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Abstract 
This paper presents a technique for obtaining an exact solution for the well- 
known Laguerre’s differential equations that arise in the modeling of several 
phenomena in quantum mechanics and engineering. We utilize an efficient 
procedure based on the modified Adomian decomposition method to obtain 
closed-form solutions of the Laguerre’s and the associated Laguerre’s diffe-
rential equations. The proposed technique makes sense as the attitudes of the 
acquired solutions towards the neighboring singular points are correctly tak-
en care of. 
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1. Introduction 

Mathematical models featuring both the ordinary and partial differential equa-
tions are realized in modeling different scenarios arising from physical and so-
cial sciences among others. Various efforts have been undertaken in recent dec-
ades to come up with dissimilar computational procedures for solving such mod-
els in numerous sectors of research, including modern technological situations. 
In particular, Laguerre’s differential equation is a type of differential equation 
that is found in a variety of engineering problems [1], and in quantum mechan-
ics, because it is one of several equations that appear in the quantum mechanical 
description of the hydrogen atom [2]. 

More explicitly, let us consider the equation,  

( ) ( ) ( ) ( )1 0.xv x x v x nv x′′ ′+ − + =                  (1) 

This equation is called Laguerre’s differential equation of order n, where n is a 
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real-valued constant. One crucial attribute of the present model is having a solu-
tion in form of a polynomial, which is usually referred to as Laguerre’s polynomial. 
The Laguerre’s polynomial being the solution of the Laguerre’s differential equa-
tion is denoted by ( )nL x , and further expressed as  

( ) ( )e d e .
! d

x n
x n

n nL x x
n x

−=                      (2) 

Moreover, the generalized version of Equation (1) is the so-called associated 
Laguerre’s differential equation, that is expressed as  

( ) ( ) ( ) ( )1 0,xv x k x v x nv x′′ ′+ + − + =                (3) 

where k and n are real numbers [1] [3]; clearly, Equation (3) reduces to (1) when 
0k = . 

Further, Laguerre’s differential equation was solved in [1] by using the Haar 
wavelet method; while [4] solved the same model by using G-transform, a gene-
ralized Laplace-typed transform method. Also, the differential transformation 
method [5] was applied to solve Laguerre’s differential equation. Furthermore, 
in recent times, research activities regarding second-order differential equations 
with initial data have drawn the inquisitiveness of different researchers. Various 
methods have been proposed in the past and present literature towards devising 
promising unified techniques to tackle a variety of differential equations; one could 
easily find the Adomian decomposition method [6] [7], and its related modifica-
tions and extensions to attract so many minds in this regard, see the following 
references [8]-[14] and the cited references therein to explore numerous scien-
tific models in the presence of the method. Moreover, certain Adomian-based ap-
proaches have equally been utilized in the literature while treating various classes 
of linear and nonlinear integer and non-integer order differential equations, read 
[15]-[20] as an instance. 

However, the current research focuses on the relevance of the modification of 
Adomian’s approach in tackling Laguerre’s and the associated Laguerre’s equa-
tions, respectively. These equations are well-known models that arise in the mod-
eling of several phenomena in engineering and quantum mechanics to state a few. 
Our main goal here is to demonstrate the advantages and the efficiency of using 
this modified version of the Adomian’s method to obtain an optimal approximate 
solution of the mentioned Laguerre’s equations. Additionally, we organize the 
paper in the following manner: Section 2 gives the classical Adomian’s method; 
while its modification to be utilized in this study is presented in Section 3. Sec-
tion 4 makes consideration to certain numerical applications as illustrative ex-
amples, and lastly, we give certain concluding remarks in Section 5. 

2. Adomian Decomposition Method 

Let us begin by giving a general survey of the Adomian’s method by considering 
the following generalized second-order differential equation  

,Lv Rv Nv g+ + =                          (4) 
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with L denoting the second-order linear differential operator, R is also a linear 
operator, but less than L, and N is the nonlinear differential operator, while g is a 
source term. Thus, we rewrite the above equation as follows  

.Lv g Rv Nv= − −                          (5) 

Next, premultiplying each term of Equation (5) with the inverse operator 1L− , 
we obtain  

1 1 1 1 .L Lv L g L Rv L Nv− − − −= − −                     (6) 

Therefore, making use of an infinite series via the Adomian’s method to 
represent the solution ( )v x  as  

( ) ( )
0

,m
m

v x v x
∞

=

= ∑                         (7) 

and the nonlinear term ( )N v  through  

0
,m

m
Nv A

∞

=

= ∑                          (8) 

with mA ’s representing the polynomials by Adomian. Therefore, we substitute 
Equations (7) and (8) into Equation (6) to obtain  

1 1 1
0

0 0 0
,m m m

m m m
v L g L R v L Aϕ

∞ ∞ ∞
− − −

= = =

= + − −∑ ∑ ∑                (9) 

where 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

2

0 0 2

2 3
0

0 0 0 3

2 1

0 0 0 0 1

d0 , if ,
d
d0 0 , if ,
d
d0 0 0 , if ,

2! d

d0 0 0 0 , if .
2! ! d

m m
m

m

v L
x

v xv L
x

xv xv v L
x

x xv xv v v L
m x

ϕ

+

+

 =

 ′+ =
=  ′ ′′+ + =



 ′ ′′+ + + + =






    (10) 

Therefore, 

( )
( )
( )
( )

( )

1
0 0

1 1
1 0 0

1 1
2 1 1

1 1
3 2 2

1 1
1

,
,
,
,

, 0,m m m

v x L g
v x L Rv L A
v x L Rv L A
v x L Rv L A

v x L Rv L A m

ϕ −

− −

− −

− −

− −
+

 = +


= − −
 = − −


= − −



= − − ≥



               (11) 

where mA ’s are the polynomials by Adomian, which are to be computed using 
the following formula  

( )
0 0

1 d , 0,1,2,
! d

m
i

m im
i

A N v x m
m λ

λ
λ = =

  = =  
  
∑            (12) 
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Now, from Equation (12), the polynomials by Adomian are recurrently de-
termined as  

( )
( )

( ) ( )

( ) ( ) ( )

0 0

1 0 1

2
2 0 2 0 1

3
3 0 3 0 1 2 0 1

,
,

1 ,
2

1 ,
3!

A N v
A N v v

A N v v N v v

A N v v N v v v N v v

 =
 ′=

 ′ ′′= +


 ′ ′′ ′′′= + +

 

           (13) 

Hence, the recurrent solution for the n-term scheme is, therefore, obtained as 
follows  

( )
1

0
,

m

m i
i

v xφ
−

=

= ∑                         (14) 

where  

( ) ( ) ( )
0

lim .m im i
v x x v xφ

∞

→∞ =

= = ∑  

Note also that, the convergence analysis of the classical Adomian’s method 
was discussed by many researchers, including the famous research by Cherruault 
et al. [21] [22] [23] [24] and other notable works like Gabet [25] and Babolian 
and Biazar [26], to state a few. 

3. Modified Adomian Decomposition Method  

Here, we give two important algorithms based on certain modifications of Ado-
mian’s method to solve the governing equations under consideration.  

3.1. Algorithm 1 

The Adomian decomposition method has been slightly modified in the following 
way as suggested by Dita and Grama [27]. First, we make consideration to the 
following generalized second-order linear equation  

( ) ( ) ( )2, , , , 0,L x v x R x v v v∆ − ∆ ∆ =                (15) 

where ( ),L x ∆  is the principal linear operator given by  

( ) ( ) ( ), ,L x h x p x∆ = ∆ ∆                      (16) 

and R is the outstanding linear operator tackling all the other operators less than 
L. More so, the functions ( )h x  together with ( )p x  are all continuously dif-
ferentiable functions. The minus sign in Equation (15) is taken for convenience. 
At this point, for brevity, proper choices of the operator L and R should be made 
in such a way that the resultant pseudo-Volterra integral equation can be solved 
easily. 

However, sometimes writing Equation (15) in its standard form complicates 
the matter. Recall that we are aiming at obtaining an inverse for the general form 
in Equation (16) and make use of it to look for different known formulae for the 
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solutions of certain special ordinary differential equations. The second proposal 
entails writing Equation (15) in a form of an inhomogeneous equation by utiliz-
ing a modified version of the variation of parameters method to obtain a trans-
formed equation as a pseudo-Volterra integral equation. This will then be con-
sidered to be the generalized version of Adomian’s approach for tackling ordi-
nary differential equations of the second-order. Most of the equations of the 
form given in Equation (15) are called the classical special functions, togeth-
er with their principal linear part given in Equation (16) with a lot of these equa-
tions having ( ) 1h x = . What is more, the functions ( )h x  together with ( )p x   

are both assumed continuously differentiable, and further 
( )
1

p x
 is locally in-

tegrable near a certain point; such that without loss of generality, it can be cho-
sen to be near 0x = . The decomposition approach involves determining the  
inverse operator 1L−  such that through it many cases of the exact solution of 
the governing model are constructed. Again, an inverse corresponding to the 
principal linear operator given in Equation (15) is thus readily suggested as fol-
lows  

( ) ( ) ( ) ( ) ( )1
0 0

d d, .
x tt yL x v x v y

p t h y
− ∆ = ∫ ∫               (17) 

Additionally, one sees that  

( ) ( ) ( )1 .LL v x I v x− = ⋅                     (18) 

However,  

( ) ( ) ( )1 ,L L v x I v x− ≠ ⋅                     (19) 

with I denoting the identity operator. Equation (19) also shows the inverse oper-
ator 1L− , indicating that it is not a true inversion of the principal operator; ra-
ther, it is only so when the prescribed initial data are taken into account, and 
that is similar to providing the respective values of ( )0v  and ( )0v′ . Hence,  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0 0

0 0 0
0

0

dd d d ,
d d

dd d d0 0 ,
d d

d0 0 0 .

x t

t
x x x

x

v yt yL L v x h y p y
p t h y y y

v tt v tp y p v
p t y t p t

tv x v p v
p t

− =

  ′= = − 
 

′= − −

∫ ∫

∫ ∫ ∫

∫

    (20) 

Therefore, the following result is obtained from Equation (17),  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d0 0 0 , .
x x tt y tv x v p v R y v

p t p t h y
′= + + ∆∫ ∫ ∫       (21) 

Further, Equation (21) is a Volterra integral equation, which assumes the fol-
lowing series solution  

( ) ( )
0

,k
k

v x v x
∞

=

= ∑                        (22) 
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where  

( ) ( ) ( ) ( )0 0

d0 0 0 ,
x tv v p v

p t
′= + ∫                   (23) 

and ( )kv x  is thus determined via the Picard approach of successive approxi-
mation as follows  

( )1
1, .k kv L x v−
−= ∆                       (24) 

3.2. Algorithm 2 

Consider the generalized second-order linear differential equation [27]  

( ) ( ) ( ) ,v a x v b x v h x′′ ′+ + =                  (25) 

with ( ) 0xϕ ≠  presumed to be a regular solution (of Equation (25)) admitted 
by the homogeneous part of the equation, which would be obtained by using a 
modified version of the variation of parameters method. Thus, the following solu-
tion is obtained via a more general integral representation as follows  

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) ( )1 2 2 2

d d d ,x xv x s x s x x I x x h x x
I x x I x x

ϕ ϕ ϕ ϕ
ϕ ϕ

= + +∫ ∫ ∫ (26) 

with 1s  and 2s  denoting the real constants; while ( )I x  is the integrating fac-
tor given by  

( ) ( )de .a x xI x ∫=  

Moreover, the inverse differential operator 1L−  becomes an indefinite integral 
in the above; that is, for each problem it has to be transformed into a definite 
integral according to the required solution. Additionally, Equation (26) can be 
considered as the beginning step with regard to the implementation of the de-
composition approach in most general cases. More so, a linear homogeneous 
differential equation is transformed to a pseudo-Volterra integral equation via 
Equation (25). An important issue here is the separation of the convenient com-
ponent on the left-hand side of Equation (25) such that the solution of this com-
ponent can easily be found. The behavior of the solution around the point where 
the solution is expected to have to be taken into account, in order to maximize 
the chances of obtaining the complete explicit infinite series form. This easy separa-
tion procedure is carried out through shifting the ( )b x v  term to the right-hand 
side of the equation, such that the solution corresponding to the left-hand side 
only is ( ) 1v x = . 

4. Illustrative Examples 

Here, the applicability of the devised schemes is exhibited in the current section 
on Laguerre’s and the associated Laguerre’s differential equations. Besides, it is 
an attempt to deploy the proposed algorithms in acquiring the known solutions 
of the governing models.  
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4.1. Laguerre’s Differential Equation 

Let us make a reconsideration of Laguerre’s differential equation expressed as  

( ) ( ) ( ) ( )1 0.xv x x v x nv x′′ ′+ − + =                (27) 

Algorithm 1: Rewrite Equation (27) as 

( ) ( ) ( ) ( ) ( ) ( )d .
d

Lv x xv x v x xv x xv x nv x
x

′′ ′ ′ ′= + = = −          (28) 

Here, we consider ( ) 1h x =  and ( )p x x= ; and also decompose the solution 
function ( )v x  via the stated infinite series of the form  

( ) ( )
0

,m
m

v x v x
∞

=

= ∑                     (29) 

together with the following initial data  

( )0 1, 0 0.v v′= =                      (30) 

Then, upon applying the form of Equation (21), a recurrence scheme is ob-
tained of the following form  

( ) ( )
0

1 1
1 0 0

1

d d ,
x x

r r r r r

v

v L xv nv x x xv nv x x x− −
+

=

′ ′= − = −      ∫ ∫
       (31) 

such that  

( ) [ ] ( )
( )

( )
( ) ( )

( ) ( ) ( )

( )( )
( ) ( )

1 1
1 0 0 0 0

1 1 2
2 1 1 0 0

2 2
2

2
1 1 2

3 2 2 0 0

3 3
2

!d d ,
1 !

d d

1 ! ,
4 2 ! 2!

1 1
d d

2 4

1 2 ! ,
36 3 ! 3!

x x

x x

x x

nv L xv nv x x n x x nx x
n

v L xv nv x x n n x x x

n n nx x
n

n n n n
v L xv nv x x x x x

n n n nx x
n

− −

− −

− −

′= − = − = − = −   −

 ′= − = −    
−

= =
−

 − −
′= − = −    

  
− −

= − = −
−

∫ ∫

∫ ∫

∫ ∫



    (32) 

Hence, upon taking the net sum of the above components, we obtain follow-
ing known series solution  

( ) ( ) ( )
( ) ( )2

0

!1 .
! !

r r
n

r

nv x L x x
n r r

∞

=

= = −
−

∑              (33) 

Algorithm 2: Rewrite the Laguerre’s equation as follows  

( ) ( ) ( ) ( )1 .nv x v x v x v x
x x

′′ ′ ′+ = −                 (34) 

Now, considering the right-hand side entirely as a normal inhomogeneous 
term, we then solve for the other side of the equation as a normal homogeneous 
component. 
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Next, if the solutions are 1ϕ+ =  and ln xϕ− = , we start off by considering 
ϕ+  and fix the constants 1 1s =  and 2 0s = . Then, since an exact solution is 
searched at 0x = , a two-fold integral operator is adopted as the inverse opera-
tor 1L− , occupying the area from 0 to x, and thus determine from Equation (25) 
the following Volterra integral equation  

( ) ( ) ( )1
0 0

1 d d .
x x nv x x x v x v x x x

x
−  ′= + −  ∫ ∫               (35) 

We, therefore, solve Equation (35) iteratively by considering the zeroth-order 
approximating the inhomogeneous term ( ) 00 1v v= =  and thus get  

( )0 1,v x =                (36) 

and  

( ) ( ) ( )1
1 0 0

d d .
x x

r r r
nv x x x v x v x x x
x

−
+

 ′= −  ∫ ∫              (37) 

More iteratively, we find that  

( ) ( )

( )

( ) ( )

( )
( ) ( )

1 1
1 0 00 0 0 0

1 1 2
2 1 10 0 0 0

2 2
2

d d d d

! ,
1 !

d d d d

1 ! ,
4 2 ! 2!

x x x x

x x x x

n nv x x v x v x x x x x x x
x x

nnx x
n

nv x x v x v x x x x x n n x x
x

n n nx x
n

− −

− −

−   ′= − =      

= − = −
−

   ′= − = −    
−

= =
−

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 

( ) ( )

( ) ( )

( )( )
( ) ( )

1
3 2 20 0

1
0 0

3 3
2

d d

1 1
d d

2 4

1 2 ! ,
36 3 ! 3!

x x

x x

nv x x v x v x x x
x

n n n n
x x x x x x

n n n nx x
n

−

−

 ′= −  
− − 

= − 
 

− −
= − =

−

∫ ∫

∫ ∫



                   (38) 

Hence, upon taking the sum of the above components, we get the following 
well-known series solution  

( ) ( ) ( )
( ) ( )2

0

!1 .
! !

r r
n

r

nv x L x x
n r r

∞

=

= = −
−

∑              (39) 

Example 4.1  
Let us consider Laguerre’s differential equation of n = 2  

( ) ( ) ( ) ( )1 2 0,xv x x v x v x′′ ′+ − + =                 (40) 

( ) ( )0 1, 0 0.v v′= =  

Algorithm 1: Rewrite Equation (40) as 

( ) ( ) ( ) ( ) ( ) ( )d 2 .
d

Lv x xv x v x xv x xv x v x
x

′′ ′ ′ ′= + = = −          (41) 
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Here, we consider ( ) 1h x =  and ( )p x x= ; and also decompose the solution 
function ( )v x  via the stated infinite series of the form  

( ) ( )
0

,m
m

v x v x
∞

=

= ∑                         (42) 

Then, upon applying the form of Equation (21), a recurrence scheme is ob-
tained of the following form  

( ) ( )
0

1 1
1 0 0

1

2 2 d d ,
x x

r r r r r

v

v L xv v x x xv v x x x− −
+

=

′ ′= − = −      ∫ ∫
         (43) 

such that  

( ) [ ]

( ) [ ] [ ]

( ) [ ]

1 1
1 0 0 0 0

1 1 1 2
2 1 1 0 0 0 0

1 1
3 2 2 0 0

1

2 2 d d 2 ,

12 2 4 d d 2 d d ,
2

2 d d 0,

0, 2.

x x

x x x x

x x

r

v L xv v x x x x x

v L xv v x x x x x x x x x x x

v L xv v x x x x x x

v r

− −

− − −

− −

+

′= − = − = −  

′= − = − + = =  

′= − = − =  
= ≥

∫ ∫

∫ ∫ ∫ ∫

∫ ∫
(44) 

Hence, upon taking the net sum of the above components, we obtain follow-
ing known series solution  

( ) ( ) ( )2 2
2

1 11 2 4 2 .
2 2!

v x L x x x x x= = − + = − +           (45) 

Algorithm 2: Rewrite the Laguerre’s equation for 2n =  as follows  

( ) ( ) ( ) ( )1 2 .v x v x v x v x
x x

′′ ′ ′+ = −                 (46) 

Now, considering the right-hand side entirely as a normal inhomogeneous 
term, we then solve for the other side of the equation as a normal homogeneous 
component. 

Next, if the solutions are 1ϕ+ =  and ln xϕ− = , we start off by considering 
ϕ+  and fix the constants 1 1s =  and 2 0s = . Then, since an exact solution is 
searched at 0x = , a two-fold integral operator is adopted as the inverse opera-
tor 1L− , occupying the area from 0 to x, and thus determine from Equation (25) 
the following Volterra integral equation  

( ) ( ) ( )1
0 0

21 d d .
x x

v x x x v x v x x x
x

−  ′= + −  ∫ ∫             (47) 

We, therefore, solve Equation (47) iteratively by considering the zeroth-order 
approximating the inhomogeneous term ( ) 00 1v v= =  and thus get  

( )0 1,v x =                (48) 

and  

( ) ( ) ( )1
1 0 0

2 d d .
x x

r r rv x x x v x v x x x
x

−
+

 ′= −  ∫ ∫             (49) 

More iteratively, we find that  
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( ) ( )

( ) ( ) [ ]

( ) ( ) [ ]

1 1
1 0 00 0 0 0

1 1
2 1 10 0 0 0

1 2
0 0

1 1
3 2 20 0 0 0

1

2 2d d d d 2 ,

2 d d 2 4 d d

12 d d ,
2
2 d d d d 0,

0, 2

x x x x

x x x x

x x

x x x x

r

v x x v x v x x x x x x x x
x x

v x x v x v x x x x x x x
x

x x x x x

v x x v x v x x x x x x x x x
x

v r

− −

− −

−

− −

+

−   ′= − = = −      
 ′= − = − +  

= =

 ′= − = − =  
= ≥

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫

   (50) 

Hence, upon taking the sum of the above components, we get the following 
well-known series solution 

( ) ( ) ( )2 2
2

1 11 2 4 2 .
2 2!

v x L x x x x x= = − + = − +            (51) 

4.2. Associated Laguerre’s Differential Equation 

Let us make a reconsideration of the associated Laguerre’s differential equation 
expressed as  

( ) ( ) ( ) ( )1 0.xv x k x v x nv x′′ ′+ + − + =                (52) 

Algorithm 1: Rewrite Equation (52) as follows  

( ) ( ) ( ) ( ) ( ) ( ) ( )1d1 .
d

k kLv x xv x k v x x x v x xv x nv x
x

− + ′′ ′ ′ ′= + + = = −    (53) 

Here, we consider the following functions ( ) kh x x−= , and ( ) 1kp x x += . Next, 
we decompose the solution function ( )v x  via infinite series expansion fol-
lows  

( ) ( )
0

,m
m

v x v x
∞

=

= ∑                       (54) 

and further choose the following initial data  

( ) ( ) ( )
!

0 , 0 0.
! !

n k
v v

n k
+

′= =                    (55) 

Then, on employing the form of Equation (21), we get the recurrence relation 
below  

( )

( ) ( )

0

1 1
1 0 0

!
! !

d d ,
x xk k

r r r r r

n k
v

n k

v L xv nv x x x xv nv x x x− − −
+

+
=

′ ′= − = −      ∫ ∫
      (56) 

such that  

( ) ( )

( )
( )

( )
( ) ( )

1 1
1 0 0 0 0

!
d d

! !

! !
,

! 1 ! 1 ! 1 !

x xk k n k
v L xv nv x x x n x x

n k

n k n k
n x x

n k n k

− − − + 
′= − = −    

 
+ +

= − = −
+ − +

∫ ∫
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( )
( )

( ) ( )
( )

( ) ( )
( )( )
( ) ( ) ( ) ( )

1
2 1 1

1
0 0

2 2

! !
d d

1 ! 1 ! 1 ! 1 !

1 ! ( )! ,
1 ! 2 ! 2 2 ! 2 ! 2

x xk k

v L xv nv x

n k n k
x x n x x x

n k n k

n n k x n k x
n k n k

−

− −

′= −  
 + +

= − + 
− + − +  

− + +
= =

− + − +

∫ ∫  

( )
( )

( ) ( )
( )

( ) ( )
( )( )
( ) ( )

( )
( ) ( )

1
3 2 2

1 2
0 0

3 3

! !
d d

2 ! 2 ! 2 2 ! 2 !

2 ! !
,

2 ! 3 ! 6 3 ! 3 ! 3!

x xk k

v L xv nv x

n k n k
x x n x x x

n k n k

n n k n kx x
n k n k

−

− −

′= −  
 + +

= − 
− + − +  

− + +
= − = −

− + − +

∫ ∫



   (57) 

Finally, on summing the above components, the following documented series 
solution is yielded  

( ) ( ) ( ) ( )
( ) ( )0

!
1 .

! ! !

n rk r
n

r

n k
v x L x x

n r k r r=

+
= = −

− +∑          (58) 

Algorithm 2: We firstly rewrite Equation (68) as  

( ) ( ) ( ) ( )1 .k nv x v x v x v x
x x
+′′ ′ ′+ = −             (59) 

Therefore, considering the right-hand side of the above equation as a normal 
inhomogeneous component, we then solve for the other side of the equation as a 
normal homogeneous component. 

Additionally, with admitting the solutions 1ϕ+ =  and kxϕ −
− = , we start off 

by considering ϕ+  and fix the constants 
( )

1

!
! !

n k
s

n k
+

=  and 2 0s = . Then, since  

we are looking for the exact solution at 0x = , a two-fold integral operator is 
adopted as an inverse differential operator 1L−  from 0 to x and thus determine 
from Equation (25) the following Volterra integral equation  

( ) ( ) ( ) ( )1
0 0

!
d d .

! !
x xn k nv x x x v x v x x x

n k x
−+  ′= + −  ∫ ∫           (60) 

We then solve Equation (60) iteratively by considering the zeroth-order ap-

proximation as the inhomogeneous term ( ) ( )
0

!
0

! !
n k

v v
n k
+

= =  and thus obtain 

the remaining recurrent components from 

( )

( ) ( )

( ) ( )

0

1
1

1 1
0 0

!
,

! !

d d ,

r r r

x xk k
r r

n k
v

n k
nv L v x v x
x

nx x v x v x x x
x

−
+

− − +

+
=

 ′= −  
 ′= −  ∫ ∫

            (61) 

such that  

https://doi.org/10.4236/jamp.2023.111007


M. Al-Mazmumy, A. A. Alsulami 
 

 

DOI: 10.4236/jamp.2023.111007 96 Journal of Applied Mathematics and Physics 
 

( ) ( )

( )
( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( ) ( )

( )( )
( ) ( )

( )
( ) ( )

1 1 1
1 0 0 0 0

1
2 1 1

1 1
0 0

2 2

!
d d

! !

! !
,

! 1 ! 1 ! 1 !

! !
d d

1 ! 1 ! 1 ! 1 !

1 ! !
,

1 ! 2 ! 2 2 ! 2 ! 2

x xk k

x xk k

n kn nv L v v x x x x x
x x n k

n n k n k
x x

n k n k

nv L v v x
x

n k n k
x x n x x

n k n k

n n k n kx x
n k n k

− − − +

−

− − +

+  ′= − = −     
+ +

= − = −
+ − +

 ′= −  
 + +

= − + 
− + − +  

− + +
= =

− + − +

∫ ∫

∫ ∫

 

( )

( )
( ) ( )

( )
( ) ( )

( )( )
( ) ( )

( )
( ) ( )

1
3 2 2

1 1
0 0

3 3

! !
d d

2 ! 2 ! 2 2 ! 2 !

2 ! !
,

2 ! 3 ! 6 3 ! 3 ! 3!

x xk k

nv L v v x
x

n k n n k
x x x x x

n k n k

n n k n kx x
n k n k

−

− − +

 ′= −  
 + +

= − 
− + − +  

− + +
= − = −

− + − +

∫ ∫



    (62) 

Thus, the overall series solution is obtained as follows  

( ) ( ) ( ) ( )
( ) ( )0

!
1 .

! ! !

n rk r
n

r

n k
v x L x x

n r k r r=

+
= = −

− +∑            (63) 

Alternatively, if we choose the initial data as 1 0s =  and 
( )

2

!
! !

k n k
s

n k
+

= , and 

further choose kxϕ −
− = ; we find from Equation (25) the following Volterra integral 

equation  

( ) ( ) ( ) ( )1 1
0 0 0

!
d d d .

! !
x x xk k k kk n k nv x x x x x x v x v x x x x

n k x
− − − −+  ′= + −  ∫ ∫ ∫    (64) 

We then solve Equation (64) iteratively by considering the zeroth-order ap-
proximation as the inhomogeneous term  

( ) ( ) ( )1
0 0

! !
d 0

! ! ! !
xk kk n k n k

v x x x v
n k n k

− −+ +
= = =∫ , and thus get  

( ) ( )

( ) ( )

1
1

1
0 0

d d ,

r r r

x xk k
r r

nv L v x v x
x

nx x x v x v x x x
x

−
+

− −

 ′= −  
 ′= −  ∫ ∫

             (65) 

where the individual components are explicitly expressed as  

( ) ( )

( )
( )

( )
( ) ( )

1 1
1 0 0 0 0

1

!
d d

! !

! !
,

! 1 ! 1 ! 1 !

x xk k

k k

n kn nv L v v x x x x x x
x x n k

n n k n k
x x x

n k n k

− − −

− +

+  ′= − = −     
+ +

= − = −
+ − +

∫ ∫

 

https://doi.org/10.4236/jamp.2023.111007


M. Al-Mazmumy, A. A. Alsulami 
 

 

DOI: 10.4236/jamp.2023.111007 97 Journal of Applied Mathematics and Physics 
 

( )

( )
( ) ( )

( )
( ) ( )

( )( )
( ) ( )

( )
( ) ( )

1
2 1 1

1
0 0

2 2

! !
d d

1 ! 1 ! 1 ! 1 !

1 ! !
,

1 ! 2 ! 2 2 ! 2 ! 2

x xk k

k
k

nv L v v x
x

n k n k
x x x n x x

n k n k

n n k n kx xx
n k n k

−

− −

+
−

 ′= −  
 + +

= − + 
− + − +  

− + +
= =

− + − +

∫ ∫  

( )

( )
( ) ( )

( )
( ) ( )

( )( )
( ) ( )

( )
( ) ( )

1
3 2 2

1
0 0

3 3

! !
d d

2 ! 2 ! 2 2 ! 2 !

2 ! !
,

2 ! 3 ! 6 3 ! 3 ! 3!

x xk k

k
k

nv L v v x
x

n k n n k
x x x x x x

n k n k

n n k n kx xx
n k n k

−

− −

+
−

 ′= −  
 + +

= − 
− + − +  

− + +
= − = −

− + − +

∫ ∫



    (66) 

Finally, as expected, similar series solution is obtained upon taking the net 
sum of the above components as follows  

( ) ( ) ( ) ( )
( ) ( )0

!
1 .

! ! !

n rk r
n

r

n k
v x L x x

n r k r r=

+
= = −

− +∑            (67) 

Example 4.2  
Let us consider the associated Laguerre’s differential for 2, 1n k= =  equation 

expressed as  

( ) ( ) ( ) ( )2 2 0.xv x x v x v x′′ ′+ − + =                 (68) 

Algorithm 1: Rewrite Equation (68) as follows  

( ) ( ) ( ) ( ) ( ) ( )1 2d2 2 .
d

Lv x xv x v x x x v x xv x v x
x

−  ′′ ′ ′ ′= + = = −     (69) 

Here, we consider the following functions ( ) 1h x x−= , and ( ) 2p x x= . Next, 
we decompose the solution function ( )v x  via infinite series expansion follows  

( ) ( )
0

,m
m

v x v x
∞

=

= ∑                       (70) 

and further choose the following initial data  

( ) ( )3!0 3, 0 0.
2!1!

v v′= = =                  (71) 

Then, on employing the form of Equation (21), we get the recurrence relation 
below  

( ) ( )
0

1 2
1 0 0

3

2 2 d d ,
x x

r r r r r

v

v L xv v x x x xv v x x x− −
+

=

′ ′= − = −      ∫ ∫
       (72) 

such that  

( ) ( )

( ) [ ]

1 2
1 0 0 0 0

2
1 2

2 1 1 0 0

2 2 3 d d 3 ,

2 3 6 d d ,
2

x x

x x

v L xv v x x x x x x

xv L xv v x x x x x x x

− −

− −

′= − = − = −      

′= − = − + =  

∫ ∫

∫ ∫
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( )1 2 2 2
3 2 2 0 0

1

2 d d 0,

0, 2.

x x

r

v L xv v x x x x x x x

v r

− −

+

 ′= − = − =    
= ≥

∫ ∫          (73) 

Finally, on summing the above components, the following documented series 
solution is yielded  

( ) ( ) ( ) ( ) ( )
2 2

1
2

0

3!3 3 1 .
2 2 ! 1 ! !

r r

r

xv x L x x x
r r r=

= = − + = −
− +∑        (74) 

Algorithm 2: We firstly rewrite Equation (68) as  

( ) ( ) ( ) ( )2 2 .v x v x v x v x
x x

′′ ′ ′+ = −                   (75) 

Therefore, considering the right-hand side of the above equation as a normal 
inhomogeneous component, we then solve for the other side of the equation as a 
normal homogeneous component. 

Additionally, with admitting the solutions 1ϕ+ =  and 1xϕ −
− = , we start off 

by considering ϕ+  and fix the constants 1 3s =  and 2 0s = . Then, since we 
are looking for the exact solution at 0x = , a two-fold integral operator is 
adopted as an inverse differential operator 1L−  from 0 to x and thus determine 
from Equation (25) the following Volterra integral equation  

( ) ( ) ( )2 2
0 0

23 d d .
x x

v x x x v x v x x x
x

−  ′= + −  ∫ ∫              (76) 

We then solve Equation (76) iteratively by considering the zeroth-order ap-
proximation as the inhomogeneous term ( ) 00 3v v= =  and thus obtain the re-
maining recurrent components from 

( ) ( ) ( ) ( )

0

1 2 2
1 0 0

3
2 2 d d ,

x x
r r r r r

v

v L v x v x x x v x v x x x
x x

− −
+

=

   ′ ′= − = −      ∫ ∫
    (77) 

such that  

( )

( ) [ ]

( ) [ ]

1 2 2
1 0 0 0 0

2
1 2 2

2 1 1 0 0

1 2 2
3 2 2 0 0

1

2 6 d d 3 ,

2 3 6 d d ,
2

2 d d 0,

0, 2.

x x

x x

x x

r

v L v v x x x x x x
x x

xv L v v x x x x x
x

v L v v x x x x x x x
x

v r

− −

−

− −

+

   ′= − = − = −      

 ′= − = − + =  
 ′= − = − =  

= ≥

∫ ∫

∫ ∫

∫ ∫

        (78) 

Thus, the overall series solution is obtained as follows  

( ) ( ) ( ) ( )
( ) ( )

2 2
1
2

0

2 1 !
3 3 1 .

2 2 ! 1 ! !
r r

r

xv x L x x x
r r r=

+
= = − + = −

− +∑        (79) 

5. Conclusion 

In conclusion, we have successfully determined the well-known closed-form se-
ries solutions of the Laguerre’s and the associated Laguerre’s equations, respec-
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tively, by devising modification methodologies that are based upon the applica-
tion of the Adomian decomposition technique. These modifications are highly 
accurate, efficient, and further converge rapidly within a few numbers of steps. 
Additionally, the obtained series of solutions affirm the available results in the 
literature. Besides, the resulting integration procedures that arise from the pro-
posed inverse operators 1L−  are calculated with the help of the Maple 18 pack-
age programmer. Therefore, the proposed schemes can be used to securitize dif-
ferent classes of both the ordinary and partial differential equations, which mod-
eled diverse real-life circumstances. 
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