of Atomics to exactly represent polynomials leads to a more generic 
method developed in the 1980s [6]-[12] of “atomization” of exponential, trigo-
nometric, hyperbolic ( ) ( ) ( )exp ,sin ,sinhkx kx kx  and other analytic functions 
[29] representable by converging Taylor’s series and extended here for recently 
introduced AStrings [1] [2] [3] [4] [5]. 

Theorem 2 (Analytic atomization theorem). Analytic functions representable 
by converging Taylor’s series via polynomials can be represented via converging 
Atomic Series of localized Atomic and AString Functions. 

Proof. By definition, analytic functions [29] ( )y x  are those representable by 
converging Taylor’s series via polynomials, which in turn are representable by 
Atomic Splines, leading to the following series with calculable coefficients: 

( )
( ) ( )

( )

( )

0 0

0

0
!

2

, , , .

m
m m

mm m

k m
m km k

k mk
mkmk

mk

l
l l ll

y
y x x B x

m
B C up x k

x b
c up

a

AString x a b c

∞ ∞

= =

∞ =+∞ −
= =−∞

=+∞

=−∞

=+∞

=−∞

= =

= −

 −
=  

 

=

∑ ∑

∑ ∑

∑

∑

             (5.4) 

Proof obtained. This theorem tells that not only polynomials but also a wide 
variety of analytic functions representable by polynomials like  

( )
3 5

sin
3! 5!
x xx x= − + +�  or ( )exp

!

n

n

xx
n

= ∑  would also be representable via  

Atomics. Naturally, kink-like AString functions better to represent growing 
functions while pulse-looking Atomic Functions better suit localized functions 
but ultimately AStrings and AFs are interconnected via (3.8). 

The meaning of this theorem is that spacetime and physical fields described 
by exponential, trigonometric, hyperbolic, and other analytic functions can be 
interpreted as superpositions of flexible overlapping “mathematical atoms”, as 
founders called them [6]-[12].  

5.3. Atomization Theorem for Complex Analytic Functions 

Theorem 2 can be generalized to various combinations of analytic functions [1] 
[6]-[12] [29]. 

Theorem 3 (Complex analytic atomization theorem). Complex functions ( )y x  
that are sums 1 2y y y= + , products 1 2y y y= , reciprocals 11y y=  ( 1 0y ≠ ), in-
verse ( )1y y x= , derivatives 1y y′= , integrals ( )I y , and superposition  
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( )1 2y y y=  of analytic functions ( ) ( )1 2,y x y x  can be represented by Atomic 
Series over finite Atomic and AString Functions (Atomic Splines). 

Proof. Those combinations of analytic function ( ) ( )1 2,y x y x  are also ana-
lytic [29] (where they are not infinite), hence representable by Taylor’s series via 
polynomials and then via Atomic Splines by Atomic Series (5.4), (5.3): 

( ) ( )( )
( ) ( ) ( )

1 2 ;

, , , , , , .l k
l l l k k kl k

y x y y x

y x up x a b c AString x a b c=+∞ =+∞

=−∞ =−∞

=

≡ =∑ ∑
      (5.5) 

Sums, products, derivatives, integrals, and superpositions of converging pow-
er Taylors’ series (5.4) would also be polynomial power series. Due to Lagrange 
inversion theorem [46], reciprocals and inversions of invertible analytic func-
tions would also be analytic ones representable by polynomial Taylor’s series, 
hence via Atomic Splines via (5.4), (5.3).  

Proof obtained. This theorem is easy to understand intuitively; if two func-
tions are represented by power series via polynomials, the complex superposi-
tions of them would also be polynomial representable via Atomics.  

This important theorem covers a wide range of composite functions like  
( ) ( ) ( ) ( )2sinh ,sech ,sech , tanhx x x x x , gaussian ( )2exp x− , ( )( )arctan exp x ,  

1 x+ , 21x x+  appearing in the linear and nonlinear soliton theories, quantum  

mechanics, relativity, and spacetime physics, for example, to represent Schwarz-
schild metrics in General Relativity [13] [14] [15] (Figure 6). 

5.4. Atomization Theorem for Differential Equations 

In general, elementary polynomic, trigonometric, exponential, and hyperbolic 
functions are the solutions of some linear differential Equations (LDE), for ex-
ample, ( ) ( )0, exp ; 0, siny y y x y y y x′ ′′− = = + = = . It implies that Atomization 
Theorems can be extended from functions to differential equations [1]-[12]. 

Theorem 4 (LDE atomization theorem). Solutions of linear differential Equa-
tions (LDE) with constant coefficients  

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 0n n

n nL y y x a y x a y x a y x−
− ′= + + + + =�       (5.6) 

can be represented via Atomic Series over Atomic and AString Functions. 

( ) ( ) ( ) ( )0; , , , , , , .l k
l l l k k kl kL y y x up x a b c AString x a b c=+∞ =+∞

=−∞ =−∞
= ≡ =∑ ∑  (5.7) 

Proof. Using Taylor’s series, let’s seek a solution of (5.6) as a polynomial  
( ) 0

m
mmy x B x∞

=
= ∑ . Injecting it into (5.6) would yield the sum of polynomials, 

the coefficients of which can be recurrently chosen to satisfy (5.6) exactly. But 
because those polynomials are exactly representable via Atomic Splines (Theo-
rem 1), the solution of LDE (5.6) can also be representable via Atomics. 

Proof obtained. The idea of differential equations’ atomization is quite intui-
tive. Because Atomics are localized and their derivatives are expressed via them-
selves, injecting them into LDE (5.6) would yield another Atomic Series over lo-
calized Atomic Splines ( )( )i i ic up x b a− , the coefficients of which can be cho-
sen to satisfy LDE at a given point. A similar idea is used in Fourier analysis  
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(a) 

 
(b) 

 
(c) 

Figure 6. Representing sections of polynomials and analytic functions with AStrings and 
Atomic Functions. (a) Schwarzschild metric function; (b) Wave-like formation; (c) 2D 
surface composed of a few Atomic Splines. 
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operating with trigonometric functions, derivatives of which are also expressed 
via themselves. But here we use finite Atomic Splines which, by the way, can 
represent trigonometric functions in the Fourier series (Theorem 2). 

5.5. Atomization of Equations with Variable Coefficients 

The last theorem can be extended to a more generic case of variable analytic 
coefficients [1]-[12]. 

Theorem 5 (Variable LDE atomization theorem). Solutions of linear differen-
tial equation  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1, 0n n

k n nL y a x y x a x y x a x y x a x y x−
− ′= + + + + =�  (5.8) 

with variable coefficients ( )ka x  representable by analytic functions can be 
represented via Atomic Series over Atomic and AString Functions. 

Proof. Using Taylor’s series, let’s seek a solution in a form of a generic poly-
nomial ( ) 0

m
mmy x B x∞

=
= ∑ , the derivatives of which would also be polynomials, 

and assume a similar representation for analytic functions ( ) 0
m

k kmma x A x∞

=
= ∑ . 

Due to Theorem 3, the products ( ) ( ) ( )k
ka x y x  would also be polynomials mak-

ing LDE (5.8) a sum of some polynomials, the coefficients of which can be re-
currently chosen to match zero on the right side. But because the polynomials 
are exactly atomizable via Atomic Splines (Theorem 1), the solutions of LDE 
(5.8) can also be representable via Atomics: 

( )( )
( ) ( ) ( )

, 0;

, , , , , , .

k

l k
l l l k k kl k

L y a x

y x up x a b c AString x a b c=+∞ =+∞

=−∞ =−∞

=

≡ =∑ ∑
    (5.9) 

Proof obtained. This theorem covers a wide variety of differential equations of 
mathematical physics, for example, Newtonian mechanics dealing with second 
derivatives. 

5.6. Atomization of Nonlinear Differential Equations and  
“Preservation of Analyticity” 

Atomization (5.4), (5.5) of composite functions like ( )( )arctan exp x , ( )sech x  
satisfying nonlinear sine-Gordon and Schrodinger differential equations well- 
known in soliton theories [2] [4] [29] [30] [31] [32] imply that the Atomization 
procedure traditionally applicable for linear differential equations [6]-[12] can 
be extended to some nonlinear differential Equations (NDE) important in hy-
drodynamics, plasticity, relativity, soliton, and other nonlinear theories. It leads 
to the following theorem.  

Theorem 6 (NDE atomization theorem). Solutions of nonlinear differential 
Equations (NDE) with linear differential operator ( )L y  and nonlinear analytic 
function ( )f y  

( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1
1 1

, k

n n
n n

L y a x

y x a x y x a x y x a x y x

f y

−
− ′= + + + +

=

�     (5.10) 
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can be represented via Atomic Series over Atomic and AString Functions. 
Proof. Presumably analytic, function ( )f y  can be represented via converg-

ing Taylor’s series ( ) 0
m

mmf y C y∞

=
= ∑ . Seeking solution via polynomials  

( ) 0
m

mmy x B x∞

=
= ∑  and noting that due to Theorem 5, the powers, derivatives, 

multiplications, and superpositions of polynomials would also be polynomials, 
leading to polynomials for both sides of (5.10), the coefficients of which can be 
recurrently chosen to satisfy (5.10) exactly. But because those polynomials are 
exactly representable via Atomic Splines (Theorem 1), the solutions of NDE 
(5.10) are also representable via the superposition of Atomics: 

( ) ( )
( ) ( ) ( )

;

, , , , , , .l k
l l l k k kl k

L y f y

y x up x a b c AString x a b c=+∞ =+∞

=−∞ =−∞

=

≡ =∑ ∑
   (5.11) 

Proof obtained. The idea can be illustrated with the sine-Gordon equation [4] 
[32] 

( ) ( )
3 5

sin
3! 5!
y yy x y y′′ = = − + +�  

leading to analytic function ( ) ( )( )arctan expy x x=  used in differential geo-
metry and many soliton theories [2] [4] [30] [31] [32]. Another “atomizable” 
example is an envelope soliton function ( )sech x  satisfying stationery nonli-
near Schrodinger equation [4] [30] [31] ( ) 32y y x y′′− =  of the form (5.10). 

It looks like the preservation of analyticity (when a differential operator ap-
plied to an analytic function would yield another analytic function) and the fact 
of Theorem 3 that compositions ( )1 2y y y=  of analytic functions are also ana-
lytic are the two crucial properties for the wide applicability of Atomization 
Theorems even for complex nonlinear differential equations including General 
Relativity (§6). The theorems 1 - 6 can be generalized in the following theorem. 

Theorem 7 (Complex NDE atomization theorem). Solutions of nonlinear dif-
ferential equations with functional-differential operator F preserving analyticity 
of function ( )y x  can be represented via Atomic Series over Atomic and AStr-
ing Functions: 

( )

( ) ( ) ( )

, 0;

, , , , , , .

m

n

l k
l l l k k kl k

yF y x
x

y x up x a b c AString x a b c=+∞ =+∞

=−∞ =−∞

 ∂
= 

∂ 

≡ =∑ ∑
     (5.12) 

Proof. Injecting polynomial solution ( ) 0
m

mmy x B x∞

=
= ∑  into operator F 

which supposedly preserves analyticity would convert a solution into another 
polynomial, the coefficients of which can be selected to match zero on the right 
side of (5.12). Because an analytic function [29] can be presented via polyno-
mials by converging Taylor’s series, the function ( )y x  would also be repre-
sentable via Atomic Series (5.12). Examples of different operators F preserving 
analyticity are presented in Theorems 1 - 6. 

Proof obtained. The idea can be illustrated by the stationary nonlinear Korte-
veg-de Vries equation ( ) ( ) ( ) ( )6 0F y y x cy x yy x′′′ ′ ′= − − =  for soliton wave 
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function ( ) ( )2sechy x x=  [4] [27] [30] [31] representable by Atomics (5.5) due 
to Theorem 3. 

5.7. Generic Atomization for Nonlinear Nonanalytic Equations 

The abovementioned Atomization Theorems are applicable for the representa-
tion of a wide range of analytic functions, their superpositions as well as linear 
and nonlinear differential equations. However, there are nonanalytic functions 
like ( )exp 1 x− , bump functions ( )( )2exp 1 1 x− −  and other functions analyt-
ic only in some areas as well as generic nonlinear differential equations for 
which Taylor’s power series may not be converging [29]: 

( ) ( )( )1 2, , 0; , 0.
m

i
i j i jn

j

y
F y x t F y x t

x

 ∂
= =  ∂ 

            (5.13) 

Here, the atomization procedure based on Atomic Series (5.12) may not de-
liver converging representations for field functions ( ),i jy x t . However, the 
quite universal idea of atomization of field equations still holds if we recall 
(3.14), (3.16), and (4.1) that spacetime coordinates themselves , , ,x y z t  are re-
presentable via AStrings: 

( )
( )

, , , ;

, , , .

k j
j jk

x ka
x aAString AString x a ka a

a

t AString t k

=+∞

=−∞

− 
= = 

 
= ∆ ∆ ∆

∑

∑

∑
     (5.14) 

In this case, generic nonlinear Equations (5.13) become complex functions of 
sums of AStrings, the interpretation of which can only be given within a physical 
theory which those equations describe:  

( ) ( ) ( )
( ) ( )( )( )

1

2

, , ;

, 0.

m
i

j
j

i j

y
F AString x AString t

AString x

F y AString x AString t

 ∂ 
 ∂ 

=

∑ ∑
∑

∑ ∑
      (5.15) 

In this generic form, the atomization procedure becomes quite universal and 
applicable to all equations of mathematical physics dealing with , , ,x y z t , simi-
lar to finite elements and finite differences methods [21] [22] which can be un-
iversally used for discretization of almost any equation. “Atomization” is a kind 
of “advanced discretization” with the preservation of smoothness between finite 
elements.  

5.8. Atomic Representation of Waves 

The abovementioned theorems imply that any smooth analytic function includ-
ing wave functions can be represented via the converging superposition of Atom-
ics. Some presentations known in the theory of Atomic Functions [8] [9] [10] 
[11] [12] [23] uphold this idea extended here for AStrings.  

Theorem 8 (Waves atomization theorem). Any smooth function with a finite 
spectrum can be represented via Atomic Series over finite Atomic and AString 
Functions. 
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Proof. A smooth function ( )y x  with finite spectrum can be represented via 
limited Fourier series ( )sini i ii d e x f−∑ , and because ( )sin x  is also repre-
sentable via Taylor’s series hence via Atomic Series (Theorem 2), the function 
( )y x  can be also presented via Atomic Series over Atomic Splines: 

( ) ( ) ( )
( )

sin , , ,

, , , .

l
i i i l l li l

k
k k kk

y x d e x f up x a b c

AString x a b c

=+∞

=−∞
=+∞

=−∞

≡

=

=− ∑
∑
∑

       (5.16) 

Proof obtained. The important physical application of this theorem is to 
represent electro-magnetic, sound, and water waves via some superpositions of 
Atomics giving rise to the quite wide applicability of Atomic Functions in radio 
electronics and signal processing [8] [9] [10] [11] [12].  

5.9. Atomization Based on Complex Atomic Functions 

Let’s note another well-known [7]-[12] [23] [25] [26] [27] method of representing 
solutions of LDE (5.6), (5.8) ( ) 0L y =  via more generic Atomic Functions more 
complex than ( )up x . For example, if we build a new finite atomic function ( )xϕ  
satisfying a more generic equation with shifted arguments, we can represent ( )y x  
via shift and stretches of AF pulses ( )xϕ  [7]-[12] [25] [26] [27]: 

( ) ( ) ( ) ( )
( ) ( )

1 2 ; 0;
.k kk

L c ax b c ax b L y
y x c ax b
ϕ ϕ ϕ

ϕ
= + + − =

= −∑
         (5.17) 

Injecting y into (5.17) yields a series of localized pulses φ where it is possible 
to select coefficients ,k kc b  in such a way that Equation (5.17) would be satis-
fied. For 50 years of history, many useful atomic functions have been built and 
used in new kinds of finite element collocation methods for radio-electronics, 
signal processing, and others [7]-[12] [25] [26].  

5.10. Atomization Theorems in Many Dimensions 

Atomization Theorems can be extended to multiple dimensions [2] [7]-[12] [28] 
with the following theorem extended for AStrings [1] [2] [3] [4] [5]. 

Theorem 9 (3D atomization theorem). Representable by converging Taylor’s 
power series, multidimensional analytic functions with their sums, multiplica-
tions, reciprocals, derivatives, integrals, and superpositions can be represented 
via Atomic Series over localized multidimensional Atomic and AString Functions. 

Proof. Multidimensional n-order polynomial in m-dimensions  
( )1, ,mn n mP P x x= � , which are some multiplications of 1D polynomials exactly 

representable by Atomics (Theorem 1), are also exactly representable by multip-
lications of Atomic Functions (multidimensional atomic functions (3.9)  

( ), ,k k ka b cUP  which in turn are AStrings combinations (3.8).  

( ) ( ) ( )
( ) ( )

( )

1 1 1

1

, , , , ,

, , , , ,

, , .

k
mn n m n i i i ik ik ikki i

k k
i i il il il k k kk

m m

m
ki

l
l l ll

P P x x P x up x a b c

AString x a b c a b c

a b c

=+∞

=−∞= =
=+∞ =+∞

=−∞ =−∞=
=+∞

=−∞

= = =

= =

=

∑∏ ∏
∑ ∑∏
∑

UP

AString

�

  (5.18) 

Therefore, multidimensional analytic functions [29], being representable via 
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converging multi-dimensional Taylor’s power series, are also representable by 
multidimensional Atomics. Superposition of analytic functions preserves analy-
ticity (Theorem 3), and integrals and derivatives of polynomials are also poly-
nomials, so multidimensional analytical functions with their derivatives, inte-
grals, and superpositions are also representable via Atomics.  

Proof obtained. This theorem can be illustrated by the atomization of a func-
tion ( )( )2 5arctan exp x y z . Being exactly representable via (5.3) by Atomics in 
the relevant dimension  

2
2 1 ,

64 36 4k

k kx up x
   = − −   

  
∑  

( )5 5 12 , ,
4 2ll m

my C up y l z up z−  ≡ − = − 
 

∑ ∑  

2 5r x y z=  would be the sum of multiplications which in 3D forms can be de-
noted via 3D atomic function assuming summation over all 3 dimensions: 

( ) ( ) ( )
( )

2 5 , , , , , , , , ,

, , , , , .
klm k k k l l l m m mklm

n n nn

x y z C up x a b c up y a b c up z a b c

x y z a b c

=

=

∑
∑ up

 

Next, an exponent representable via Taylor’s series as ( )exp
!

n

n

rr
n

= ∑  would  

also be the sum of sums of AFs along with arctan applied to the exponent. But 
because two AStrings compose ( )up x  (3.8), the final product can be expressed 
via the superposition of AStrings.  

Despite the seemingly complex procedure, the atomization method tells that 
like in the Lego game the smooth analytic manifolds can be composed of “small 
pieces” with preservation of smoothness between them (Figure 1 and Figure 5). 

Similar to the 1D case with Theorems 4 and 5, the atomization idea can be ex-
tended to multi-dimensional differential equations 

( )( )

( ) ( ) ( )

1 1, , , , 0;

, , , , , ,

m
i

m m ijmn n
j

i j i j ijl ijl ijl i j ijk ijk ijkijjkl jjkl

y
L y y x x a

x

y x up x a b c AString x a b c

∂
= =

∂

≡ =∑ ∑

� �
  (5.19) 

typically containing linear differential operators like Laplacian and Poisson op-
erators widely used in mathematical physics: 

2

2; ; ; .i
i i

k
x x
∂ ∂

∇ = ∆ = ∆ + ∆∆
∂ ∂∑                (5.20) 

Due to locality, derivatives expressed via themselves, and the ability to com-
pose polynomials and analytic functions, the solutions of these equations can be 
expressed by Atomic Series (5.19) via a combination of “mathematical atoms” 

( )iup x  made of AString kinks (3.8), as shown in Figures 1-5. 

6. Atomization Theorems in General Relativity 

Theorems 1 - 9 lead to the following new theorems targeting Einstein’s General 
Relativity (GR) theory [13] [14] [15] and Atomic Spacetime theory based on 
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Atomic AString Functions developing since 2017 [1] [2] [3] [4] [5] [23] [43].  

6.1. Atomization Theorems for Metric, Curvature, and Ricci  
Tensors  

Considering together multidimensional Atomic Series (5.9), (5.10) and Atomi-
zation Theorems 1 - 6 leads to the following theorems important for General 
Relativity. 

Theorem 10 (Tensor’s atomization theorem). First i
ix

∂
∂ =

∂
 and second de-

rivatives 
2

ij
i jx x
∂

∂ =
∂ ∂

 as well as the metric tensor ijg  defining interval on a  

curved surface ( )2d d dij n i js g x x x=  preserve analyticity and being applied to 
analytic functions ( )k ly x  leading to analytic functions representable/ atomiz-
able by Atomic Series over Atomic and AString Functions.  

Proof. Being linear differential operators, both first and second derivative op-
erators preserve analyticity because derivatives of multidimensional polynomials 

m
lm lB x  would also be polynomials exactly representable via multidimensional 

Atomic Functions and AStrings (5.9) using Atomic Series (5.2). For curved 
spacetime shapes/geometries described by some analytic functions ( )i i jx xx=� � ;  

d di
i j

j

x
x

x
x

∂
=
∂
�

� , the derivatives and their multiplications would also be analytic,  

hence representable by Atomic Splines (Theorems 2, 3, 9). This theorem can be 
proved in another way by noting that all derivatives and integrals of Atomics are 
expressed via themselves (3.3), (3.8), and if space geometry analytic functions 

( )i jx x�  are the sum of Atomics, then all derivatives and metric tensors would 
also be some Atomics combinations: 

( ) ( ) ( ), , , , , , .ij n n ijnk ijnk ijnk n ijnl ijnl ijnlijnk ijnlg x up x a b c AString x a b c= =∑ ∑   (6.1) 

Proof obtained. This theorem means that for analytic spacetime geometries/ 
configurations, their deformations, curvatures, metrics, and geodesics would al-
so be some Atomics superpositions, with a range of analytical surfaces and space-
time metrics known in GR [13] [14] [15] described later. This theorem can be 
intuitively understood in the sense that if a spacetime geometry is described by 
polynomials then deformations and curvatures (which are derivatives and mul-
tiplications) of the spacetime field would also be polynomials and hence repre-
sentable by Atomic Splines. 

Furthermore, due to the properties of analytic function superpositions to pre-
serve analyticity (Theorem 3), the last theorem can be extended to nonlinear 
Ricci tensors important in GR [13] [14] [15]. 

Theorem 11 (Ricci tensor atomization theorem). Nonlinear Ricci tensor jkR  
and Christoffel operators k

ijΓ  preserve analyticity and applied to analytic func-
tions would yield analytic functions representable by Atomic Series via Atomic 
and AString Functions.  

Proof. Christoffel operators [13] [14] [15], which include multiplications of 
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functions to their spatial derivatives, transform analytic metric tensor functions 
(6.1) representable by polynomials into more complex polynomials representa-
ble by Atomics via Atomic Series (5.3). Similarly, Ricci tensors are also a combi-
nation of derivatives and multiplications of Christoffel symbols [13] [14] [15] 
which preserve analyticity, hence representable via Atomic Splines: 

( )1 ;
2

k kl i i i p i p
ij i jl j il l ij jk i jk j ik ip jk jp ikg g g g RΓ = ∂ + ∂ − ∂ = ∂ Γ − ∂ Γ Γ Γ −Γ Γ    (6.2) 

( ) ( ) ( ), , , , , , .ij n n ijnk ijnk ijnk n ijnl ijnl ijnlijnk ijnlR x up x a b c AString x a b c= =∑ ∑   (6.3) 

Proof obtained. This theorem can be understood in the sense that polynomials 
are “hard to destroy” by common differential operators because their multiplica-
tions, derivatives, integrals, and superpositions would also be polynomials re-
presentable by Atomics. It also means that not only spacetime metrics but also 
curvature tensors can be “atomized” using Atomic Splines describing finite ma-
thematical objects resembling flexible spacetime quanta §2, [1] [2] [3] [4] [5]. 

6.2. Atomization Theorem for General Relativity 

The sequence of Theorems 1 - 10 finally converges into the following new theo-
rem for Einstein’s General Relativity [13] [14] [15]. 

Theorem 12 (Atomic Spacetime Theorem). For analytic manifolds, Einstein’s 

curvature tensor 1
2

G R g Rµν µν µν= −  preserves analyticity and yields spacetime  

shapes, deformations, curvatures, and matter/energy tensors Tµν  representable 
via multi-dimensional Atomic AString Functions superpositions. Solutions of 
General Relativity equations can be represented via converging Atomic Series 
over finite Atomic and AString Functions: 

( )
( )

4

1 8
2

, , ,

, , , .

i i i ii

i i i ii

GG R g R T
c

x a b c

x a b c

µν µν µν µν

µν µν µνµν

µν µν µνµν

π
= − =

=

=

∑
∑

UP

AString

              (6.4) 

Proof. For analytic manifolds—spacetime geometries described by analytic 
functions ( )i i jx xx=� �  representable by converging Taylor’s power series—the 
metric tensors gµν  composed of derivatives and their multiplications would 
also be some analytic functions (Theorem 10). Being injected into Christoffel 
operators and then Ricci tensors Rµν  (6.2), they would yield another set of 
analytic functions (Theorem 11) representable by Taylor’s polynomial series be-
cause the derivatives, multiplications, and superposition of analytic functions 
would also be analytic (Theorem 3). The curvature scalar R g Rµν

µν=  in (6.4) 
preserves analyticity because of the cross-multiplication of polynomials and their 
derivatives would also be polynomials. Injected into (6.4), those tensors produce 
Einsteinian tensor Gµν  and energy-momentum tensor Tµν  ( 48 G cπ  is a 
constant) presumably representable by polynomials via multi-dimensional Tay-
lor’s series. Because a polynomial of any order is exactly representable via Atomic 
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Splines (Theorem 1), the spacetime curvature, metric, and energy/momentum 
tensors would be the superpositions of multi-dimensional Atomic UP and AStr-
ing functions, derivatives of which are expressed via themselves. Due to funda-
mental relation (3.8) 

( ) ( ) ( ) ( )2 1 2 1up x AString x AString x AString x′= = + − − , 

the Atomic Function ( )up x  is a sum of two AStrings which may be associated 
with a finite quantum/metriant being able, within one model, to compose straight 

( ), , ,kx AString x a ka a= ∑  and curved ( ), , ,k k kk AString x a b cx = ∑�  lines from 
elementary AString kinks resembling flexible quanta (§2, 6, 7).  

Proof obtained. In a nutshell, this theorem tells that the spacetime field is re-
presentable (“atomizable”) via AStrings and Atomic Functions, the derivatives of 
which are expressed via themselves meaning the spacetime shape, deformations, 
curvatures, and energy/momentum tensors can also be represented as some su-
perposition of Atomics. Now, this idea first hypothesized in 2017 [3] is based on 
a set of theorems. It offers the Atomic Spacetime model [1] [2] [3] [4] [5] quite 
resonating with A. Einstein’s 1933 lecture [17] where he predicted a “perfectly 
thinkable” “atomic theory” dealing with “simplest concepts and links between 
them” to solve some “stumbling blocks” of continuous field theories to describe 
quantized fields. 

Let’s note that Atomization is not a simple discretization of space—separation 
of a volume into adjacent finite elements [22] [24] [38]. Here, the “finite ele-
ments” (AStrings) are smoothly overlapping (§2, Figure 1) and capable to de-
scribe both expansions of space (3.9) and localized “atoms” ( )up x  (3.8).  

6.3. Deriving Atomics from General Relativity Equations 

Previous Atomization Theorems were based on the historical assumption that 
we know the mathematical properties of finite Atomic Functions [1]-[12] and 
try to introduce them to spacetime physics as it was done in [2] [3] [4] [5]. The 
intriguing question is whether it is possible to do the opposite—to derive Atomic 
Functions from GR, so in theory, A. Einstein could have done it himself, espe-
cially in 1933 when in his paper [17] he envisaged an “atomic theory” with “… 
region of three-dimensional space at whose boundary electrical density vanishes 
everywhere” resembling finite functions like Atomics. The following theorem 
shows how it can be achieved by applying backward the Atomization Theorems 
1 - 12. 

Theorem 13 (Atomic Spacetime quantum theorem). It is possible to find an 
infinitely differentiable finite pulse spline function that can represent analytic so-
lutions of GR and polynomials of any order via superpositions, and such a func-
tion should have a form of Atomic Function ( )up x  with derivative 

( ) ( ) ( )2 2 1 2 2 1up x up x up x′ = + − −                 (6.5) 

and integral 

( ) ( ) ( ) ( )2 1 2 1 .AString x up x AString x AString x′ = = + − −      (6.6) 

https://doi.org/10.4236/jamp.2023.111012


S. Yu. Eremenko 
 

 

DOI: 10.4236/jamp.2023.111012 181 Journal of Applied Mathematics and Physics 
 

Being localized solitary functions capable to compose flat and curved spacetime 
fields in overlapping superposition, those spline functions may be interpreted as 
flexible quanta of spacetime. 

Proof. Preservation of analyticity in Einstein’s curvature tensor, Ricci tensor, 
and Christoffel operators (Theorems 11, 12) implies that analytic metric tensor 
functions ( )ij ng x  being injected in those operators would produce other ana-
lytic functions representable by polynomials—because the multiplication of de-
rivatives of polynomials to other polynomials would also be polynomials. Analy-
ticity of metric tensor ( )ij ng x  representable by Taylor’s series via polynomials 
(for which derivatives and integrals would also be polynomials) implies that 
spacetime geometry ( )i nx x�  and geodesics should also be analytic functions re-
presentable by polynomials (Theorem 10). This theorem would be proved if we 
find some basis spline pulse-like function ( ) [ ]1,1p x ∈ −  which in translation 
would exactly compose polynomials of any order (Theorem 1)  

n k
kk

k

x b
x c p

a
 −

=  
 

∑ . Firstly, following §2, we have to eliminate the polynomial  

spline candidates (like B-splines or cubic Hermitian splines [22] [23]) as they are 
unable to exactly compose a polynomial of any order. The desired spline func-
tion should be a polynomial of infinite order, or simply belong to class ( )C ∞  
of absolutely smooth functions. Secondly, we have to eliminate trigonometric 
and other exponential-based spline functions like Gaussians or Sigmoids because 
by summing only a few pulses they are unable to exactly reproduce even the 
simplest polynomials (a line, or a constant). To satisfy Theorem 1, the choice has 
narrowed to infinitely differentiable spline functions ( )p x  capable to compose  

any polynomial n k
kk

k

x b
x c p

a
 −

=  
 

∑  and also satisfy the “partition of unity”  

( )kc cp x k= −∑ . Desired infinite differentiability implies that the spline func-
tion’s derivative should be expressed via the function itself ( ) ( )( )p x F p x′ = , or 
in simplest linear form ( ) ( )( ) ( ) ( )p x F p x kp ax b kp ax b′ = = + − −  which with 
symmetry condition ( ) ( )p x p x= − , normalization ( )0 1p =  and finiteness 
( ) 0, 1p x x= >  lead to Atomic Function ( ) ( )p x up x= ,  
( ) ( ) ( )2 2 1 2 2 1up x up x up x′ = + − −  discovered in the 1970s [6] [7] [8] and de-

scribed in §2. Using this spline function to compose the 3D polynomials, the 
geometry of spacetime ( )i nx x�  along with metric tensor ( )ij ng x , Ricci tensor  

( )ij nR x  and Einsteinian tensor 1
2

G R g Rµν µν µν= −  lead to Theorems 11, 12  

and the ability to express GR solutions via a series of Atomic Function pulses. 
Due to symmetry (2.5), the Atomic Function ( )up x  can be represented via the 
sum of two simpler AString kink functions (3.8)  

( ) ( ) ( ) ( )2 1 2 1up x AString x AString x AString x′= + − − = , so GR solutions can 
also be expressed via AStrings. AStrings can describe spacetime expansion via 
superpositions ( )kx AString x k≡ −∑  hence may be associated with some fi-
nite quanta of space.  
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Proof obtained. This conceptually important new theorem allows deducing fi-
nite Atomic and AString Functions from GR noticing a crucial property of GR 
operators to preserve analytic functions and polynomials and the unique ability 
of Atomic AString Functions to exactly represent them. But actually, there is not 
much of a surprise that spacetime and other smooth fields can be represented by 
some “mathematical atoms”, as founders often called them [6] [7] [8] [9] [10]. 
The hard part, which took 6 years, was to formally work out how quite complex 
nonlinear Einstein’s GR equations can yield simply looking Atomic Splines, and 
preservation of analyticity and atomization of polynomials were the key hints to 
achieve this. 

6.4. Atomic Spacetime Model 

Formulated Atomization Theorems 1 - 13 provide a theoretical foundation for 
atomization/quantization of spacetime field [1] [2] [3] [4] [5] based on Atomic 
and AString Functions when GR equations and solution, along with Ricci, cur-
vature, and metric tensors, can be represented via Atomic Series over multidi-
mensional Atomic and AString Functions (3.7): 

( )
( )

4

1 8
2

, , ,

, , , ,

i i i ii

i i i ii

GG R g R T
c

x a b c

x a b c

µν µν µν µν

µν µν µνµν

µν µν µνµν

π
= − =

=

=

∑
∑

UP

AString

          (6.7) 

( ) ( )
( )

, , ,

, , , ,

ij n n ijnk ijnk ijnkijnk

n ijnk ijnk ijnkijnl

R x x a b c

x a b c

=

=

∑
∑

UP

AString
         (6.8) 

( ) ( )
( )

, , ,

, , , ,

ij n n ijnk ijnk ijnkijnk

n ijnk ijnk ijnkijnl

g x x a b c

x a b c

=

=

∑
∑

UP

AString
         (6.9) 

( ) ( ), , ,i l l lk lk lkkx x cx a b= ∑ AString� .           (6.10) 

These formulae express the mathematical fact that it is possible to compose 
analytical manifolds (Figure 6) by adjusting the parameters of Atomic Splines, 
or, like in the Lego game, composing a smooth shape from “elementary pieces” 
resembling quanta. If finite Atomics, for which derivatives are expressed via 
themselves, represent spacetime shape ( )i lx x�  (6.10), the series over Atomics 
would also describe spacetime deformations, curvatures, metrics, Ricci’s, Eins-
tein’s, and energy-momentum tensors.  

Because AString can compose a line and a curve from “elementary pieces” re-
sembling quanta (§2, 6) one can envisage a spacetime field as a complex network 
of flexible spacetime quanta (Figures 4-7) on a lattice. Identical quanta produce 
flat uniform spacetime while shifting the location of one quantum causes the space-
line to curve (Figure 7(b) and Figure 7(c)). Let’s note that the notion of “quan-
tum” here is not directly related to Quantum Mechanics and Quantum Gravity 
[18] [19] [34]-[39] but rather to the finiteness of “solitonic atoms” capable to 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Curved spacetime composed of AStrings; (b) Joining AStrings of different 
heights simulates spacetime curving; (c) Curved spacetime geodesics represented via 
joints of 3D solitonic atoms. 
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compose shapes and fields.  
A detailed description and evolution of Atomic Spacetime theory and proper-

ties of atomized spacetime are presented in [1] [2] [3] [4] [5] [23] [43]. 

6.5. Atomization of Known General Relativity Solutions 

The idea of Atomic Spacetime quantization can be demonstrated for known GR 
solutions [13] [14] [15].  

Einstein-Minkowski solution 0, 1ijT gµν = =  for homogeneous uniform 
spacetime/universe [13] [14] [15] [16] [20] is simply atomizable/quantizable via 
translations of identical overlapping AString quanta (§2, Figure 1 and Figure 8) 
[1] [2] [3] [4] [5] in vector notation: 

( )
( ) ( )
( ) ( )

1 2 3

1 1 2 2

3 3

, , , , , ,

, , , , , ,

, , , , , , ,

l

l l l t

x x x t a c

AString x a a a AString x a a a

AString x a a a AString t a c a c a c

ρ

ρ ρ

ρ ρ

= +

+ +

AQuantum

e e

e e

   (6.11) 

or schematically (Figure 3 and Figure 4 and Figure 8(c)) 

( ) ( )1 2 3 1 2 3, , , , , , , , , .lkx x x t x x x t a cρ= ∑UniformSpace AQuantum   (6.12) 

Friedmann solution for expanding spatially homogeneous universe with me-
tric [13] [14] [15] [16] 

( ) ( )2 22 2 2 2 2 2 2d d d ; d d dks a t s c t s r S r= − = + Ω         (6.13) 

includes analytic function ( )kS r  representable via Atomic Series (5.4), (5.5) as 
per Theorems 3.4:  

( ) ( )
( )

3 5

6 120

, , , .

k

k
k k k kk k

kr krS r rsinc r k r

r b
c up AString r a b c

a

= = − + −

− = = 
 

∑ ∑

�
     (6.14) 

Scale factor ( )a t  [13] [14] [15] [16] being an analytic power function [29] is 
also representable via Atomics: 

( ) ( ) ( ) ( )
2

3 1 2 3 1 2
0 ; ~ , 0; ~ , 1 3,wa t a t a t t w a t t w+= = =      (6.15) 

( ) ( ) ( ), , , , , , .k k k l l lk la t up t a b c AString t a b c= =∑ ∑       (6.16) 

Schwarzschild solution (Figure 8) for radial bodies and black holes has 
spacetime metric [13] [14] [15] [16] [20] 

( ) ( )2 2 2 2 2d d d d ;s A r c t B r r r= − + + Ω  

( ) ( )
1

1 ; 1 .s sr r
A r B r

r r

−
   = − = −   
   

              (6.17) 

Analytic (outside of singularity) function ( )A r  and its reciprocal ( )B r  
(also analytic as per Theorem 3) representable via converging Taylor’s series is 
also representable via Atomics (5.4): 
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(a) 

 
(b) 

 
(c) 

Figure 8. (a) Space density function from Schwarzschild GR solution; (b) Representing 
Schwarzschild metric via AStrings; (c) Uniform spacetime field as a superposition of so-
litonic atoms. 
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( ) ( ), , , , 0.k
k k k kk k

r b
A r c up AString r a b c r

a
− = = ≠ 

 
∑ ∑     (6.18) 

In summary, the atomization of known GR solutions confirms the main idea 
that analytic spacetime fields are representable via the superposition of finite 
AStrings and Atomic Functions, or Atomic Splines. 

7. Atomic Splines vs Polynomial Splines and Discretization 

In summary, formulated 13 Atomization Theorems provide a theoretical foun-
dation for applying Atomic Series and Atomic Splines based on Atomic AString 
Functions to many theories of mathematical physics making the “atomization 
method” quite universal. It seems important to compare the method with tradi-
tional universal approaches, like polynomial spline approximations [22] [51] and 
finite elements discretization [23] [52]. 

7.1. Atomic Splines vs Polynomial Splines 

Spline approximation, when a function is represented via the superposition of 
localized splines, is a universal method widely used in mathematical physics [21] 
[23] [51]. Typically, splines are based on polynomials [23] [51] (B-splines, Cubic 
Splines, Hermitian Splines), and there is a limitation problem with them—according 
to Strang-Fix condition [41] local polynomial splines of n-order can exactly 
represent/compose only a polynomial function up to n-order. For example, cu-
bic splines can exactly compose only a cubic parabola, but not a polynomial of a 
higher order; it can approximate but not exactly represent. It means polynomial 
splines cannot be used for fundamental quantization formulations of spacetime 
and fields which should not be based on approximations of reality. Another li-
mitation of polynomial splines is limited smoothness seemingly insufficient for 
fundamental theories. For example, building a spacetime quantization model based 
on cubic splines would imply that Einsteinian curvature tensor (6.7) based on 
second derivatives would be represented by linear functions leading to an un-
physical unsmooth connection between curvature nodes. Increasing the order of 
basis splines leads to the so-called “polynomial trap” problem [1] [24] imposing 
artificial “polynomial order” constant to spacetime and field theories.  

Atomic Splines based on smooth Atomic and AString Functions for which de-
rivatives are expressed via the functions themselves (3.1), (3.8) are more ad-
vanced—they can exactly compose sections of polynomials of any order (Theo-
rem 1, (4.1), (5.1), (§5.1) as well as provide smooth connections between Atomic 
Splines presumably modeling flexible finite quanta (§2, 6). However, this ad-
vancement comes with a price—nowadays, operating with polynomial splines 
seems easier than with relatively new nonanalytic Atomic Functions (3.1), (3.8). 
But the evolutional development of atomic methods can be further widened with 
multiple computer scripts [2] [4] [53] [54] available for Atomic and AString Func-
tions, their elegant simplicity (Figure 2 and Figure 3), and their convenient mean-
ing of “mathematical atoms” [1]-[12] capable of composing complex functions. 
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7.2. Discretization vs Atomization 

Another aspect to discuss is the difference between traditional universal discre-
tization methods and proposed “atomization” methods. Space discretization is 
the foundation of the most universal numerical methods like finite differences 
and finite elements [22] [52]. However, the separation of a volume, for example, 
spacetime fields, into finite elements does not explain the crucial feature of how 
the finite elements/quanta are “kept together”, interact, and provide smoothness 
and “pass information” between them. Space “atomization”, like a partition of a 
line (§2, 6), is more advanced—it tells that neighboring “finite elements” have 
“interaction zones” (Figure 1) within which it is possible to provide the desired 
smooth connection between elements, like in Lego game when perfectly adjusted 
elementary blocks are kept together in interaction zones by “connection layers” 
(Figure 1(a)). Moreover, Atomization Theorems (§5, 6) tell how stretches and 
shifts of overlapped finite elements can compose various physical fields giving 
rise to a novel atomic model of spacetime and fields [1] [2] [3] [4] [5] [23] [43] 
[55]. However, “atomization” as an “advanced discretization” is more complex 
than traditional discretization and finite element methods [21] [22] [52] and 
hence requires not only grasping of Atomic Functions theory but also building 
new “atomic” or “collocated” finite element methods [26] [33] especially com-
plex for 3D problems. 

In summary, Atomic Splines provide a more adequate description of smooth 
quantized fields composed of flexible overlapping solitonic atoms but require more 
complex methods of discretization and spline constructions.  

8. Conclusions—Atomization Theorems in Theoretical  
Physics and Future Research 

Atomization Theorems provide a theoretical formalism for applying Atomic 
Functions known since the 1970s [6]-[12] and their AString generalizations in-
troduced in 2017 [1] [2] [3] [4] [5] to many equations of mathematical physics, 
including electromagnetism, elasticity, hydrodynamics, soliton theory, spacetime 
physics, quantum mechanics, and field theories [16]-[28] [30] [33] [35] [36] 
[47]-[55]. The theorems tell that fields describable by widely used differential 
equations and analytic functions are representable via Atomic Splines which, 
unlike conventional polynomial splines, can exactly reproduce (rather than ap-
proximate) polynomials of any order and hence represent widely used analytic 
functions and their superpositions including Taylor power and Fourier series. 
The “atomization method” applies to both linear and nonlinear differential equ-
ations as complex as General Relativity (GR) equations.  

The physical meaning of an Atomic Function pulse should be adjusted to 
every physical theory but for spacetime, it describes an elementary finite ob-
ject/spacetime distortion/spacetime quantum/metriant capable to compose fields 
from the superposition of flexible overlapping “solitonic atoms” (Atomic Soli-
tons [2] [4]) ( )( )i i ic up x b a−  made of kink-antikink pair of two AStrings  
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( ) ( ) ( )2 1 2 1up x AString x AString x= + − − . Overlapping translation of AStrings 
describes spacetime expansion while two opposite AStrings form “solitonic atoms” 
resembling matter particles making spacetime and matter distributions expressed 
via the same set of basis functions. Also, the resulting Atomic Spacetime theory 
[1] [2] [3] [4] [5] [23] [44] evolving since 2017 correlates with A. Einstein’s 1933 
paper [17] predicting a “perfectly thinkable”, “atomic theory” with “simplest con-
cepts and links between them” resolving “stumbling blocks” of theories operat-
ing “… exclusively with continuous functions of space” and mentioning a “… 
region of three-dimensional space at whose boundary electrical density vanishes 
everywhere” naturally leading to finite Atomic Function. 

Atomization Theorems applied to field theories [16]-[28] [30] [33] [35] [36] 
[47] [48] [49] [50] may also yield some novel interpretations and future direc-
tions under research now [1] [23] [44] [55]. If many analytic functions, fields, 
and equations from different related theories are representable via finite Atom-
ics, it suggests the hypothesis [1] [2] [3] [4] [5] that they may express some 
common mathematical block/atom of fields leading to a unique unified theory 
based on a common “physical ancestor” like a string from string theory [50], or 
“elementary spacetime distortion/ripple” [16] [18] [19] [20] [23] [46] [47]. In 
Quantum Field Theory [35] [36], where fields are perceived to be the “building 
blocks” of the universe [46] [47], Atomics may describe those elementary ma-
thematical “blocks”, or “mathematical atoms” as the founders called them [6] [7] 
[8], composing different fields, with the theory in research now. 

From the Generalized Thermodynamics point of view, AString describes a 
metriant [35]—conservable extensor/quantum of spacetime field (§2). The mean-
ing of nonlinear solitary atomic function ( )up x  (3.8) as a superposition of two 
AString kinks offers connections to soliton theory [2] [4] [27] [30] with Atomic 
Solitons [1] [2] [3] [4] [5]. The probabilistic meaning of atomic functions [1]-[12] 
offers connections to Quantum Mechanics [40]. AStrings and Atomic Functions 
can also be used in Atomic Machine Learning [44]. 

In summary, some novel mathematical constructs like Atomic and AString 
Functions, Atomic Solitons, Atomic Series, and Atomization Theorems can be 
useful for many physical theories extending 50 years of history of Atomic Func-
tions [1]-[12] to new scientific domains. 
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