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Abstract 
In this paper, we introduce a K Hölder p-adic derivative that can be applied 
to fractal curves with different Hölder exponent K. We will show that the 

Koch curve satisfies the Hölder condition with exponent ln 3
ln 4

 and has a 

4-adic arithmetic-analytic representation. We will prove that the Koch curve 

has exact ln 3
ln 4

-Hölder 4-adic derivative. 
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1. Introduction 

Fractals are extremely non-smooth sets. It is very difficult to define derivatives 
on fractals. Kigami [1] said “Since fractals like the Sierpinski gasket and Koch 
curve do not have any structures, to define differential operator like the Lapla-
cian is not possible from the classical viewpoint of analysis. To overcome such 
difficulty is a new challenge in mathematics”. 

In fact, Kigami made it open that the problem of finding the derivative of a 
fractal was a very difficult one. In this work, we will focus on the everywhere 
continuous and nowhere differentiable Koch curve in our series of studies of the 
“derivative” of fractals. It is known that one characteristic of continuous but not 
differentiable functions ( )f x  is for some ,0 1α α< < , the Hölder equality is 
satisfied  

( ) ( ) .f x h f x c h α+ − <                      (1) 

For example, Hardy proved [2] that for Weierstrass function  
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( ) ( )
0

cos , 1, .n n

n
f x b x b a bα

∞

=

>π= ≥∑  

(1) is satisfied for 
ln
ln

b
a

α = . Yang et al. [3] [4] [5] also proved (1) for the Koch 

curve, the Levy curve, and the Kiesswetter functions respectively with different α 
values. 

Traditional differentiability can be almost considered as a result of (1) for 1α = , 
i.e. the Lipschitz inequality holds. Naturally, one guesses that the α-Hölder deriva-
tive of fractals should be  

( ) ( )
lim .
y x

f y f x

y x α→

−

−
 

Besicovitch was one of the mathematicians who were interested in this [6]. 
However, there has not been any example of fractal that possesses such Hölder 
derivative. Thomson introduced [7] the concept of upper α-Hölder derivative, 
proposed as  

( ) ( ) ( )
( ),

, lim sup .
y z x
y x z

f z f y
D f x

z y
α

α→
< <

−
=

−
 

There are many generalizations of traditional derivatives, but none of which is 
helpful for our problem. Based on the dyadic derivatives [8] [9] introduced by 
Kahane and Pecguement respectively, Fu [10] proved the Cantor function on the  

Cantor set had ternary Hölder derivative with 
ln 2
ln 3

α = :  

1

1

2 2lim , 0,1, ,3 1.

2

n n
n n

n

n n n
n

l lf f
l

l l

+

→∞ +

   −   
    = −

−
  

Even though the Cantor set is a special case with zero Lebesque measure, this 
result provides some helpful ideas. 

There have not been many activities in the area of differentialbility of fractals. 
We have published some results not long ago [5]. Recently, Prodanov obtain dif-
ferentiability of a continuous function in terms of fractals [11] and Scott ana-
lyzed differentiable Iterated Function Systems [12] with computer technology 
and Arif [13] analyzed a fractal-fractional derivative of a stress fluid through a 
porous medium. In this paper, we introduce an α-Hölder p-adic derivative that 
can be applied to fractal curves with different Hölder exponent α. As for the  

Koch curve, it should satisfy the Hölder condition with exponent ln 3
ln 4

 and has 

a 4-adic arithmetic-analytic representation. In fact, in this article, we can prove 

that the Koch curve has an exact order of ln 3
ln 4

-Hölder 4-adic derivative. The  

contents of this paper are organized as follows: in Section 2, the α-Hölder p-adic 
derivatives of fractals are defined; in Section 3, analytic properties of the Koch 
curve are analyzed and, in Section 4, the α-Hölder of the Koch curve are proven. 
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2. α-Hölder p-Adic Derivatives 

In the p-adic system, the expansion of [ ]0,1t∈  is  

{ }1 2
2 0,1, , 1 ,n

nn

tt tt t p
p p p

= + + + + ∈ −    

where p is a positive integer and nt  is the n-th digit of real number t in the de-
cimal system. All the p-adic rational numbers  

1 2
2 0,1, , 1, 1, 2,mm

m m

tt tl l p m
pp p p

= + + + = − =    

make up of a countable set D, which is a subset of [ ]0,1 . So, a sequence of nested 
intervals 1 2 nU U U⊃ ⊃ ⊃ ⊃   exists in the form of  

1,n n
n n n

l l
U

p p
+ 

=  
 

 

such that 1 nn
t U∞

=
=


. 
Definition 2.1 Let ( )f x  be a function defined on [ ]0,1 , [ ]0,1 \t D∈  and 

1
1

,n n
n nn

l l
t

p p
∞ +
=

 
∈  

 


, if 

1

1

lim

n n
n n

n
n n

n

l lf f
p p

l l
p

α

+

→∞
+

   
−   

   
 −
 
 

 

exists, then ( )f x  is called α-Hölder p-adic differentiable at point t or simply 
pα −  differentiable, and the derivative is denoted by ( )pf tα −′ , called Hölder-adic 

derivative.  
We can further define the upper and lower Hölder adic derivative as  

( )

( )

1

1

1

1

lim ,

lim .

n n
n n

p n
n n

n

n n
n n

p n
n n

n

l lf f
p p

f t
l l

p

l lf f
p p

f t
l l

p

α α

α α

+

+
− →∞

+

+

−
− →∞

+

   
−   

   ′ =
 −
 
 
   

−   
   ′ =
 −
 
 

 

It is easy to see that the α-Hölder p-adic derivatives have some simple proper-
ties: 

1) If ( )f x  is α-Hölder p-adic differentiable at t, λ  is a real constant, then  

( )( ) ( ).pp
f t f tαα

λ λ −−
′ ′=  

2) If ( )f x  and ( )g x  are pα −  differentiable at t, then  

( ) ( )( ) ( ) ( ).p pp
f t g t f t g tα αα − −−

′ ′ ′+ = +  
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3) If ( )f x  is p dβ − −  differentiable at t, 0 1α β< < < , then  

( ) 0.pf tα −′ =  

If ( )f x  is p dα − −  differentiable at t, ( ) 0pf tα −′ ≠ , then  

( ) .pf tβ −′ = ±∞  

In particular, if ( )f x  is differentiable at t, then ( )f x  is pα −  differenti-
able at t, and  

( ) ( ) ( )1= 0, .p pf t f t f tα − −′ ′ ′=  

If ( )f x  is pβ −  differentiable at t and ( ) 0pf tβ −′ ≠ , then  

( ) .f t′ = ±∞  

However, if ( )f x  is 1 p−  differentiable at t, ( )f t′  does not necessarily 
exist. 

Definition 2.2 Let 
m

lt
p

=  be a p-adic rational number with 1,2,m =  , 

0,1, , 1ml p= − , if  

1 1

lim lim
m n m m m n

n n

n n

l l l lf f f f
p p p p p p

or
l l
p p

α α→∞ →∞

        
 + − − −       
        
 

    
        

 

exists, then the limit is called the right (resp. left) α-Hölder p-adic derivative of 
( )f x  at t and denote it by ( )p

f t
α +−
′  (resp. ( )p

f t
α −−
′ ).  

The left and right α-Hölder p-adic derivatives of ( )f x  at t also have the sim-
ilar properties as the α-Hölder p-adic derivatives of ( )f x  at t. 

3. The Analytic Properties of the Koch Curve 

It is well known that the Koch curve is a typical example of fractal curves. Dis-
cussing its analytic properties is obviously important. Von Koch initially con-
structed the curve with a recursive way of using pure geometric descriptions [14]. 
Recently, works of analytic representation of the curve have made some progresses. 
An arithmetic-analytic representation based on 4-adic expansion is obtained [3], 
which will be used in our investigation in this paper. 

Due to the geometric properties of Koch curve [15], the 4-adic expansion  

1 2
24 4 4

n
n

cc ct = + + + +   

is appropriate, where ( )1,2,nc n =   takes the value of 0, 1, 2 or 3. (6) can also 
be represented by the 2-adic form  

2 1 21 2
2 2 1 2 ,

2 2 2 2
n n
n n

a aa at −
−= + + + + +   

where ( )1,2,na n =   takes values 0 or 1. Both nc  and na  satisfy the relations  
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2 1 2

2 1 2
2 1 2

2 1 2

2 1 2

0 if 0
1 if 0, 1

2 .
2 if 1, 0
3 if 1

n n

n n
n n n

n n

n n

a a
a a

c a a
a a
a a

−

−
−

−

−

= =
 = == + =  = =
 = =

 

Lemma 3.1 [4] Suppose the parametric equation of the Koch curve with ar-
gument [ ]0,1t∈  is  

( )
( )

.
x t
y t

ϕ
ψ

 =
 =

 

Then, the arithmetic-analytic representation of Koch curve from the Iterated 
Function System (IFS) [16] is expressed as 

( )
( )1

cos ,
63

k
kk

k

a
t bϕ

∞

=

π
= ∑                      (2) 

( )
( )1

sin ,
63

k
kk

k

a
t bψ

∞

=

π
= ∑                      (3) 

where ( ) ( )1 2 2 1 2 11 1k k
k i i kb a a a a a− −′ ′ ′ ′ ′= − + + − + + − − −  , 1 2k ka a′ = − .  

It is worthy noticing that the arguments of sinusoidal and cosine function are 
standard symbolic sequences determined by the expansion coefficient ( )0,1na  
or ( ),ka′ − +  of binary system. The sharp-angled vertices without derivative in 
almost everywhere can be completely described by the symbolic sequences. So 
instead of being directly determined by the value of t, (3.1), (3.2) are a special 
type of parametric functions defined by the binary system. The following propo-
sitions present some of their properties that will be used for later discussions. 

Lemma 3.2 [4] The Koch curve ( ) ( )( ),t tϕ ψ  satisfies the Hölder condition 

with exponent ln 3
ln 4

α = , i.e. 

( ) ( ) ,t t c t t αϕ ϕ′ ′− ≤ −                     (4) 

( ) ( ) , .t t c t t c constαψ ψ′ ′− ≤ − =                (5) 

Lemma 3.3 The arithmetic-analytic representation of the Koch curve (2), (3) 

is uniquely determined at a 4-adic rational point 
4m

lt = , 0,1, 2, , 4 1ml = − , 

0,1,2,m =  . 
Proof. 1) If  

2 2

2 1
1

0 1 ,
2 2 2

m
k
k m m

k

a
t

−

−
=

= + +∑  

i.e. 2 1 20, 1m ma a− = = , then from (2),  

( )
( )

( ) ( )( )1 2 2 1 2 1
1

cos 1 1 ,
63

k kk
i i kk

k

a
t a a a a aϕ

∞

− −
=


′ ′ ′ ′ ′= −

π
+ + − + + − − − 




∑    
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where 1 2k ka a′ = − . So  

( )

( )
( ) ( )( )

( )

2 2

2
1

2 2

2 1 2 2 1 2 2
1

2 2

1 2 1
1

1 2 2 3 2 2

1
2 2

0 1 0 0
2 2 2 2 2

cos 1 1
63

1 cos .
63

m
k
k m

k

m
k
k m m m m

k

m k kk
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k

m mm

a
t

a

a
a a a

a a a a

ϕ ϕ

ϕ

−

=

−

− + +
=

−

−
=

− −

 = + 
 
 = + + + + + 
 

′ ′ ′= − + + − − −

′ ′ ′ ′

π

π
+ − + + −

∑

∑

∑







 

If t  takes the other form:  
2 2

2 1 2
2 1 2

1 2 1

1 1 ,
2 2 2 2

m
k m m
k m m k

k k m

a a a
t

− ∞
−
−

= = +

−
= + + +∑ ∑                 (6) 

where 2 1 2 1 0m ma a− = − = , 2 1 2 2 1m ma a+ += = = , 2 1 1ma −′ = , 2 1 1ma′ − = ,  

2 1 2 2 1m ma a+ +′ ′= = = − , then  

( )

( )
( ) ( )( )

( )
( )( )

( )
( ) ( )( )

2 2

2 1 2
1 2 1

2 2

1 2 1
1

2 1
1 2 2 3 2 22 1

1

2 2
1 2 2 12

0 0 1
2 2 2 2

cos 1 1
63

1 1 cos 1
63 3

1 cos 1 1
63

m
k
k m m k

k k m

m k kk
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k
m mm k

k
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a
t

a
a a a

a a a a

a a a
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∞
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− −−
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 = + + + 
 

′ ′ ′= − + + − − −


 ′ ′ ′ ′+ − + + − − −

π

π



′ ′ ′+ − + + −

π
− − 



∑ ∑

∑

∑
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( )

( )
( )

2 2

1 2 1
1

1 2 2 3 2 22 1
1

1 2 2 3 2 22

cos 1 1
63

1 1 cos 1
63 3

1 cos 2 .
63

m k kk
kk

k

m mm k
k

m mk

a
a a a

a a a a

a a a a

−

−
=

∞

− −−
=

− −

′ ′ ′= − + + − − −


 ′ ′ ′ ′+ − + + − +



′ ′ ′ ′+ −

π

π

π
+ + − − 



∑

∑







 

And from  

( )

( )

( )

1 2 2 3 2 2

1 2 2 3 2 2

1 2 2 3 2 2

1 cos 1
63

1 cos 2
3 6
2 cos ,
3 6

m m
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a a a a
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− −
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we have:  
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Similarly, it can be proved that function ( )tψ  is also uniquely determined at 

a 4-adic rational point 
4m

lt = . 

Next, by using (2), (3) the values of ( )tϕ  and ( )tψ  at certain points can be 
calculated. In order to discuss them, we will proceed with various cases of [ ]0,1t∈ . 
Partition the interval [ ]0,1  into 4 congruent segments and then partition each 
sub-segments similarly. After repeating these steps for m times, a family of sub-
intervals is obtained:  
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2 1 2 2 1 21 2 1 2
2 2 1 2 2 2 1 2 2

1, .
2 22 2 2 2 2 2 2

m m m m
m m m m m

a a a aa a a a− −
− −

 + + + + + + + + + 
 

   

Let 2 1 21 2
2 2 1 2 22 2 2 2 2

m m
m m m

a aa a l−
−+ + + + = , where 20,1, , 2 1ml = − , 0,1,m =  , 

and denote the interval  

2 1 2 2 2 1 2 2
2 2 1 2 2 2 2 1 2 2 2 2 1

1,
2 2 2 2 2 2 2

m m s m m s
m m m s m m m s m s

a a a al l+ + + +
+ + + + + +

 + + + + + + + 
 

   

as  

( ), 2 1 2 2 2 2 1 2 2, , , , ,m l m m m s m sU a a a a+ + + − +  

where { }2 1 2 2 2 2 1 2 2, , , , 0,1m m m s m sa a a a+ + + − + ∈ . Then  

( ) ( )
( )

, 2 1 2 2 , 2 1 2 2 2 3, 2 4

, 2 1 2 2 2 2 1 2 2

, , ,

, , , ,
m l m m m l m m m m

m l m m m s m s

U a a U a a a a

U a a a a
+ + + + + +

+ + + − +

⊃ ⊃

⊃ ⊃



 

 

So, any point [ ]0,1 \t D∈  is the intersection of one of the above nest of in-
tervals  

( ), 2 1 2 2 2 2 1 2 2
1

, , , , .m l m m m s m s
s

U a a a a
∞

+ + + − +
=





 

All points [ ]0,1t∈  fall into three groups: 

1) ( )2
2 , 0,1, 2, , 2 1, 1,2,

2
m

m

lt l m= = − =   is a 4-adic rational point. Alto-

gether they form the countable set D. Its 4-adic decimal expansion contains fi-
nite terms (or an infinite cyclic decimal). 

2) ( ), 2 1 2 1 2 3 2 3 2 2 1 2 2 11
, , , , , ,m l m m m m m s m ss

t U a a a a a a∞
+ + + + + − + −=

= 



. That is to say 

the 4-adic decimal expansion of t is infinite acylic, but from the 2 1m +  decimal 
place, 2 2 1 2 2m s m sa a+ − +=  for 1,2,s =  . 

3) ( ), 2 1 2 2 2 3 2 4 2 2 1 2 2
1

, , , , , ,m l m m m m m n m n
n

t U a a a a a a
∞

+ + + + + − +
=

= 



 where  

2 1 2 20,m m na a+ +≠  for 1,2,n =  . 

Using the arithmetic-analytic representation of the Koch curve of 4-adic ra-
tional points (see Lemma 3.3), we can prove the following two lemmas: 

Lemma 3.4. If 2
21 , 0,1

2 2
n k

k nk

a at a
=

= + =∑  then  

( )
( )

( )

( )
( )

( )

2

2 1
1

2

2 1
1

cos cos 1
6 633

sin sin 1 .
6 633

n
k

k nk n
k

n
k

k nk n
k

a at b b

a at b b

ϕ

ψ

+
=

+
=

= + −

= + −

π π

π π

∑

∑
 

In particular, if 
2

2 2 1 2 2 1
2 2 1 2 2 2

1 12 2 2 2

m n m
k m k m k
k m k m k n

k k

a a a at
−

+ − + −
+ − +

= =

 = + + + 
 

∑ ∑ , where n m> , 

then 
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( )
( ) ( )

( )
( )

2
2 2 1

2 12 2 1
1 1

2 2 1
2 2 2 12 2

cos cos
6 63 3

cos cos 1 ,
6 633

m n m
k m k

k mk m k
k k

m k
m mm k n

a a
t b b

a a ab b

ϕ
−

+ −
++ −

= =

+ −
+ ++


= + 



π π

+ + −


π

∑ ∑
 

( )
( )

( )
( )

2
2 2 1

2 12 2 1
1 1

2 2 2 12 2

sin sin
6 6( 3) 3

sin sin 1 .
6 633

m n m
k m k

k mm kk
k k

m mm k n

a a
t b b

a ab b

ψ
−

+ −
++ −

= =

+ ++


= + 




π π

π
+ + −



π

∑ ∑
 

Lemma 3.5. If 2
2 21

1
2 2

m k
k m nk

a
t +=
= −∑  then  

( )
( )

( ) ( )

( )
( )

( ) ( )

2

2 1
1

2

2 1
1

1cos cos 1 ,
6 633

1sin sin 1 ,
6 633

m
k

k mk m n
k

m
k

k mk m n
k

a
t b b c

a
t b b c

ϕ

ψ

++
=

++
=

= +
π

− +

= + − +

π

π π

∑

∑
 

where 2c = −  when 2 1ma = , 4c =  when 2 0ma = .  

4. The ln3
ln4

-Hölder 4-Adic Derivatives of the Koch Curve 

The Koch curve with 4-adic decimal expansion satisfies the Hölder condition (4), 

(5), so it is reasonable to consider dyadic derivatives of ln 3
ln 4

α =  and 4p = , 

which are defined in Section 3. Now we shall prove that for the Koch curve the 

exact ln 3
ln 4

-Hölder 4-adic derivative exists which is the main result of this paper. 

Theorem 4.1 If [ ]0,1 \t D∈  and  

2 2 1 2 11 2
2 2 2 1 2

12 2 2 2 2
m k k
m k k

k m

a a aa at
∞

− −
−

= +

 = + + + + + 
 

∑             (7) 

is point type 2), then  

( ) ( )

( ) ( )

4 2 1

4 2 1

cos 1 ,
6

sin 1 ,
6

m

m

t b

t b

α

α

ϕ

ψ

− +

− +

′ = −

′ −
π

=

π

 

where 2 1 1 2 2 1 2 2 1m k k mb a a a a a+ −′ ′ ′ ′ ′= − + + − + − +  . 
Proof. By (4.1), it can be seen that t is contained in the following sequence of 

intervals  

2 1 2 2 1 2
2 2 1 2 2 2 1 2 2

1 1 1

1,
2 2 2 2 2 2 2

n n
k k k k

n m k k m k k n
k m k m n m

a a a al lU
∞

− −
− −

= + = + = +

    = + + + + +    
    

∑ ∑  
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and 1 2 nU U U⊃ ⊃ ⊃ ⊃   Therefore 1 nn
t U∞

=
=


. According to Lemma 3.4,  

( )

2 1 2 2 1 2
2 2 1 2 2 2 2 1 2

1 1

1 2 2 1 2

1
2 2 2 2 2 2 2
1 cos .

63

n n
k k k k

m k k n m k k
k m k m

m mn

a a a al l

a a a a

ϕ ϕ− −
− −

= + = +

−

      + + + − + +      
      

′ ′ ′ ′= − + + −
π

∑ ∑



 

So, by Definition 2.1,  

( ) ( )4 1 2 2 1 2cos .
6m mt a a a aαϕ − −′ ′ ′ ′ ′= − + −
π

+  

Similarly  

( ) ( )4 1 2 2 1 2sin .
6m mt a a a aαψ − −′ ′ ′ ′ ′= − + −
π

+  

Theorem 4.2 If  

2 1 2
2 1 22 2 1 2

1
, 1, 2,

2 2 2
k k

k km k k
k m

a alt a a k m m
∞

−
−−

= +

 = + + ≠ = + + 
 

∑   

is point type 3), then  

( ) ( )

( ) ( )

4 2 1 2
1

4 2 1 2
1

cos ,
6

sin .
6

k k
k

k k
k

t a a

t a a

α

α

ϕ

ψ

∞

− −
=

∞

− −
=

 ′ ′ ′= − 
 
 ′ ′ ′= − 


π

π



∑

∑
 

Proof. By (4.1) t is contained in the following nested intervals  

2 1 2 2 1 2
2 2 1 2 2 2 1 2 2

1 1

1, ,
2 2 2 2 2 2 2

n n
k k k k

n m k k m k k n
k m k m

a a a al lV − −
− −

= + = +

    = + + + + +    
    

∑ ∑  

where 1, 2,n m m= + +  , and  

1 2 3m m mV V V+ + +⊃ ⊃ ⊃  

Therefore  

1
.n

n m
t V

∞

= +

=


 

According to Lemma 4,  

( )

2 1 2 2 1 2
2 2 1 2 2 2 2 1 2

1 1

2 1

1
2 2 2 2 2 2 2
1 cos 1 .

63

n n
k k k k

m k k n m k k
k m k m

nn

a a a al l

b

ϕ ϕ− −
− −

= + = +

+

      + + + − + +      
      

= −
π

∑ ∑
 

By Definition 2.1,  

( ) ( )4 2 1 2
1

cos .
6k k

k
t a aαϕ

∞

− −
=

′ ′ ′−
π

= ∑  

Similarly  

( ) ( )4 2 1 2
1

sin .
6k k

k
t a aαψ

∞

− −
=

′ ′ ′−
π

= ∑  

The conclusions of Theorem 4.1 and Theorem 4.2 can be written as: for 
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[ ]0,1 \t D∈ , then  

( ) ( ) ( )

( ) ( ) ( )

4 2 1 2 2 1 2
1 1

4 2 1 2 2 1 2
1 1

cos ,
6 6

sin .
6 6

n

k k k k
k k m

n

k k k k
k k m

t a a a a

t a a a a

α

α

ϕ

ψ

∞

− − −
= = +

∞

− − −
= = +

 ′ ′ ′ ′ ′= − + −  
 ′ ′ ′ ′ ′=

π π

− + −  

π π

∑ ∑

∑ ∑
 

Note that when t is the point of type 2), ( )2 1 21 0k kk m a a∞
−= +

′ ′− =∑ . 

We have shown that the Koch curve ( ) ( )( ),x t tϕ ψ=  has ln 3
ln 4

-Hölder 

4-adic derivatives for every [ ]0,1 \t D∈ . Next, we consider the case of a 4-adic 
rational point on D. 

Theorem 4.3 If t D∈  is 4-adic rational point on [ ]0,1   

20,1, , 2 1, 1,2,
2

m
m

lt l m= = − =   

Then, there exists ln 3
ln 4

α = -Hölder 4-adic left and right derivatives. The right 

derivatives are  

( )2 1 224
1

cos .
62

n

k km
k

l a a
α

ϕ + −−
=

 ′ ′ ′= − 


π


∑  

Fractal  

( )2 1 224
1

sin .
62

n

k km
k

l a a
α

ψ + −−
=

 ′ ′ ′= − 


π


∑  

The left derivatives are  

( )

( )

2 1 224
1

2 1 224
1

cos ,
62

sin ,
62

n

k km
k

n

k km
k

l a a c

l a a c

α

α

ϕ

ψ

−

−

−−
=

−−
=

  ′ ′ ′= − +      
  ′ ′ ′= − +    

π

 

π

∑

∑
 

where 2c = −  when 2 1ma = , 4c =  when 2 0ma = . 
Proof. By Lemma 4,  

( )2 12 2 2

1 1 cos 1 .
62 2 2 3 mm n m n

l l bϕ ϕ +
   + − = −  

  

π



 

Then, by Definition 2.2,  

( ) ( )
2 2 2

2 1 2ln 44
1

2

1
2 2 2lim cos .

61 ln
2

m n m n

k kn k
n

l l

t a a
α

ϕ ϕ
ϕ + −− →∞ =

   + −   
   ′ ′ ′= = −

 
 


π



∑  

Similarly  

( ) ( )2 1 24
1

sin .
6

n

k k
k

t a a
α

ψ + −−
=

′ ′ ′= −
π∑  

According to Lemma 5,  

( )2 12 2 2

1 1 cos 1 ,
62 2 2 3 mm m n n

l l b cϕ ϕ +
   − − = − +   
  

π
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where 2c = −  when 2 1ma = , 4c =  when 2 0ma = . So, by Definition 2.2,  

( ) ( )
2 2 2

2 1 2ln 34
1ln 4

2

1
2 2 2lim cos .

61
2

m m n n

k kn k

n

l l

t a a c
α

ϕ ϕ
ϕ − −− →∞ =

   − −        ′ ′ ′= = − +   


 

π



∑  

Similarly  

( ) ( )2 1 24
1

sin .
6

n

k k
k

t a a c
α

ψ − −−
=

 ′ ′ ′= − + 

π


∑  

Theorems 4.1 - 4.3 then have established the ln 3
ln 4

-Hölder 4-adic derivatives  

of the Koch curve on [0, 1]. As He pointed out recently [17] that fractal deriva-
tive/calculus has very important applications in many applied fields including 
mathematics, engineering and fluid dynamics, and researchers have tried to de-
fine various derivatives of fractals. Our results will not only allow us to further 
investigate the differentiability of other fractals [4] [18], but also provide a new 
type of derivative for researchers in other fields to conduct their investigations. 

Some observations: It is obvious that the right and left ln 3
ln 4

-Hölder 4-adic 

derivatives of the Koch curve at the 4-adic rational point are not equal, as these 
points should be at the sharp-angled vertices. Furthermore, 1) There exists un-

equal left and right ln 3
ln 4

-Hölder 4-adic derivatives for the Koch curve at coun-

table points set (i.e. the 4-adic rational points) on [ ]0,1 . This indicates that the 
knot point quality of a non-differentiable function seems not to be eliminated no 

matter how the derivative is defined. 2) For 4-adic irrational points, the ln 3
ln 4

-Hölder 4-adic derivatives are determined at the second type of points,  

which are 0tan
6

 π 
 
 

 and tan
6

 π ± 
 

. 3) For the points of the third type, although 

the set of the ln 3
ln 4

-Hölder 4-adic derivatives also contains 0tan
6

 π 
 
 

 and 

tan
6

 π ± 
 

, it is not definite. This reflects the oscillatory quality of non-differentiable  

function, i.e. it is also the case of the knot points without one-sided derivatives 
[19]. Of course, in this case, it might be better to consider the upper α-Hölder 
derivative. 
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