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Abstract

In this paper, we introduce a K Holder p-adic derivative that can be applied
to fractal curves with different Holder exponent K. We will show that the

. . -, . In3
Koch curve satisfies the Holder condition with exponent na and has a
n
4-adic arithmetic-analytic representation. We will prove that the Koch curve

In3
has exact na -Holder 4-adic derivative.
n
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1. Introduction

Fractals are extremely non-smooth sets. It is very difficult to define derivatives
on fractals. Kigami [1] said “Since fractals like the Sierpinski gasket and Koch
curve do not have any structures, to define differential operator like the Lapla-
cian is not possible from the classical viewpoint of analysis. To overcome such
difficulty is a new challenge in mathematics”.

In fact, Kigami made it open that the problem of finding the derivative of a
fractal was a very difficult one. In this work, we will focus on the everywhere
continuous and nowhere differentiable Koch curve in our series of studies of the
“derivative” of fractals. It is known that one characteristic of continuous but not
differentiable functions f (X) is for some «,0<a <1, the Holder equality is

satisfied
| (x+h)—f(x)|<cln". (1)

For example, Hardy proved [2] that for Weierstrass function
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f(x)=3b" cos(a"nx),b >La>b.

n=0
(1) is satisfied for a = :n—b Yang et al. [3] [4] [5] also proved (1) for the Koch
na

curve, the Levy curve, and the Kiesswetter functions respectively with different a
values.

Traditional differentiability can be almost considered as a result of (1) for « =1,
Le. the Lipschitz inequality holds. Naturally, one guesses that the a-Holder deriva-
tive of fractals should be

jim )= (9,
oy

Besicovitch was one of the mathematicians who were interested in this [6].
However, there has not been any example of fractal that possesses such Holder
derivative. Thomson introduced [7] the concept of upper a-Holder derivative,
proposed as

“(f,x)= lim su M
D (f,x) = lim sup (—yf

y<x<z

There are many generalizations of traditional derivatives, but none of which is
helpful for our problem. Based on the dyadic derivatives [8] [9] introduced by

Kahane and Pecguement respectively, Fu [10] proved the Cantor function on the

In2
Cantor set had ternary Holder derivative with o = n3’
(20
lim—-2 2/ 12013 1.
n—e In+1 - In
2n

Even though the Cantor set is a special case with zero Lebesque measure, this
result provides some helpful ideas.

There have not been many activities in the area of differentialbility of fractals.
We have published some results not long ago [5]. Recently, Prodanov obtain dif-
ferentiability of a continuous function in terms of fractals [11] and Scott ana-
lyzed differentiable Iterated Function Systems [12] with computer technology
and Arif [13] analyzed a fractal-fractional derivative of a stress fluid through a
porous medium. In this paper, we introduce an a-Holder p-adic derivative that

can be applied to fractal curves with different Holder exponent a. As for the
. . . . . In3
Koch curve, it should satisfy the Holder condition with exponent na and has
n
a 4-adic arithmetic-analytic representation. In fact, in this article, we can prove

that the Koch curve has an exact order of :n_’j -Holder 4-adic derivative. The
n

contents of this paper are organized as follows: in Section 2, the a-Holder p-adic
derivatives of fractals are defined; in Section 3, analytic properties of the Koch

curve are analyzed and, in Section 4, the a-Hoélder of the Koch curve are proven.
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2. a-Holder p-Adic Derivatives
In the p-adic system, the expansion of te[0,1] is

t=i+t—22+---+%+~-- t,€{0,1,-, p-1},

where pis a positive integer and t, is the n-th digit of real number ¢in the de-

cimal system. All the p-adic rational numbers

Lm:£+t_22+...+t_mm | :Olll...’ pm _:Lm :1’2,...
p P p p
make up of a countable set D, which is a subset of [0,1] . So, a sequence of nested

intervals U, DU, o---oU D--- exists in the form of

U :[I_n In+1j
ot p"
such that t= ﬂ:;lUn .
Definition 2.1 Let f (X) be a function defined on [0,1] , te [0,1]\ D and

L

te ﬂf_l(p—”n, ";1] , if
m [Iml B In ja
pn

p
exists, then f (X) is called a-Holder p-adic differentiable at point # or simply
a—p differentiable, and the derivative is denoted by f,_ (t), called Hélder-adic

derivative.

We can further define the upper and lower Hélder adic derivative as

IS
f (1) =1im i LA
{Iml_ln]

pn
e
1y ()= lim— PP
- [Inﬂ_an

pn

It is easy to see that the a-Holder p-adic derivatives have some simple proper-

ties:
nIf f (X) is a-Holder p-adic differentiable at , A4 is a real constant, then

(21 (1), =210, (1),

2)If f(x) and g(x) are a—p differentiable at £ then

(f(O)+9(1),, = fip )+, (1)
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3)If f(x) is B—p—d differentiableat f, 0<a < <1, then
f,_,(t)=0.

If f(x) is a—p—d differentiable at ¢, f;_p(t)io,then
fl;_p(t):ioo.

In particular, if f(x) is differentiable at 4 then f(x) is a—p differenti-
able at £ and

L (0=0 1, (1)=10)

If f(x) is p—p differentiable at rand f, (t)=0, then

f'(t) = %0
However, if f(x) is 1-p differentiable at # f'(t) does not necessarily
exist.
Definition 2.2 Let t= I— be a p-adic rational number with m=12,---,
m
1=0,1---,p" —1, if

REEEE
O

exists, then the limit is called the right (resp. leff) a-Hélder p-adic derivative of
f(X) attand denote it by f(};p+ (t) (resp. f;ip, (t)).
The left and right a-Holder p-adic derivatives of f(x) at talso have the sim-

ilar properties as the a-Holder p-adic derivatives of f (X) at t.

3. The Analytic Properties of the Koch Curve

It is well known that the Koch curve is a typical example of fractal curves. Dis-
cussing its analytic properties is obviously important. Von Koch initially con-
structed the curve with a recursive way of using pure geometric descriptions [14].
Recently, works of analytic representation of the curve have made some progresses.
An arithmetic-analytic representation based on 4-adic expansion is obtained [3],
which will be used in our investigation in this paper.

Due to the geometric properties of Koch curve [15], the 4-adic expansion

t=&+c—§
4 4

Cn

+...+4—n+...

is appropriate, where C, (n =1, 2,--~) takes the value of 0, 1, 2 or 3. (6) can also
be represented by the 2-adic form

!

a, a
2T T e g

where a,(n=12,--) takesvaluesOor1.Both c, and a, satisfy the relations
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ifa,, ,=a,, =0
if a,, , =0,a,, =1
ifa, ,=la, =0
ifa, , =a, =1

Cn = 2aZn—l + a2n =

w N P o

Lemma 3.1 [4] Suppose the parametric equation of the Koch curve with ar-
gument te[0,1] is

{X=¢O)

y=w(t)

Then, the arithmetic-analytic representation of Koch curve from the Iterated

Function System (IFS) [16] is expressed as

> a T

p(t)=Y —*—cosh, —, (2)
) 6
(V3

w(t)= & _in bk%, (3)

S

where b, =a/-a, +---+aj , —ay +--~+(—l)k agfl—(—l)k, a, =1-2a,.

It is worthy noticing that the arguments of sinusoidal and cosine function are
standard symbolic sequences determined by the expansion coefficient a,(0,1)
or a (—+) of binary system. The sharp-angled vertices without derivative in
almost everywhere can be completely described by the symbolic sequences. So
instead of being directly determined by the value of £ (3.1), (3.2) are a special
type of parametric functions defined by the binary system. The following propo-
sitions present some of their properties that will be used for later discussions.

Lemma 3.2 [4] The Koch curve (go(t),t//(t)) satisfies the Holder condition

In3

with exponent o =—, ie.
In4

[o(t) o) <clt ¢, 4)
lw (t) =y (1) <clt'~t|", c=const. (5)
Lemma 3.3 The arithmetic-analytic representation of the Koch curve (2), (3)

I
is uniquely determined at a 4-adic rational point t= Vi 1=012,---,4" -1,

m=0,12,---.
Proof. 1) If

2m72a_k 0 1

t=>) —+

_+_’
= 2k 22m—1 2m
Le. a,,,=0,a,, =1, then from (2),

a, COS(a.l'—aé et ay , —ay +...+(—]_)k a_éfl—(—]_k ))% )

¢’(t) = a (\/g)k
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where 3, =1-2a, . So

2m Za 1
t) = .S
¢() ¢[Z; 2k szj
2’“Zak 1 0 0 +j

—
—~ 2k 22m -1 22m 22m+1 22m+2

cos(a1 a, +~--+(—1)k a , —(—1)k )%

kz

(va)

+icos( —a) -+, ,—a) )E
3m al 2 2m-3 2m-2 6

If t takes the other form:

m2a a L, -1 & 1
t:Z_k+ 2m—1+ 2m +Z_ (6)

k 2m-1 2m k?
20 2 2 k=2m+1 2

! ’
where a,,, =a,,-1=0, ay,,=a,,,=""=1, a,, =1, a,-1=1,

a£m+1 = a£m+2 = =-1 > then
! 0 0 |
t)= . S —
(ﬂ( ) (0( kZ:; 2k 22m—l 22m k:;ﬂ ZkJ

- cos(al’ -a, +--~+(—1)k a, —(—1)k )%

1 2k-1\ T
— cos(a{ —ay+-+ay, s —ay , —(-1) )E

2% _,

1 ’ ' 2k \ T
+?cos(a1—a2+~--+(—l) g, —(-1) )E

cos(a1 ag+--+(-1) a,;fl—(—l)k)%

i
« ([)
1 , T

+iz ————Cos(a; —a, +-+a5,_ 5 —ay , +1)E

3m — (\/g)Zk—l

T

’ ’ ’ ’
—-C0S(a) —ay ++-+ay, 3 — &, , _Z)E :

1

(3)

+

And from
icos(al'—a’+~--+a’ -a, +1)E
\/g 2 2m-3 2m-2 6
+lcos(a1’ —a)+etay, -, —2)E
3 6
2 ’ ’ ! ’ s
=—C0S(& — 8+ + 8 3~ Ay )=
3 6
we have:
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2m— 0

i S
oS5 2 7)
2 _

= Z j’k)k cos(a{—a; +-~-+(—1)k a;_l—(—l)k)g

kfl( 3
1 > 1 b8
+3m (3;3Jcos(a1 )+, 5 —ay, 2)g
2m-2 ak 1
””( 27 2"“)
Fractal
2) If
2m-2
-
- é 2k 22m—1’

Le. a,, ,=1a,, =0, then from (2),

2m-2 a l
¢[ Z Zi 22m1j

k=1

2m-2
k=1

ak k COS(a{ -a +"'+(_1)k ay _(_1)k )E

(3) °

1 ’ ’ ’ ’
+Wcos(a1 —ay et Ay, 5 — A, +1)€.

If ttakes the form of

2m-2 0
< i Bm 1_1

1 .
t: Z "rW'i‘zz—k, |f a2m=0,

k=1 2k k=2m
where a,,,=0, a,,=a,,,="=1, a,,,-1=1, a,, =a,,,; =--=-1, then
2m—2ak ) 1
_+ JR—
"’(; 2 kzmzkj
2z g, k K\ T
= cos(a —a, +---+(-1) a,, —(-1) )=
kz_l(ﬁk (8 —a++ (1) (1) )¢
1 251 '
+W(3Z;)3kjcos(<911 a + + gy — gy, +1)
mz g, k K\ T
= cos(a —a, +---+(-1) a,, —(-1) )=
2 5] (e e+ (1) ot~ (1))
1
+ cos(al'—a;+~~+a§m73—a;m72+1)g

:¢[2mz—:2:_t+%j

k=1
3) If
2m-2 a 1 1
t= Y S ——
kz:j:[ 2k 22m—l 22m
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Le. @,,, =4a,, =1, then from (2),

?a 1 1
K=
¢( g 2k 22m—1 22m
2m-2 T

&yl (T

+%cos(a{—a§ +oay s —ay , +1) 5
(+3)

1 T
+3—mcos(a1’ —ay + Ay, 5 — 8y, _Z)E'

If ¢ takes the form of (6), where a,,, =1, a,,=0, a,,,; =a,,,, =--=1,
aém—l = _1’ aém = 1’ aém+1 = a£m+2 =--=-1 > then
2m-2 0
a, 1 1
[ — =+ —
[ é 2k 22m 1 k:;+1 2k ]
2m-2

= 2, (jék)k COS(a{ —a, +...+(_1)k a _(_1)k )_

1
+—————C0S(a; —@a +--+ay, 5 — 8, +1) 5

o

1 > 1 !’ !’ ’ ’ Tc
tom 2k—1 Cos(ai_az"'"'*'asza_aszz _1)E

75 )

1 ’ ’ ’ ’ s
+———-c0s(a; —a, +--+ &y, 5 — 8, _4)6

(+3)

2m-2 ak k kT
=y —* _cos(a —a, +---+(-1) a_, —(-1) |=
2 Lyl ()
+;COS(31’—a£+"'+a£m73_a£m—2+l)%

(\/§)2m—1

+3im005(al’—aé +”'+a£m—3 _aém—Z _Z)E
2m—2a 1 1

Similarly, it can be proved that function y (t) is also uniquely determined at
I
a 4-adic rational point t= il

Next, by using (2), (3) the values of ¢(t) and w(t) at certain points can be
calculated. In order to discuss them, we will proceed with various cases of t € [0,1] .
Partition the interval [0,1] into 4 congruent segments and then partition each
sub-segments similarly. After repeating these steps for m times, a family of sub-

intervals is obtained:

DOI: 10.4236/jamp.2023.111008

108 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.111008

G.J.Yangetal.

a a a a a a 1
[a1+ 2+...+ﬂ+ 2m ﬁ+_2+...+ﬂ+ 2m+ j

? ? 92m1 " gam 'y 52 92m-1 " 92m ' o2m
a a a I
Let i+—§+---+ ol —2n -, where 1=01-,2""-1, m=01:-,
2 2 m-1 22m 22m
and denote the interval
I a'2m+1 a2m+25 I a2m+1 a2m+25 1
22m 22m+1 22m+23 ! 22m 22m+1 22m+25 22m+23+1

as
Um,l (ame Q211 omios a2m+25)'

where 8,1, 8,0, " Bomizs-11 Bomizs € {071} . Then

Un, (a2m+1v a2m+2) oU,, (a2m+11 rmi2 8omi3,Bomia ) 2

> Um,l (a2m+1' Qomizr " Bomyasots a2m+25) 2

So, any point te [O,l]\ D is the intersection of one of the above nest of in-
tervals

©

ﬂum,l (a2m+1' a'2m+2 [ a2m+25—1' a2m+25 )

s=1

All points te [0,1] fall into three groups:
I
1) t=2ﬁ,(| =01,2,-+,2"" ~1,m=1,2,-) is a 4-adic rational point. Alto-
gether they form the countable set D. Its 4-adic decimal expansion contains fi-

nite terms (or an infinite cyclic decimal).

2) t= ﬂszlum,l (a2m+1' Aome1r Qomesr Qomezs " Bomaasas a2m+25—1) . That is to say
the 4-adic decimal expansion of ¢is infinite acylic, but from the 2m+1 decimal
place, @y, 1 =8y for $=1,2,---.

3) t= nUm,I (a2m+1’a2m+2'a2m+3’a2m+4""'a2m+2n—1'a2m+2n) where

n=1

Ay % 0,8,,,,, for N=12,---.
Using the arithmetic-analytic representation of the Koch curve of 4-adic ra-

tional points (see Lemma 3.3), we can prove the following two lemmas:

2n 9y a

Lemma 3.4. If t = k:12_k+27’a =0,1 then

a n a T
t)=3 -2 cosh, X+ 2 cos(b,, , ~1)
o(t) ;(ﬁ)k cosh, 6+3” cos (b, )6

n

2
a . T a . T
l//(t):k1W8mbkg+3_“sm(b2””_l)g'
2Zna, U a a a
In particular, if t=7 —+ izl 2l | —, where n>m,
=) ) 2 m+ 2 m+ 2 n

then
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a T
2m+2k-1
( 3 2m+2k—1 COSb2m+1_

[op]

a
+ 2m+2k-1 cos b

(\/§)2m+2k 2m+2 g

2m a
k

W(t):é(\/g)k

Domiok-1 o T
( )2m+2k—l sin b2m+lg

sinb,

+Lsin
(\/5)2m+2k

2m ak

k:12_k_ o2m2n then

Lemma 3.5. If t= Z

o(t)=> —*—cos(b, )%+3mi+n005(bzm+1 —1+C)g'

an 3 . T 1 . T
w(t) =D —*sin(b )= +——=sin(b,,, -1+c)—,
kzl(\@)k 6 3 6
where ¢=-2 when a,,=1, c=4 when a,, =0.
In3 .. . ..
4. The n -Holder 4-Adic Derivatives of the Koch Curve
n

The Koch curve with 4-adic decimal expansion satisfies the Holder condition (4),
In3

(5), so it is reasonable to consider dyadic derivatives of « =n and p=4,
n

which are defined in Section 3. Now we shall prove that for the Koch curve the

In3 __. . o . s . .
exact Ina -Holder 4-adic derivative exists which is the main result of this paper.

Theorem 4.11f t<[0,1]\D and

a, a a = (a, . a,.
t=2eZilme 3 (St 2
is point type 2), then
go;,4(t)=cos(b2m+1—l)g,
' - T
V/a—4(t):5m(b2m+l_l)gr

where b, ., =a —a,+---+ay ,—a, +-—a,, +1.

2m+1
Proof. By (4.1), it can be seen that ¢is contained in the following sequence of

intervals

I - [ By | Ay I - By | 8 1"
U, =97+ Z 21 T ok o T Z a1 T o | T om
2 keme\ 2 2 2 Ko\ 2 2 27 ) i
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and U, oU, o---oU, o+ Therefore t= ﬂ:len . According to Lemma 3.4,

I nofa,, a 1 | “ofa,, a
o[ g 5 (Bt oo 5 (22032 )

_ 1 ' ' ' ' T
_3—ncos(a1 —a)+-tay —aZm)E.

So, by Definition 2.1,

o, 4 (t)=cos(a]—a, +---+ay, , —a, )g
Similarly
v a(t)=sin(a—aj +-vag,  —ap, )¢
Theorem 4.2 If
t= 2!"‘ +k%1(:§ti +:%t) Ay, # 8y, kK=m+1lm+2,.-

is point type 3), then

o, (1) = cos(i(agkl —ay, )%)

k=1

Vi) =sin| (s~ 5

k=1

Proof. By (4.1) tis contained in the following nested intervals

I LAy 8y | LAy 8y 1

where N=m+1m+2,---, and

Vm+l > Vm+2 > Vm+3 D

Therefore

A

n=m+1

According to Lemma 4,

I - [ ok, A 1 I - [ Pk B
(P(ZWJFkZM(zzkﬁzT +22n 4 2W+k:zm+1 22ki+27
1 T

By Definition 2.1,
b

- (t) = COSZ(aék—l —ay )g
k=1

Similarly
s

Yes (t) =sin Z(aék—l —ay )E
k=1

The conclusions of Theorem 4.1 and Theorem 4.2 can be written as: for
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e[O,l]\ D, then

n o0
P4 ()= CO{Z(anl —ay )=+ > (8 —ay

T
k=1 6 k=m+1

n}
, &, RN - o
Vaa (t)zsm|:2(a2k1_a2k)_+ Z a2k 1 a2k _}
k=1 6 k=m+1 6

@

Note that when ¢is the point of type 2), Zk (g —ay)=0
We have shown that the Koch curve (x=g(t),y(t)) has :n—j -Holder
n

4-adic derivatives for every te [0,1]\ D. Next, we consider the case of a 4-adic
rational point on D.

Theorem 4.3 If te D is 4-adic rational point on [0,1]

t=— 1=01---,2""-1,m=12,--

m

Then, there exists o = :n_’j -Holder 4-adic left and right derivatives. The right
n
derivatives are
, I oo N
Pos ( 2m j =005 > (A~ )
2 Pt 6

Fractal

’ I H z ’ ’
Vo [22”‘ J =SIn 2(321«1 — Ay )g
The left derivatives are

’ I 2 r ’

9 . [27} = cosLE(aZkl —ay )+ c}
=1

’ I H . ’ !

Vs (22m j =sin {Z(azm —ay )+ C}

k=1

ola o3

where ¢=-2 when a,,=1, c=4 when a,, =0.
Proof. By Lemma 4,

| 1 | 1 oL
(D(ZWjLF)_(D(ZZ"‘j —-cos(by,,, — )E

Then, by Definition 2.2,

’

| 1 |
¢(2m+ ZnJ_w(ij
¢74+(t)=lim 2 2 2 =coszn:(a;k1 ’)TE

a N0 1 |n4I =i -1 E
z) "

Similarly

v . (t)=sin> (a5, —ay)

According to Lemma 5,
| I 1 1 T
qj(zﬁj_(o(zzm 22") T cos(b2m+l—1+c)g,
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where ¢=-2 when a,,=1, c=4 when a,, =0. So, by Definition 2.2,

| | 1
¢’(2mj—¢’£2m‘2n) n
¢, (t)=lim 2 2. 2 :cos[Z(a;kl—a;k)Jrc}g.

In3
n—oo k=1

1 \in4
22[1

v =5 (-t o

k=1

Similarly

Theorems 4.1 - 4.3 then have established the :n—j -Holder 4-adic derivatives
n

of the Koch curve on [0, 1]. As He pointed out recently [17] that fractal deriva-
tive/calculus has very important applications in many applied fields including
mathematics, engineering and fluid dynamics, and researchers have tried to de-
fine various derivatives of fractals. Our results will not only allow us to further
investigate the differentiability of other fractals [4] [18], but also provide a new

type of derivative for researchers in other fields to conduct their investigations.
. . . . In3 . .
Some observations: It is obvious that the right and left na -Holder 4-adic
n

derivatives of the Koch curve at the 4-adic rational point are not equal, as these
points should be at the sharp-angled vertices. Furthermore, 1) There exists un-

equal left and right :n_j -Holder 4-adic derivatives for the Koch curve at coun-
n

table points set (ie. the 4-adic rational points) on [0,1] . This indicates that the

knot point quality of a non-differentiable function seems not to be eliminated no

T o . In3
matter how the derivative is defined. 2) For 4-adic irrational points, the —

In4
-Holder 4-adic derivatives are determined at the second type of points,

which are tan [%] and tan (igj . 3) For the points of the third type, although
In3 __. . o . On

the set of the n—Holder 4-adic derivatives also contains tan ? and
n

tan (igj , it is not definite. This reflects the oscillatory quality of non-differentiable

function, Ze. it is also the case of the knot points without one-sided derivatives
[19]. Of course, in this case, it might be better to consider the upper a-Hoélder
derivative.
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