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Abstract 
In this paper, we give a definition of the Fermi function, or the so-called 
Woods-Saxon potential, a well-known potential in nuclear physics; then, we 
give a few of its applications as examples. Some important integrals, which 
involve this function, are computed discussing the integrability and conver-
gence of these integrals. Following, we derive formulae that encounter the 
above-mentioned function to get nuclear and generalized moments; the radial 
Fourier transformation is also exposed. Some related applications are then given 
that use such important integrals; in particular, we give the computation in con-
junction with the problem of getting the optical-model potential for heavy-ion 
interactions at intermediate energies. Finally, we conclude with important re-
marks to do with the evolution of the subject. 
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1. Introduction 

Fermi Function (FF) is one of the important functions used in nuclear and solid 
state physics; it is also called the Woods-Saxon function (or potential) and it is 
interpreted as a probability of occupation of energy levels by electrons at a cer-
tain temperature subject to thermo-dynamical equilibrium conditions [1]. 

Note that the motive behind writing this paper is the importance of the sub-
ject of the Fermi function due to the vast number of applications of it that are 
used in physics. However, we will concentrate, here, on the mathematical details 
involved with this function [1] [2]. 

Hence, in the next section, we give the definition of the Fermi function and some 
of its important properties, and its relation with Fermi-Dirac statistics; moreover, 
we discuss the method of its derivation [3] [4]. 
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In Section 3, based on the three-parameter Fermi function, important inte-
grals are presented. The three-parameter FF is written in terms of a power se-
ries using the binomial theorem. The convergence of this power series is dis-
cussed and the possibility of evaluating some integrals term-by-term is pre-
sented [1]. 

The nuclear moments are evaluated in Section 4 where integration by parts is 
used with the Riemann-Zeta function to get a final result. In Section 5, genera-
lized moments are evaluated, followed by the use of radial Fourier transform 
with the three-parameter FF; and in Section 6, we present a few applications which 
include the method of obtaining the optical-model potential using inverse scat-
tering and Fermi energy for metals [5] [6] [7].  

In Section 7, symmetrized FF is presented and studied [8]. Finally, we give a 
concluding discussion in the last section. 

2. Fermi Function  

The Probability Function (PF) which describes the thermo-dynamical behavior 
in quantum mechanics for a group of particles is called the Fermi function and is 
given by  

( ) ( )
1

1 e fE E KT
f E

−
=

+
                      (1) 

where ( )f E  is the PF for the existence of states with energy E occupied by an 
electron at temperature T; K and fE  are Boltzmann constant and Fermi Ener-
gy (FE) respectively [1]. Figure 1 shows FF at T = 0 and T > 0.  

Not that for fE E KT−  , ( )f E  can be written as  

( ) ( )e fE Ef E KT− −
≅                       (2) 

FF is related to Fermi-Dirac distribution which is used to study the behavior 
of electrons in metals, where the average number of these particles in the sth state 
while diffusing is given by  

( )
1

1 e s f
s E E

n
β −

=
+

                       (3) 

fE  is FE and can be calculated from the condition  

( )
1

1 e s f
ss s E E

n N
β −

= =
+

∑ ∑                  (4) 

N is the number of particles in the volume V. 
Equation (4) implies that fE  is a function of temperature [3]. 
Using Equation (1), where 0E ≥ , and considering Maxwell-Boltzmann dis-

tribution which is [1] [3] 

e
e

s

r

E

s E
r

n N
β

β

−

−=
∑

                     (5) 

and if fE E , we obtain 
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Figure 1. Fermi function at T = 0 (a) and T > 0 (b). 

 
( ) ( )exp ff E E Eβ ≅ −                       (6) 

While if fE E= , then ( ) 1
2

f E =  [1]. Note that ( )f E  can be derived on  

the basis of studying elastic scattering of two electrons with the same interpreta-
tion that ( )f E  represents the probability of having the electron at a quantum 
state with energy E [1]. 

3. Three-Parameter FF and Important Integrals  

The three-parameter FF is written as  

( )
( )

( )

2 2
0 1

, , ,
1 exp

wr R
f r R a w

r R a

ρ +
=

+ −  
                 (7) 

where the three parameters are w, R, and r [1]. 
If 0w = , then we get FF with the two parameters r and R; R is taken as the den-

sity radius and a is determined from the surface thickness t given by 4 ln 3t a=  
[1]. 

Now, consider the integral I where  

( )
( )0

d
1 exp

f r r
I

r R a
∞

=
+ −  

∫                     (8) 

where ( )f r  is an analytic function. From Equation (8), we see that  

( )
( )

( )
( )0

d d
1 exp 1 exp

R

R

f r r f r r
I

r R a r R a
∞

= +
+ − + −      

∫ ∫            (9) 

I can, also, be written as  

( )
( )

( ) ( )
( )0

exp dd
1 exp 1 exp

R

R

f r R r a rf r r
I

r R a R r a
∞ −  = +

+ − + −      
∫ ∫         (10) 

Using the binomial theorem, we obtain  

( )( ) ( )
1

01 exp 1 e em mr a mR a
mr R a

− −
=

∞+ − = −   ∑            (11) 

Similarly, we have  

( )( ) ( )
1

01 exp 1 e em mR a mr a
mR r a

− −
=

∞+ − = −   ∑            (12) 

Hence, we obtain  
( )

( )
( ) ( ) ( )1 1

0

e 1 e e
1 exp

R r a
m m R a m r a

mR r a

−
+ −∞ +

=
= −

+ −  
∑          (13) 
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From which and from Equation (10) I is written as  

( ) ( ) ( ) ( ) ( )1 1
0 00

1 e e d e e dm m R a m r amr a mR a
m mR

R
I f r r f r r

∞∞ ∞ + − +−
= =

= − + ∑∫ ∑ ∫  (14) 

The obtained series in Equation (14) does not satisfy the strong and sufficient 
condition for uniform convergence and this implies that we cannot integrate the 
series term-by-term [1]. However, it is possible to get some functions and series 
which satisfy the weak convergence criteria so as term-by-term integration can 
be attained. 

Taking into account the functions ( )mf r , we get a monotonic decreasing se-
ries for r R≠  for the sum ( )0r ms f r∞= ∑  which is bounded on the intervals 
[ )0, R  and ( ),R ∞ ; and since ( )lim 0m mf r→∞ =  and that the terms are conse-
cutively with alternate signs, then the series will converge pointwise and from Le-
besgue theorem for convergence, we have: if { } 1n n

f ∞

=
 is a sequence of functions 

in [ ],L a b  such that ( ) ( )limn nf x f x→∞ =  almost everywhere in [ ],a b  and if 
[ ],g L a b∈  such that ( ) ( )nf x g x≤  almost everywhere ( );a x b n I≤ ≤ ∈ , then 

( ) ( ) ( ) [ ]lim d d ; ,
b b

n na a
f x x f x x f x L a b→∞ = ∈∫ ∫             (15) 

and integration term-by-term is possible; although some difficulty may arise [1] 
[5]. 

In the next section, we will consider the cases  
( ) ( ) ( ), e ,sin ,cosn n rf r r r qr qrα−= ; where n is a positive integer, 0α > , and q is 

the parameter in Fourier transforms. 
The infinite series then in Equation (14) may converge and can be integrated 

on the domains [ ]0, R  and [ ),R ∞  [1]. 

4. Evaluation of Important Integrals  

4.1. Integrals with ( ) nf r r=   

Considering the integral in Equation (14) with ( ) nf r r= , we obtain  

( )

( ) ( ) ( )

1

1 0

1 1
0

1 e e d
1

1 e e d

Rn
k kR a n kr a

n k

k k R a k r an
k R

RI r r
n

r r

+
∞ −
=

∞ + − +
=

∞

= + −
+

+ −

∑ ∫

∑ ∫
               (16) 

Using integration by parts, we get  

( )
( )

( )

( ) ( ) ( )
( )

111

10 1

1 1
1

1 11 1 0

1 ! 1
1 !

1 !e 1 !1
!

m km n mn

n mm k

k nkR a n m n m
k

n mk k m
n

n a RRI
n n m k

n a n a R
k k n m

++ −+

+= =

− + + −
+

+ +=

∞

=

∞

=

∞

∞

− −
= −

+ −

− −
− + −

−

∑ ∑

∑ ∑ ∑
  (17) 

With few mathematical manipulations, Equation (17) can be written as  

( )

( ) ( ) ( )
( )

11

11

1
1

0

1 ! e
1

! 1
1 1 1 2

!

k n n k

n

R an

n nk

m n m
n m

m

n aRI
n k

a R n m
n m

ζ

∞
+ + −+

+=

+ −
−−

=

−
= −

+
+ + − − −  −

∑

∑
         (18) 
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where ( )1mζ +  is Riemann-Zeta function given by  

( ) ( ) ( ) 1
1

1

1
1 2 ; 0

k

k Re
K

ζ ∞
+

−
=

−
= − >∑                 (19) 

Now, to apply these results on the two-parameter Fermi function, we see that  

( )

( ) ( )

( ) ( )( )
( )

,

1
1

0

1
1

10

d

1 exp

!
1 !

1
! 1 e

!

n

n

n n
n

nn x
n

r rD
r R a

R xn a
n n

n a

β β

ν

νν

ν
ν

ν

λ β
ν

β ν
β ν ν

+ −
+

=

−
+ −

+=

∞

∞

≡
+ −  

= +
+ −

Γ + −
+ −

Γ

∫

∑

∑

           (20) 

With x R a=  and  

( ) ( ) ( )
( )0

1 1 1 e
1 d

! 1 e

t

t
t t

ν ν β
ν

νλ β
ν β−

∞
− − + −

 = −
 + 

∫              (21) 

Putting 1β = , we get the result in Equation (18) [6]. 
Note that one can neglect the infinite sum, except for the first few terms. e.g. 

in the case of oxygen atom (O16) and if we take 2n =  with 2.0608k =  fm and 
0.513a = , then neglecting high order terms will lead to an error equal to 0.02% 

only [6]. 
Furthermore, to get the mean square-radius 2r , we see that  

( )
( )

2 2 2 2
2

0 0

1 d
4

1 exp

r r R r r
r

r R a

ω
ρ

∞ +
= π

+ −  
∫                 (22) 

Where we took the three-parameter Fermi function into consideration. Using 
Equation (18), we obtain  

2
0 4 624r I I

R
ωρ  = π +  

                    (23) 

with 

( )
( )

2 2 2

0 0

1 d
4

1 exp

r R r r

r R a

ω
ρ

∞ +
= π

+ −  
∫                  (24) 

Which, also, with the use of Equation (18) becomes 
1

0 2 424 I I
R
ωρ

−
  = π +    

                   (25) 

Hence, from Equation (23) and Equation (25), we get  

4 62
2

2 42

I I
Rr

I I
R

ω

ω

+
=

+
                      (26) 

Going back to Equation (18) and keeping few terms in the infinite sum with 
the knowledge that ( )1 0ζ =  and ( ) 22 6ζ = π , one gets  
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2
2 3

2
1

3 3
RI a R≅ + π                        (27) 

In the same manner, 4I  and 6I  are calculated so as to get  
5

2 3 2 4 4
4

2 7
5 3 15

RI a R Ra≅ + π + π                   (28) 

and  
7

2 5 2 3 4 4 6 6
6

7 31
7 3 21

RI a R R a Ra≅ + π + π + π               (29) 

Therefore, we have  

2 2 2 23 7
5 5

r R a≅ + π +                     (30) 

This equation has its impact on the relation between the mass number A and 
radius R [6]. 

4.2. Integrals with ( ) n rf r r −= e α  

Here, we consider the function ( ) en rf r r α−= , where α  is a parameter such 
that 1 10.04 fm 0.15 fmα− −≤ ≤ , then  

( )0

e d
1 exp

n r

n
r rI

r R a

α−
∞

=
+ −  

∫                    (31) 

On the same lines followed in the last section and with a number of steps of 
integration, we reach the result  

( )
( )

( )

( )
( )
( )

( )

10 0

10 0

10

1 ! 1
e

!

1!e
! 1

1 !e

m kn m
R

n mm k

kn m
R

mm k

k n kR a

n

n

n

k

n R
I

n m k
a

n R
n m k

a

n

k
a

α

α

α

α

α

−
−

+= =

−
−

+

∞

∞

= =

+ −

+

∞

=

− −
=

−  − 
 

−
+

− + 
+ 

 

−
−

 − 
 

∑ ∑

∑ ∑

∑

          (32) 

Introducing the poly gamma function defined as  

( ) ( )
( )

1
0

11 ! ; 0, 1, 2,nn
nkn

k
ψ +

=

∞= − ≠ − −
+

∑  


         (33) 

And from Equation (32), we see that nI  can be obtained, finally, as  

( ) ( )

( )
( ) ( )

1

0

1 1

10

!e 2
! ! 2

1! 1e 2
! ! 2

n m m
R m m m

n m

m mn m
R m m m

mm

n n R a aI a
n m m

an R aa
n m m a

α

α

αψ α ψ

αψ α ψ

− +
− −

=

+
∞

+−
− −

+=

  −  = − −   −    
 −   + − +   −     

∑

∑
 (34) 
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Note that the poly gamma function can be written in terms of Riemann-Zeta 
and gamma functions as  

( ) ( ) ( ) ( )11 1, 1mm n nψ ζ+= − + Γ +                (35) 

Moreover, we observe that the lowest terms in the infinite series in Equation 
(32) are neglected [5]. 

5. Integrals with ( ) ( )f r qr= sin  and ( ) ( )f r qr= cos  

In this section, we consider the radial Fourier transform of the three-parameter 
Fermi function, i.e. we calculate the integral 

( ) ( ) ( )

( ) ( )
( )

0

2 2
0

0

4 sin , , , d

1 sin d4
1 exp

F q qr f r R a w r r
q

wr R qr r r

q r R a

ρ

∞

∞

π
=

+π
=

+ −  

∫

∫
           (36) 

Assume that  

( ) ( )
( )0

cos dd
d 1 exp

qr r r
q

q r R a
η

∞
= −

+ −  
∫               (37) 

then 

( ) ( )
( )0

sin d
1 exp

qr r r
q

r R a
η

∞
=

+ −  
∫                 (38) 

In the same manner, we can calculate d
dq
η  and 

2

2

d
dq
η

; with the obtained re-

sults and from Equation (36), one gets  

( ) ( )
2

2 2

4 d
d

F q q
q R q

ω ηη
 π

= − 
 

                 (39) 

Now, if ( )I q  is given by  

( ) ( )
( )0

cos d
1 exp

qr r
I q

r R a
∞

=
+ −  

∫                  (40) 

Then 

( ) ( ) ( )

( ) ( ) ( ) ( )
00

1 1
0

1 e e cos d

1 e e cos d

R k kR a kr a
k

k k R a k r a
kR

I q qr r

qr r

−
=

∞ −
=

∞

+ +∞

= −

+ −∑
∫ ∑

∫
         (41) 

Integrating by parts and following similar steps as before, we obtain  

( ) ( )
( )

( )
2 2 21

sin 1 e
sinh

k kR a

k

a kR ak
I q

a q a q k

−
∞

=

π −
= −

π +
∑              (42) 

And hence, ( )qη  will be given by  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 3
21 2 2 2

cos coth 1 e
sin 2

sinh sinh

k kR a

k

a kR a q k
q a qR a q

a q a q a q k
η

−

=

∞− π π −
= + π +

π π +
∑  (43) 
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Similarly, we see that if  

( ) ( ) ( )
0

4 sin , , , dF q qr f r R a w r r
q

∞π
= ∫                (44) 

Then, defining ( )I q  as  

( ) ( )
( ){ }20

cos d

1 exp

qr r
I q

r R a

∞
=

+ −  
∫                   (45) 

and carrying out a number of mathematical calculations, we get  

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

2
2 20 12 2

cos sin
sinh1 e

1 e 1 e

R a

k kkR a kR a

k k

aq qR qRaI q a
a q

k a
aq

k a q k a q

−

∞
− −

=

∞

=

 −−
= − π 

π−   

− −
+ +

+ +
∑ ∑

        (46) 

Noting that  

( ) ( )( )
2
04 d

d
F q I q

q q
ρ− π

=                      (47) 

we get [6] 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )
( )

2
20

2
20

1
2
0 21 2 2

sin4
coth

sinh

cos4
coth

sinh

1 1 e
8

k kR a

k

qR
F q a qR a q

q a q

qR
a R a qa a q

q a q

k

k a q

ρ

ρ

ρ
+ −

=

∞

− π
= π − π π  π

π  − π − − π π π

− +
+ π

 + 

∑

      (48) 

6. Few Applications  

In this section, we give few applications using Fermi function as follows.  

6.1. Fermi Function and the Optical-Model Potential  

Using Glauber eiquonal approximation, the elastic scattering S-matrix is written 
as  

( ) ( )expS b i bχ=                            (49) 

where b is the impact parameter and the phase shift χ  is 

( ) ( )
0 2 2

d
rU rkb r

E r b
χ

∞
= −

−
∫                       (50) 

( )U r  is the optical-model potential [7]. ( )bχ  has a real and an imaginary 
parts; the same thing with ( )U r , where ( ) ( ) ( )U r V r iW r= + ; V and W are 
real. This means that Equation (50) can be decomposed into the two equations  

( ) ( )
0 2 2

dR

rV rkb r
E r b

χ
∞

= −
−

∫                      (51) 
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and  

( ) ( )
0 2 2

dI

rW rkb r
E r b

χ
∞

= −
−

∫                    (52) 

These two equations are of the Abel type and the inverse solutions to them are  

( ) ( )
0 2 2

2 1 d d
d

R b bEV r b
k r r r b

χ∞
= ⋅

π −
∫                  (53) 

and 

( ) ( )
0 2 2

2 1 d d
d

I b bEW r b
k r r r b

χ∞
= ⋅

π −
∫                  (54) 

Note that V and W are given in a general form [7]. 
The matrix elements lS  are written as  

( )exp 2l l lS S iS=                       (55) 

where lS  and the phase sifts lS  are given by 
1

0expl
l l

S l
a

−
 −  = +  

  
                    (56) 

with  

( )01 explS
l l a
µ

=
 + − 

                   (57) 

and 

( ) ln 2l li b S iSχ = +                     (58) 

0l  is the angular momentum and a is the amplitude. 
From the last two equations, we obtain  

( )
0

2

1 exp
R

ib
b b

a

µχ =
′− +   

                  (59) 

and  

( ) 0ln 1 expI
b b

b
a

χ
 −  = +  

  
                 (60) 

0 0b R=  and 1
2

kb l= +  [1]. 

Writing ( )R bχ  and ( )I bχ  in series forms as  

( )
2

212 expR nn
N nbb cχ µ

α=

 −
=  

 
∑                 (61) 

and  

( )
2

21 expI nn
N nbb bχ

β=

 −
=  

 
∑                   (62) 

From Equation (61), Equation (62), and Equation (54), we get  
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( )
2

21

4 expnn
NE nrV r c

k
µ
α α=

 −
= π  π  

∑                 (63) 

and  

( )
2

21

2 expn
N

n
E nrW r b n

k
µ
β β=

 − −
= π  π  

∑                (64) 

Also, ( )V r  and ( )W r  can be written in terms of Woods-Saxon functions as  

( ) ( )4 , ,EV r f R r
h α
− π ′ ′= ∆
π

                    (65) 

and  

( ) ( )2 , ,EW r f R r
kπβ
−

= ∆                      (66) 

where 

( )
( )0

0

1, ,
1 exp

f x a x
x x a

=
 + − 

                  (67) 

Which is Fermi function [1] [7]. 
For more details on these calculations, and their use in obtaining optical-model 

potential for heavy-ion collisions at intermediate energies, one can refer to Ref-
erence [7].  

6.2. Fermi Energy for Metals  

Fermi energy is the maximum value of energy attained by the electron. This hap-
pens when the level is fully occupied by electrons. Note that the number of con-
duction electrons per unit volume n is given by  

( )

3 2

3

d 8 2
d e 1fE E Kt

n m E
E h −

π
=

+
                   (68) 

and hence, n can be obtained as [1] 

( )

3 2 3 2
3 2

3 30 0

d 8 2 d 8 2 2d
d 3e 1f

fE E Kt

n m E E mn E E
E h h

∞ ∞

−

π π  = = =  
 +

∫ ∫      (69) 

From which, we get  

( )2 2 3

2

3
8f

hc nE
mc

 =  π 
                        (70) 

7. Symmetrized Fermi Function  

Fermi function is used in many areas in physics; one of these areas is in quan-
tum dots which describes the states occupied by fermions, where fR E=  and 
d K Tβ=  when f is written as  

( ) ( )
1

1 e r R d
f r R d

−
− =   +

                    (71) 

f in Equation (71) is normally used in nuclear physics and it is generally used 
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to represent the density radius distribution or to describe the energy function for 
the fermion and R is the density radius while d is the surface density parameter 
[1]. 

The calculations, used in this case, require our acquaintance with symmetrized 
Fermi function defined as  

( ) ( )
( ) ( )

sinh
,

cosh coshs s

R d r Rr
r d R d d d

ρ ρ  = =  +  
             (72) 

For R d , the symmetrized Fermi function is similar to the usual Fermi 
function [1]. 

8. Concluding Discussion  

The Fermi function proved to be an important tool in calculating some impor-
tant integrals which have their origin in physics; moreover, the Fermi function is 
of valuable use in obtaining optical-model potential by inversion in the case of 
heavy-ion collisions at intermediate energies [7]. 

One of the research articles written on the subject of the symmetrized Fermi 
function stresses the importance of the Fermi function and its usefulness in many 
fields of physics, from statistical to nuclear and astrophysics [8]. The article, also, 
pointed to the advantages of the symmetrized Fermi function, especially in the 
evaluation of some important integrals exactly. 

Fermi function and its derivation from quantum field theory were presented 
and the benefits of this derivation were discussed in relation to the electromag-
netic correction of beta decay [9]. Extra to its use in many fields of physics, the 
Fermi function is also useful in medical applications in the determination of 
myocardial blood flow and myocardial perfusion reserve [10].  

In addition, the Fermi function is present in network structures, where its 
β-parameter can affect promoting information spreading on dynamic social 
networks [11]. 
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