4

X/
¢

Scientific
Research
Publishing

()

<
X8

%

Journal of Applied Mathematics and Physics, 2023, 11, 22-45
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379

ISSN Print: 2327-4352

Onto Orthogonal Projections in the Space of
Polynomials Py[x]

Jean-Francois Niglio

Department of Mathematics, Kingston University, London, UK

Email: jeanfrancois.niglio@gmail.com

How to cite this paper: Niglio, J.-F. (2023)
Onto Orthogonal Projections in the Space
of Polynomials P,[x]. Journal of Applied
Mathematics and Physics, 11, 22-45.
https://doi.org/10.4236/jamp.2023.111003

Received: November 29, 2022
Accepted: January 8, 2023
Published: January 11, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

(ORORN e s

Abstract

In this article, I consider projection groups on function spaces, more specifi-
cally the space of polynomials P,[x]. I will show that a very similar con-
struct of projection operators allows us to project into the subspaces of
P.[x] where the function heP,[x] represents the closets function to
f € P,[x] in theleast square sense. I also demonstrate that we can generalise
projections by constructing operators ie. in R"" using the metric tensor on
P, [x] This allows one to project a polynomial function onto another by

mapping it to its coefficient vector in R"". This can be also achieved with
the Kronecker Product as detailed in this paper.
Keywords

Polynomials and Projections, Projections, The Kronecker Product,
Idempotent Operators

1. Introduction

This paper is a continuation of the first two papers [1] [2] published which fo-
cuses on the projections in polynomials spaces and constructs an operator ex-
pressed in terms of the Kronecker Product to allow for a projection from the
subspace IP)k[X] onto the subspace P, [X] where j<k. This is also moti-
vated by the calculations performed in [3]. Below, we first start with a motivat-

ing example from this book [3] and go on to develop a more general theory.

2. Projections in a Polynomial Space P,[X]: A Motivating
Example [3]

Let P, [X] be the vector space of n™ degree polynomials over some arbitrary
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closed interval [a,b]. We will choose K=R and define P, [X] with its stan-
dard ordered basis B(X), that is

B(x):z{l,x,xz,x3,---,x"}

Traditionally, we can define the projection of a function in the following way.
Let f(x),g(x)eP,[x] and h(x) be the projection of f(x) onto g(X).

Then we can define the function h(X) as follows
N Lb f(x)g(x)dx

h(x
v [oLo (] ax

g(x) (2.1)
Let us consider an example.
Example 2.1 (Motivating Example [3]). Let f(x),g(x)eP,[x] such that

f (X) =x* and g (X) = X , we calculate the function h (X)

b 3 1 X4 ¥
h(x):'L;XdXx:‘l[ ]ax (2.2)
T

Suppose [a,b]=[0,1] then we have

1,

—| X

4[ JO x:gx:h(x) (2.3)
1r s 4
5[" I

We know that B(x)= {1, X, XZ} , clearly h(X) € Span{x} .

However we note that the basis B (X) is not orthonormal, hence we now use

the Gram-Schmidt procedure.
Let U;(x)=1, u,(x)=x-proj,(x), us(x)=x*— proj (x*)- proj, (x*).

) Exdx 1 o
u, (x)=x- =X-= 2.4
’ fldx 2

0
u, = x? —%— proj,, (xz) (2.5)

therefore, we need to calculate the latter

j:xz x—1|dx .
Al

2
2
Jl(x—lj dx
0 2

(x—%j 2.7)

1
=X- E (2.8)

proj,, (x*) = (2.6)

Therefore, we have
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u3(x):xz—%—(x—%J:xz—%—x+%:x2—x+% (2.9)

It is that the ordered basis B defined as

is an orthogonal basis of P,[X]. This means that f(X) can be expressed as a

linear combination using the orthogonal basis 3.

Let e (x)=1e,(x)= X—%,e3 (x)=x*- x+%. We wish to project f(X) in
the direction of e;,i=1,2,3.

1) We project pI’Oj(l) (Xz)

) jlxzdx
2)= =0 1 (2.10)

ol )
:% 2.11)

2) We project pI’OjeZ(X) (Xz)

.[lez(x—;jdx .
projez(x)(xz):—z( ——J (2.12)
1 1 2
I(x—) dx
0 2
1
=X—— 2.13
> (2.13)
3) We now project proj,, (XZ)
J';xz(xz—x+éjdx 1
proj,, ., (*) = . (xz—x+—j (2.14)
i, 1) 6
j X°—X+=| dx
0 6
1
_180(,2 ,,1
_1(x x+6J (2.15)
180
1
=xZ_x+=— 2.16
5 (2.16)

Hence, the coefficient vector is (%,1,1) .

This concludes our motivating example. We now want to find an operator
which achieves the same result.

We can now consider a different way of getting to the result using an optimi-
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zation technique in the following way.

We know that projecting the function f(x)= x’ along g (x)=x must be
in Span{x}. Hence, we are looking for an optimized solution (in the least
square sense) of the form V(X) =aX.

To derive the constant « we can use variations of the ideal function by a

parameter ¢ as follows
Y(X)+eax,¥(x)=a X

where @ is the optimum choice for « in the least square sense.
Let | (X,g) be LS Error integral

1(x,&)= _[:(xz —()7(X)+gax))2 dx :j:<x2 —az*x—go:x)2 dx

This integral represents the squared error. We want to find the value o

which minimizes 1(X,&) with respectto & . That is we want to calculate

ay _d Il(xz—a*x—gax)z dx
d{;‘ e=0 d€ =0 0
and set it equal to 0 to derive the optimal coefficients.
a _d| Il(xz —oe*x—gax)2 dx (2.17)
de|,., de|_,"°

_d Jl(xz —x(a*+5a))2 dx (2.18)
dg =0 0

_a jlx4—2x3(a*+5a)+ x? (a*+8a)2 dx (2.19)
dé‘ =0 0 .
d S L o

= ———(a +ga)+—(a +ea) (2.20)
del,, 5 2 3 0

1 1, . 1, «

L T e e (2.21)
de|,_, 5 3

__a, 2aa (2.22)

2 3
Setting and solving
ar o
d[—,‘ £=0
We get
@ 20a_ 2a_a
2 3 3 2

We therefore conclude that the projection of f(x) along g(X) is given by
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y(x):%x

which is clearly in the span of g(X).
Thinking of |(X,&) as an operator, we postulate that 1% is idempotent.
What do we mean by that? It means that we project in the direction of some po-

lynomial and repeating the projection one more time will leave the operation

.

Applying this to our example, we should find that this operation is idempo-
tent. We already know that

invariant. That is

di’(x,¢)
de

di (x,&)
~ de

(2.23)

_i[dl(x,g)

de de

=l £=0 =0

where |(x,&)= I:(XZ —a*ax—gax)dx.

di(x,¢)
de

=22
2

£=

- 3
By setting this to 0 we find §(X)= ZX e Spn{x} .
All we need to do now is project this function again, hence we compute

di(9(x).¢)

. Hence, we get

de
e=0
dl(§(x),e . 2
(y( ) ) =i ' %—a X—caXx | dx (2.24)
de o de o\ 4
2
= li[g—a*x—gaxj dx (2.25)
0del\ 4
1,(3X .«
=J.02(T—a X—gaxj—axdx (2.26)
13ax? .,
=-2[ o ax dx (2.27)
3 3f
_ |3 e X (2.28)
12 |, 3,
_ |3 _aa (2.29)
12 3
__a, 2aa (2.30)
2 3
Setting our to result to 0, we get the following result
dl(§(x), e * .
M :0:>_g+26!_a:0:a :g
de S 3 4

Hence, we conclude that ):l =y= %X € spn(x).
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3. The General Theory

In this section, we try to develop a more general theory of projection operators
over Polynomial Rings of arbitrary degree. The main idea is to investigate the

properties of the operator defined as follows

I (f (X)L"j)g(x),g)éig fb(f (x)—y(x)—gg(x,oc))2 dx,[a,b]e R (3.1)

a
=0

where Y(X) is the best function which represents the projection of f (X)
onto g(x) and a,a" e R*IX)
y(x) € Spn{g (x)}-

Example 3.1. Suppose f (x)=ax’+bx+ceP,[x] and g(x)=mx+d eP[x]
we wish to project f (X) onto ¢ (X) ie. f (X)L"">g (X) Hence, we need

+1
. We can, of course, see that

to solve

d

ds| o +bxro—(ax+a; +(arx+a))) o
&

=0

We can proceed in the following way

di J:(axz +bx+c_(al*x+a;+g(alx+ao)))2 dx
gg:O

(3.2)
_ :%gO(axz+bx+c—(a1*x+a;+g(alx+a0)))2dx

Differentiating (3.1) we get

* * 2
. (ax2+bx+c—(a1x+ao+g(a1x+ao)))
&

&=0 (3.3)
=—2(ax’ +bx+c—ayx—at, ) (e X + )

therefore,
—ZI:(ax2 +bx+ c—afx—ag)(alx+ao)dx

* * 3.4
_olaw bay ooy aiey e bay ey o] OY
4 3 2 3 2 2 3

Setting (3.4) to zero we get a square system of the form

a—1+@—3+9+£ (3.5)
3 2 4 3 2
o e =240 (3.6)
L TG =TS .
Equations (3.5) and (3.6) can be written in matrix form as follows
1 l a* E+E+£
3 2{1}4 - (3.7)
1 1]|% 3+—+C
2 2

The above system has a unique non-trivial solution since the matrix deter-

minant is non-zero.

DOI: 10.4236/jamp.2023.111003 27 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.111003

J.-F. Niglio

Theorem 1. Zet | ( f (x)—2—g(x), g) be some projection from
f(x)eP,[x] and g(x)eP;[x], 0<j<n

17 (£ () =22 g(x),2) = 1(1(f ()—25g(x).2)8) =1 (f (x)—2>g(x))

This is means that the operator Idempotent.
Proof. We first show that

S (R(H0-5(0) -9 (xa)’ Jx

:=; ) (3.8)
:J’aE ) -§(x)-eg(x,a)) dx
:_2j f(x)-9(x))a(x a)dx (3.9)
=-2[ £ (x)g(xa)-§(x)g(xa)dx (3.10)

[ 1 (x) (Zax] () oy (3.11)

=2 t(x)g(xa dx+2z(a o' x'*kdx) (3.12)

k.i=0

Suppose that f(x)=Y." Bx' then we get

—ZJ' f(x)g(x.a dx+22(a akI x'*"dx)

(
.[:(Zn:ﬂl 'J (x@) dX+2Z(a akf x'*"dx)d

i=0 k,i=0

(3.13)

2§Jj§”j(ﬁiak [ x‘+kdx)+2 3 (a;‘ak [ x”kdx) (3.14)
k,i=0

k=0i=0

i ke P itker P
i n X|+ + o Z X|+ + (3 15)
= —2 S —— .
ég‘ |+k+l Kizo i+k+1'31
Evaluating the limits, we get the following result
j n bi+k+l a|+k+1 bi+k+1 ai+k+1
-2 | ———— +2 N 3.16
;ﬂ;(ﬂ. kL+k+1 |+k+1D kZo[ L+k+1 i+k+1 ( )
Setting Equation (3.16) = 0 we get
j . bi+k+1 ai+k+l i n bi+k+1 ai+k+1
z & | = o ZZ By | - -
Kiz0 i+k+1 |+k+1k P i+k+1 i+k+1 G

We now show that, this reduces to a square system as follows

Za7k| ZIBH

j+1lrows

n

i
;ai Vi :Zﬁiki

i=0
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therefore,
Yooy Yo 7 Yo a; Z k(O,i)
Yao) Yany 7 Tap o _ B k(“)
Yioy Yaoy 7 i) L% ﬁik(j,i)

Writing this in matrix form we have '™ = K . This always will have a non-
trivial solution provided that det(I')=0. Hence, the optimum vector can be

computed. and the projection polynomial can be written as

To show that the operator is idempotent, we assume that § is not optimal
and there exists out there a polynomial §'(x)= ZLO a!"x' which represents a

better projection. Hence, we apply the operator again noting that

deg(y'(x)) = deg(y)(x) = deg (g (x,))-

(125009~ 0 (x.0) )

=0 (3.17)

d - ~
- :d_ (y (x)—y(x)—(c:g(x,oz))2 dx
‘95:0
od| (o e d Y
:I — | D X =D ek —e) x| dx (3.18)
ddel,\ i i-0 i=0

(
= I*’i [Zj:(a o —za; )X Jz dx (3.19)

b

:_zj: >, (& —a X dx (3.21)
i=1
U .. i
=23 [ (& - )ax dx (3.22)
i=1
(i+1) i

(3.23)

(i+1) i
=-2 Z (ai'* - ai*)ai {b——a—} (3.24)
Setting Equation (3.24) = 0 gives us

(HZI) (ai’* _a:)ai |:b_'_a_'} =0

i=1

We see that this leads to the conclusion that & —a; =0=> ¢« = ¢, . Hence,

our optimum vector is unique and the operator is Idempotent.
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Lemma 2. In the polynomial ring P,[x|, let f(x)=0, the zero polynomial
projected over (x)eP,[x] over some interval [a,b] is the optimum func-
tion y(X) =0. This implies the vector " =0eR', 0< j<n.

Proof. f (x)ﬂj—>g(x) where g(x)eP, [X] over [a, b]. Therefore, we

compute
roj b d v 2
'(0=20(0)= L5, (0 (7 20 ()] o (325)
b d - 2
=[i 55| (Y0 -ea(xa)) ox (326)
b d ] * i ! d
__J.aggzo [gai X +g;a " j " (3.27)

-2 :[ZJ:a X j(zj:aixi jdx (3.28)
i i=0
=20 aopxdx (3.29)

=2y [Lojaxtdx (3.30)

(i+1)?

=23 dla, {bl :a} (3.31)

i=1

Given that b#a impliesthat o =0 Vi=1--,j.
Lemma 3. Let —f (X) P, [X] be some polynomial of degree deg(-f (x))<n
then
(=f (x
€

—g(x))=-1( f(x)—22L>g(x)),
9(x) g

)
B[] deg (g (x)) < dea () <

Proof. We start with some polynomial —f (x)eP,[x] and some g(X) then
f

)
I (—f (x)—24 g (x)) over some interval [a,b]. We shall write 1(f,g) for

short,
1(1.0)=L1ge] (-1 00=(70)+e5xc0) e @3
- Lb%g_o@ (Za X +£Za X D (3.33)
_off iﬂ,xuéa,*xi)@aixi]dx (3.35)
2% S xode2 (a0 530
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i n Xi+k+1 b i . Xi+k+1 b
=2 i +2 ' 3.37
I;); Aak{i+k+1l‘ kéo a'a{i+k+1l (3.37)

i n i+k+1 i+k+1 ] j i+k+1 i+k+1
=2§J:Z(ﬁia {b S ]+22[a§ak{b——_a D (3.38)

K,i=0 i+k+1 i+k+1

Setting the above equation to 0 as before we get

j . bi+k+l ai+k+l j n b|+k+1 ai+k+1
oo | ————
kzo : kL+k+1 i+k+1l g; P kL+k+l |+k+1}ki
This leads to the same linear system other than the fact that o =-a hence
we get —§. This implies that | (—f ,g) =—I ( f, g) .Where a",—a" eR'.
Theorem 4. For some fixed (€ P,[x] where deg(g)<n. Let f,f’' be
distinct polynomials in P,[X] such that deg(f),deg(f')<n. then we have

I(f,g)+I(fg)=1(f+f"0)

Proof.
(F.0)+1(129)= [l (F(x)=(300)+e9(x.a))) dx
k 5:0 i (3.39)
+'|'a£€:0(f’(x)—(y’(x)+gg(x,a))) dx
:J':d% ) (f(x)—(y(x)+gg(x,og)))z+(f'(x)—(y’(x)+gg(x,oz)))2 dx (3.40)
=2} (f(x)=9(x)) g +('(x)-¥'(x)) gee (3.41)
:—2I (f §(x)+ f'(x)-§'(x)) gdx (3.42)
(1 (0 1(0) (3007 (0) g G
Let v = y( )+9'(x) such that deg(y)= deg(y(x)):deg(Y/’(x)). Hence,
we have
2[7(F(x)+ £(%))=(9(x)+ ¥ (x)) gdx = =2[] (£ (x)+ £(x)) -7 ) gk (3.44)
:J':(f_gg_o (( f(x)+ f'(x))—(y7+gg(x,a)))2 dx (3.45)
:d%g_g I:((f(x)+ f'(x))—(1/7+.,vg(x,oz)))2 dx (3.46)
=1(f+f'9) (3.47)

We have that 7 € P, [x] and the optimum vector (1//1* ,---,y/:n)e R™ where
m=deg (7).

By the above lemmas and theorems, we clearly have the following results
*  Commutativity clearly it is commutative | ( f+f', g) =1 ( f'+f, g).
* Associativity It should also clear the sum is associative since the sum of

functionsin P, [X] is associative.
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* Identity As demonstrated before we have shown that choosing f'=0 im-
plies that §'(x)=0 therefore we can conclude that
I(f+f.9)=1(f+0,9)=1(f,9).

* Inverse We have also shown that choosing f'=-f implies we get
I(f,g)=1(-f,g)=—I(f,g) therefore
I(f,g)+1(-f,9)=1(f,9)-1(f,9)=1(f-f,9)=1(0,9).

Hence, we are now in a position to talk about a group structure for this pro-
jectors on polynomials rings.
Question 2: What about projections on orthogonal subspace.
To answer this question we will think of P, [X] as a vector space with stan-
dard basis as before taken to be B = {1, X,oee, x”} . We know that for any
f,f'eP,[x] then f+f'eP,[x] since deg(f+f’)=max{deg(f),deg(f’)}
and VceR then cf eP,[x].Next, we define the following map

q):IP’n[X]—)R”“;(p(f):go[iakxkj:(aoy...,an)ER"“
k=0

Clearly, ¢ is a bijection. Now given some element of 5, we wish to con-
struct its orthogonal subspace ie. given some x* € B,0<0<n, we construct

the subspace x* which we define as follows
X< = {g eP [x]: j:xkgdx =0vgeP, [x]}

Working with integral, we get the following result

j
I:xkgdxzj':xk[Zﬂqxq]dx,lsjsn (3.48)
q=0
j
- j:(z ﬂqu*Qde (3.49)
q=0
j b
= B, [ x9dx (3.50)
q=0
j Xk+q+1 b
= 3.51
qz(;ﬂq{k+q+l}a (3.5
j bk+q+l ak+q+l
= - 3.52
qz_oﬂq{k+q+1 k+q+1} (3:52)
j bk+q+1 _ak+q+1
= - - 3.53
qz_(:)ﬂ{ k+q+1 } (3:33)

Hence, we seek to solve the equation

j bk+q+1 _ak+q+l
>

=0,Vl<j<n
=0 k+q+1

bk+q+1 _ ak+q+1

To make the notation a bit lighter, we set Yika) = , S0 we solve
' kK+g+1
the more consise equation
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i
zoﬁqy(k,q) =0,v0<j<n
q:

Hence, we derive the required vector coefficients ,B:(ﬂo,---, ﬂj) given

some j, as shown in Table 1. Therefore, given the basis B = {1, X, X2 e X6 e x”} s
we can assign to each element in B a set M such that M is defined as follows

M, :={he]P>n[x]:0§deg(h)sn;ls j sn;j:xkhdx=0}

The polynomials in M, are all orthogonal to the basis elements x* eB.
Polynomial functions in M, can be mapped via ¢, from the subspaces in
the table above, into the coefficients of he M, .

Theorem 5. Each set M, formsa R -free module [4] in P,[x] over R.

Proof. We know that each A in M, for some 0<k<n has the form

ézop’qxq =h such that ‘[: x“hdx =0,Vhe M, .Let h,h"e M, then we have

[7% () =[x h+ x“hdx
= j: x*hdx + Lb x*h'dx
=0

This implies that h+h'e M, Vh,h. It is easy to verify the other properties,
hence we can conclude that (M,,+) is abelian. Defining RxM, — M, such
that (r,h)—rh implies that

.[:rxkhdx=rj:xkhdx=0 VheM,
* Thenitis true that r(h+h')eM, since
rj:xk(h+h')dx:rf:xkhdx+rj:xkh'dx:0
e (r+s)h=rh+sheM, since
(r+s)f:xkhdx=rf:xkhdx+s.[:xkhdx:0
* (rs)h=r(sh)eM, since sj:xkhdx=0

l,h=heM,
The generating set for M, is the set B is linearly independent and there-

L]

fore M, is a free module whose base ring is a field hence M, 1is a vector

speace.

Table 1. jdegree equations and their solution subspaces in R".

J Equation Solution Space
0 zzioﬂqy(k’q) =BV o) =0 = B,=0 Lie {0} the point
1 .
1 Zqzoﬂqy(k,q) =BV o)+ BV ey =0 = ¢(B,,4)=0 ie asubspaceof R’
2 .
2 Zqzoﬂmk,q) =BV oy t By + BoVny =0 = ¢(B,, . 5,)=0 ie. asubspace of R3
n zzzoﬂqy(kvq) =0 :¢(,80,,81,--~,ﬂn):0 ie.a subspace of R™
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We, let M be the set
n
M:=[JM,
k=0

Let f eP, [X] , we wish to project finto each M, ,Vk =1,---,n such that we
minimize the error squared for each & We will then take the infimum of these

errors. Hence, we can define a vector rejection
Rej(f)={y, eM:Se(f,y,)is minimum}
where
Se(f,y,)=inf{Se (f,h):Se (f,h)=(f—h f-h) VheM, k=1, n}

Suppose we have some fsuch that

f= iapx" eP,[X]

p=0

then we seek

I:[Zs:“ppr [Zﬁqx“j dx=0Vj,k=0,---,n s.tj:[f —h]2 dx is min for each M,
p=0 k K

a=0

f:[iapX"J (iﬂqxq] dx:ff(iiapﬂqxp*qJ dx (3.54)

p=0 q=0 p=0q=0

s b

=Y Y, B, ], X" dx (3.55)
p=0q=0 a
s et

=D > a,p, (3.56)
p=0qg=0 p+q+1a
s

=2 Zapﬂq}/(p,q) (3.57)
p=0q=0

Setting ZZ:OZ;:Oapﬁqy(pvq) =0 implies that we have
#(Byr- . B) <RI, 0< j<n

(3.58)

b 2
+L[Zﬂqqu dx (3.59)

=0
s s
=0 XUk =2[] Y o, P (3.60)
p,d=0 p=0q=0
j
DI R (3.61)
m,q=0
y b, p+d S b p+q
= 2 apa [ xPrdx -2 Y a B, [ xPridx (3.62)
p,d=0 p=0q=0
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! b
+ 2 BBy J X" (3.63)

m,q=0

s s i
= Z apad7(p.d)_Zzzapﬂq7(p.q)+ Z ﬂmﬂqy(m.q) (3.64)

p,d=0 p=0q=0 m,q=0
v (ph) 655
By using the j~-dimensional gradient operator V = (6 o010y, )T. Calcu-
lating V l//( By B ) =0 leadstoa j+1 homogeneous system of the form
DRV AT SRR 0

j s
BV — 200 0, 0
V‘//(ﬂqaﬂm): meonAmy . pro P =

j s
L m:Oﬂmy(m,j) _Zp:oap7(p,j)

i+

It is clear that putting together V ( B B ) =0 and the linear equation
¢( Lo ,Bj) leads a j+2x j+1 linear system. Given the linear system gen-
erated by V ( By B ) , it is feasible to reduce this to a square system by combin-
ing anyone pair of the j+1 equations in V( By B ) , thereby reducing the
overall system to a square system of [ j+1]x[]j+1]

Zp:oapy(pvo)’W’Zp=0ap7/(r3’1) B
0 S
Vo1 V110 Y210 Y ja B Zp:oap7(p,o)
Yo2:012:722: Y j2 c T :

0

. Ll 1 1. ﬂj s a -
}/O,j’yl,j’yz,j"”’j/j,j ] zp:O p}/(PvJ)

The system is a square system ie.a j+1x j+1 system, hence there exists a

solution provided coefficient determinant is non-zero.

4. A Different Approach

In this section, we will show that performining projections over polynomial
spaces PP, (X) can also be done via an injective map in R"". We can start by

define the following mapping
&P [R]>R™

such that
5(pn(x))=§@aixij=(ao,ai,-.-,anf cR™

Lemma 6. The mapping & is Bijective.
Proof. & is bijective since

é@aix‘}é@a{X‘j(aa,a{,---,a;)T=(ao,aiy---,an)T

Also, given any vector (8,,--,a,) in R"™ 3 p (x)eP,[R] such that
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p.(x)=>" ax'. Hence, & isbijective.
Theorem 7. First Theorem
Given | p, (X)]B and | p, (x)]B where k<n w.r.t basis B. The projec-

tion of [ p, (X)]B onto [ p, (x)]g relative to basis B is given by

A9 (P () (P (X))
gij‘fi ( P« (X))@(’:J (pk (X))g( pk( ))

where we define
g; 2 :fi(x) f;(x)dx;i,j=0,---,n
where f (x), fj(x)eB:{l,X,~--,X"}.

Proof. Let p,(x),p,(x)eP,[R] suchthat p,(x)=>" ax and
P (X)= ZE:O B.X". Therefore we have

f(ia,xrj:(%,m,anf eR™

k T .
g(;ﬂhxhj:(ﬂo'”'ﬁk'ﬂkﬂ =0,--+, B, :O) eR™ k<n

First, let’s use the standard basis on P, [R] tobe Bi= {1, X, e, x”} . This im-
plies that

1 1 1 1 1
1) 9y =J.01'1dX=1 2) 9n :J.Ol'XdXZE: 90 3) 9n =J01'X2dX=§= 920

1 1 1 1 1 1
4) 911=IOX~X2dX:Z 5) 912=I0X2‘X2dng=921 6) g22=JOX'XdX=g

7) e 8) -+ 9) -
We can define the following recurrence relation for the values of the metric
tensor

1
i+j+1

11>

gi’j'i,jzl'...n i,j=0,-~,n
where we have used the fact that g; =g, for i# j ie the symmetric proper-

ty of the metric tensor. Hence, we can write
9,¢' (P, (%) (P (%))
i Fr (P
0,2 ()2 (0, () ) .
oS  Yordn b+ Gpubn by ++ G ndn i
= 0 g 0 : 1 (r o :g(pk(x))
gOékék + gOl‘/:k é:k + +glO§k§k + + gn,né:k ék

g (Zﬂ +0 aﬂ+"'+g aﬂ +'“+gnnanﬂn
_ 0% o 0% P1 10410 ) é:( P, (X)) (4.2)
Y00BoBo + 9uBoBi++ GBSy ++ 900 BB
a + 4ot a et a
_ Yoo fo + Yo1 %o By 910 S Un 1% By 5( X (x)) (4.3)

gooﬁoﬂo + gOlﬂOﬂl +eeet gloﬂlﬁo +eeet gk,kﬂkﬂk

By +Y 200+ +1 2, By +---+1(n+k +1) ax, B, i
B ‘ 4)
RSy sy y e presty yratd CLG)
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By
By
:ad%+M2adﬁ+m+ﬂ2%ﬂfk~+ym+k+nadﬂ é 45)
ol +Y2 ol + + Y2 By ++Y (k) Bf | '
0
o BB
Z| OZJ 0|+ J +1
BB
ZI OZJ 0|+ J +1
aﬂ]ﬂl
ZI OZJ 0|+ J +1
Bip;
ZI OZJ 0|+ J +1
- (4.6)
o 3; B
Z| OZJ 0|+ J +1
BB
ZI OZJ 0|+ J +1
0
0
Now, we can compute the intergral version of this projection as follows
.[(Zr =0 )(ZEoﬂhxh)dx(Zk ﬂxh)
2 —oPh
.[o(Zh:oﬁhxh) dx -
J-:(Z::oarxr)(ZE:oﬂhxh)dx k h
J-l(zk B h)zd (Zh=°ﬂhx )
o\ 2o X" ) dx A
[ I PN "
=t (e A)
_[OZh,s:OﬁhﬂSX dX
n k 1o reh
- 0B | XX
= OkZh o :I‘)M (X0 (4.8)
Zhs:OﬂhﬂSJ‘ X" dx
Zr Z rﬁh
_ 0 Zuh=0 r-|-h+1(2“h B ) (4.9)
DINYY:
hs=0h s Th s 41
n B
DI IS
_ 0 &h=0 r+h+1(ZE:oﬂhXh) (4.10)

Zhso

h+s+1
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Using the bijective mapping &:P,[R]—>R"" we get the desired result by

comparison.

n k arﬁh
£ Zr:(’Zh:orJthrl Zk:ﬁ th
Zk ﬂhﬂs h=0 "
hs=0ht+s+1
aﬂ]ﬁo
ZI Oz]0|+j+1
Z| OZIOI+J+1
e apip
ﬂo ZIOZ]O|+J+;.
B
n Kk ooapf :
~ Zr:OZh:Or+h:_l ﬁ _ Z' OZ“'°|+j+l
Zk ﬂhﬂs Ok
hs=Oh4s+1 : Z z a3, B,
(') i=0 '°|+J+1
Z| OZIOI+J+1
0
0

Theorem 8. Second Theorem
The first theorem can be written with the Kronecker Product as follows

L[(E®&)6
: [ 9yl g

where (& ®Z )T is the Kronecker Product, G = (gij ) =g, due to symmetry.

[ () fo()dx [ () f(x)dx o [ fo(x) £, (x)dx

11>

" L0060 [ H(x) f()dx = [ (x)f, (x)dx

() f()dx [ () f(x)dx o [ (x) £y (x)dx

where T (X), fj (X) eB.
Proof Let p,(x),p,(x)€P,[R] suchthat p,(x)=>"
P (X) = tho B.X". Therefore we have

f(zn:a,x“j:(ao,---,anf eR™

rOr

f(;ﬁhxhj:(ﬁoy'”ﬂklﬂku =0,---, 5, :O)T eR™ k<n

Then we have
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[&e

[&%]Lf[

ﬂlﬂo ﬂlﬂl ﬁlﬂk 0k+1 0n
ﬁlmzm% BB - B O. - O,
0 0 0 0, - O
L 0 0 0 Oy On_
&

_ﬂoﬁo ﬁoﬂl ﬁoﬂk Ok+l 0n

®é?k | M1nk :Oj

Mn—k,k+1 = 0 | I\/In—k,n—k = O

éit_k@‘)v?k | Mk,n—k:O TF o> F
Mn—k,k :0 | I\/In—k,n—k :OJ_[é:k ®§k :|n><n

We know that Gisan nxn matrix given

1
12

Therefore we have

[&84],,6=

X

[BoBe Bob
ﬂlﬂo ﬂllBl

BBy Bb
0 0

0 0
1
12

_goo o1 902 - Yon
90 9u 9 - On
_gnO gnl gn2 gnn
y2 Y3 - y(n+)
Y3 Y4 - 1Y(n+2)

Y1) Y(0+2) Y(n+3) - Y(2ne)

ﬂoﬂk Ok+1 0n
ﬁ1ﬂk 0k+1 On

ﬁkﬂk 0k+1 On

0 0, - O,

0 0k+1 On_nxn
y2 - y(n+)

Y3 - 1f(n+2)

]/(n‘+l) ]/(n‘+2) 1/(2r'1+1) o

_ZE:O ﬁoﬂr grO
ztzgﬂlﬁr grO

Zt:oﬂkﬂrgro
0

Zt:oﬂoﬁrgrl ztzoﬁoﬂrgm_
Zt:oﬁlﬂrgrl Zl::oﬂlﬂrgrn

Zl::oﬁkﬁrgrl Z‘::oﬂkﬂr (o
0 0 0

(4.11)

(4.12)
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sk BB v BB s BB I+ j+1
Zr:°r+1 Zr:°r+2 Zr:Ok+r+1 N Z a; BB
Zk BB Zk BB Zk BB 2 S0y 41
041 Or42 kir+ll| o T g BB
1 : : : N 1= U|+j+1
9;¢'¢! « BB « BB « BB e
J Loy r+1 Zr:"r+2 Zr:"k+r+1 : a.Bf
0 0 0 0 L, | Z'OZJO|+J+1
B.B;
i 0 0 0 0 | ZI OZJ 0|+J+l
0
0

zk B zk Pl zki Bl

=041 =0p42 Ok +r+1
k ﬂlﬂr k ﬁlﬂr k ﬂlﬂr
ZH’ r+1 z’=°r+2 z”°k+r+1
= ' : A : (4.13)
Zk ﬂkﬂr Zk ﬂkﬂr Zk ﬂkﬂr
=0r41 Cr42 Ok +r+1
0 0 0 0
| 0 0 0 0 Joen
therefore, we have
aﬂo
ZI OZJ 0|+J+1
BB,

PIRIR

Lemma 9. The matrix
(& ®&)6
Ojj &e&y
in Theorem 9 is normalised
Proof

Suppose that we have two polynomials g,g" of order k<n such that
g=yg’ forsome yeR\{0}. Then, we propose that

(Eo&)e_(&o&)e
0ii Sk 93k Sic
and further such that projectors can be contructed by normalising the coefficient

vector &, , which I will denote by &, with & e S* @7, {0} with S* begin
the Hypersphere in R*".

~ Ko~
Sk ®2:k+1 {O} = {é:k ®2:k+1 {0} € Rnﬂ IZﬂr2 = 1}
r=0
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where ,6A'k2 are the squares of the normalised coefficient vector.

Proof. Let f,gelP,[R] such that deg(g)<deg(f). f(x)=2 o x*
and g(x)= Zl::o B.x". Using the mapping & . We find that
é_(zt:oﬁrxr) = (B, Br-+ B;) therefore
& O {0} =(By. B+ B,0,-+-,0) e R™ . We can calculate its Kronecker
product.

_ﬁoﬂo ﬁoﬂl ﬂoﬁk 0k+1 On
ﬁlﬂo ﬂ1ﬂ1 ﬂlﬁk 0k+1 On

§_k®2:k+1{0}®§_k@2:k+1{0}: ﬂkﬂo ﬂkﬂl ﬂkﬂk 0k+1 On
0 0 0 ()k+1 ... 0

0 0 - 0 0. -0

Therefore, we have

& @ (0 ®F @, (O} =22 |8.8, =|& ®&[

n
r=0 p=0

Performing the calculation we get

& @& =X > |85 (4.14)
r=0 p=0
d 4 k k 2
=25 +2% 2 |BA (4.15)
K 2
= (Zﬂrﬂrj (4.16)

This implies that
|&®&]=2 88 =Tr(& ®&)=Tr(E L. {0}®& ®L,, {0}).
It is clear that the matrix
gk @2:k+1 {O} ®§_k @rs]:kﬂ {O} — gk ®r51:k+1 {0} ®§_k @2:k+l {0}
Tr (é:k Ei_);]:kJrl {0} ® gk ®2:k+1 {O}) é‘llﬁ'ﬂl

is normalised. Hence, we may conclude that
(& ®5)C
Oij &
is also normalised. It also clear that if g,g’ are suchthat g=yg’, y e R\{0}

gives iék I {0} which implies that iffk are anti-podal points on the
hypersphere in R*". We, therefore, can see that
Eed)e (507)
gijfllé:kj gijé:k” k,J
Theorem 10. Given two polynomials ¢,9' € P,[R] such that
deg(g) =k ndeg(g')=k'<n then, given some f eP,[R], the projection of f

DOI: 10.4236/jamp.2023.111003

41 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.111003

J.-F. Niglio

onto Q+(' Isgiven by the following expression

= G®& L &O& &®& &®& ],
gijé:ligk gljgkék gljgkgk gljfkgk

Proof. Let g,g'e]P’n[R] with deg(g)=kAdeg(g')=k’<n such that

g= Zl::oﬂrxr and ¢'= Zl:;oﬂ;x' . We know that
g+9'=max(deg(k),deg(k’)). We also define f = 37 X" We, therefore,

have
max{k,k'} max{k,k'}
g+g'=g= Zﬂx +Zﬁ (B+B)x+ X Bx
r=0 r=0 s=min{k k'}+1
Therefore, we have
min{k k'} max{k,k’}
5(9+g’):§( (B +B)X + {Z} ﬁsxsj (4.17)
r=0 s=min{k,k'}+1

=8+ 85) s+ Bringes + mm{kk})'ﬁmmk,k'}w""ﬂmax{k,k'})TERWM (4.18)
Iwill denote this vector & ., therefore we have &0 @ 1.1 10} -
Gt O maqiya {0} ® G © a0}
The vector & o ©_ iy {0} can be written as
Gt O maiicya (0} =£(9)+£(9) = & (9) @i {0} + & (9) Byt {0}

For clearer notation, we write A=¢& (9)®,_,.; {0} and B=& (9)®, ., {0}.
Therefore, by the distributive law of the Kronecker Product, we get the follw-
ing matrix.

(A+B)®(A+B)=A®A+A®B+B®A+B®B

which in matrix form gives us
(A+B)®(A+B)

_ f_k ®é?k | M 1nk =0 + é?k ®§_k | My o =0 (4.19)
Mk =0 | M, ok =0 M, =0 | M ni =0

EQE M, . .=0 E . ®E, M, =0
| &®& | «:k S | Mo 420)
Mknk_0|Mnknk_0 k'=O|Mn—k’,n—k’=O

Clearly, & ®¢& isof order (k+1,k+1), & ®& isof order (k'+1,k+1),
this implies that & ®¢& isof order (k+1,k'+1) and & ®&, isof order
(k'+1,k'+1).

Normalising A A+ AQB+B®A+B®B gives and multiplying by the

metric tensor, we get

A®A A®B B®A BOB
9;5'¢’ gye's gy8"et gygtd”

It can be verified that
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A®A A®B  B®A B®B
—+ —+ —+ —

{gijé'i’ 9;¢'¢"  gyg'e gijf"é’lj

| _A®A  A®B  B®A  B®B |,
Tr((A®A)G) Tr((A®B)G) Tr((B®A)G) Tr((B®B)G)

This is equal to
1

—— : (A®A+B®A+A®B+B®B)G
0y (X s O ®E By

5. The Group
To formulate the group structure, we focus our attention to the subspaces of
P,[R] where we can define the subspaces as follows

Q, ={geP,[R]:deg(g)=k Vg e P, [R]}

Itis clear that Q, c P, [R] . Then, we also know that
E(Q) L1 {0} = (B B+ B0+, 0) e R™

Then projectors on €, can be constructed as G, which represents the set
of all projectors in the subspace Q, .

Theorem 11. The set G, is a group under the mapping
v :(Gaq, xGq, ) = Gq,

such that

g s (0= ¢(3<g)) £(9)®00 {0} ®F(9)®L,.. {0}
C|#e8(-0)=9(-F

) (5(9)@2:“1 {0}®6?(9)@2:k+1 {O})

‘//(Pg ' Pg’) =Py + Py +Fyy +Fy =Py

where the set G, is defined as G, = {P :P=¢o&(g),Vge Qk} .

Proof We write A= é?(g)@s:kﬂ {0} and A'= E(9)® {0} .

Given some @,9'€Q,,itisclear g+g'eQ,. We also know that &£(g)=A
and ¢& (g ') = A’, hence projecting in the direction of g+g’ is the projection of

A+ A’ . From the above section we have

(A+A)®(A+A)
_ Ek ®§_k My 10 =0 " gk’ ®§_k My 10 =0 (5.1)
Mn—k,k+1 =0 Mn—k,n—k =0 Mn—k,k+1 =0 Mn—k,n—k =0
g_k ®§_k, Mk+1,n—k = 0 gk' ®§_k' I\/IkJrl,n—k = 0
+ + (5~2)
Mn—k,k+1 = 0 I\/In—k,n—k = 0 I\/In—k,kJrl = 0 I\/In—k,n—k = 0

In the same way that g+g'=0'+g in commutative in Q,, we can see
that (A+A)®(A+A)=(A'+A)®(A'+A) hence it is also commutative. In a
similar way, we can argue associativity. It is also clear that for k =0,---,n the

zero polynomial is each Q,,Vk =0,---,n. The zero polynomial will give the
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identity element since (A+5) ®(A+5) =A®A. The inverse element will,
simply be, —A=-&, (9)®_ .1 =£(-9)=-£(9g) . Hence, we see that
(A+(-A))®(A+(-A))=Ph,.

We conclude that the G, isa group.

Given that for each k=0,---,n we can say that Q, cQ, =k <k’ and
Q, = P,[R]. This tells us that G, <G, whenever k <k’.Then, from group
theory, we know that the union of two subgroups is a group if one is a subset of

the other. Hence, we have the following result

G=UGQk

iel
is also a group. Indeed, we have
Gy, €6y, =Gy, ©-- =Gy

n

6. Conclusion

In conclusion, given the results above, we find that projections in polynomials
spaces are very similar to traditional projections in Euclidean spaces with the right
construct. This operation can be achieved via an integral operator or a Kroneck-
er Product. We have also noticed that very similarly, we are using hyper-spheres
in P**' to construct such operators. Highlighting a paper, previously published
in ALAMAT, discussing the differential geometry aspect of projections and the
manifold structure, such a link can be established for polynomial spaces.
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Notation

The notation system is as follows:

1) P,[x],P,[R]: The space of polynomials of degree at most 1 over the real
numbers.

2) B(x):The standard basisin P, [x].

3) f(x),g(x),h(x): arbitrary elements of P,[R].

4) 1 (X, 6‘) : Operator on P, [R] on interval [a, b] with parameter & .

5) deg( f): Degree of the polynomial f(x) in P,[x].

6) ¢,&: Mappings between P [x] and R"™.

7) @;: Metric Tensor on P, [X] .

8) f (X), g (X), h(X) : arbitrary elements of P, [R]

9) £ ®¢ : The Kronecker Product of the vector & .

10) Q, : The subspace of polynomials of degree k.

11) G, : The set of projectors onto €, .
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