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Abstract 
When analysing the thermal conductivity of magnetic fluids, the traditional 
Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive eq-
uation’s approximate solution is the primary goal of this work. The quintic 
B-spline collocation method is used for solving such nonlinear partial diffe-
rential equations. The developed plan uses the collocation approach and finite 
difference method to solve the problem under consideration. The given prob-
lem is discretized in both time and space directions. Forward difference for-
mula is used for temporal discretization. Collocation method is used for spatial 
discretization. Additionally, by using Von Neumann stability analysis, it is dem-
onstrated that the devised scheme is stable and convergent with regard to 
time. Examining two analytical approaches to show the effectiveness and per-
formance of our approximate solution. 
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1. Introduction 

Numerical Analysis is considered an important branch in mathematics which 
plays an important solution in finding an approximate solution for feature non-
linear PDEs which has no exact solution. Most numerical solution depends on 
interpolation and spline interpolation plays an important base in polynomial in-
terpolation in most mathematical branches such as numerical analysis, compu-
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tation, integration, differentiation, etc. Many physicists and mathematicians have 
paid their attentions to the Sharma-Tasso-Olver (STO) equation in recent years 
due to its appearance in scientific applications. The researchers who solved the 
Sharma-Tasso-Olver (STO) equation include Wazwaz (2007) who used the tanh 
method, the extended tanh method, and other ansatz involving hyperbolic and 
exponential functions efficiently used for the analytic study of this equation [1]. 
In [2], Yan investigated the Sharma-Tasso-Olver Equation (1) by using the 
Cole-Hopf transformation method. The simple symmetry reduction procedure 
is used in [3] to obtain exact solutions where soliton fission and fusion have 
been examined. Wang et al. examined the soliton fission and fusion thoroughly 
by means of the Hirotas bilinear method and the Bäcklund transformation me-
thod in [4]. The generalized Kaup-Newell-type hierarchy of nonlinear evolution 
equations is explicitly related to Sharma-Tasso-Olver equation from [5]. Chao 
Yue in [6] provided theta function representation of algebro-geometric solutions 
and related crucial quantities for the complex Sharma-Tasso-Olver (CSTO) hie-
rarchy. In [7] the simple symmetry reduction procedure is repeated by examin-
ing soliton fission and fusion to obtain the exact solutions for STO. Using the 
improved tanh function method in [8], the Sharma-Tasso-Olver equation with 
its fission and fusion has some exact solutions. In 2006 Klaus et al. developed the 
instability of algebraic solitons for integrable nonlinear equations in one spatial 
dimension that include modified KdV, focusing NLS, derivative NLS, and mas-
sive Thirring equations [8] [9]. In [9], the Korteweg-de Vries-Burgers’ (KdVB) 
equation is solved numerically by a new differential quadrature method based on 
quintic B-spline functions. In [10] S. I. Zaki introduced the quintic B-spline fi-
nite elements scheme for the KdVB equation. R.C. Mittal and R.K. Jain discussed 
a collocation method for solving some Rosenau type non-linear higher in [11]. 
In [12] H. Tariq and G. Akram solved the fourth-order partial differential equa-
tions with Caputo time fractional derivative on a finite domain with quintic po-
lynomial spline technique. Krwan Jwame and Najim Abdullah developed the 
B-spline method for solving higher order differential equations in [13]. In [14], 
K. R Raslan et al. proposed the numerical solution of a coupled system of Burg-
ers’ equation by using the quintic B-spline collocation scheme on the uniform 
mesh points. Ding and Wong solved a time-fractional nonlinear Schrödinger 
equation by using the quintic non-polynomial spline in [15]. In 1946, J. H. Ahl-
berg [16] introduced spline functions. Mathematically, a spline function consists 
of polynomial pieces on sub intervals joined together with certain continuity 
conditions. Second order linear two-point boundary value problems were solved 
using extended cubic B-spline interpolation method by Hamid et al. in 2011 
[17]. In the same year, Eisa et al. used uniform quartic spline polynomial func-
tions to develop some consistency relations, which are then used to derive a nu-
merical method for approximating the solution [18]. In 2006, Caglar et al. con-
sidered the B-spline interpolation and compares this method with finite differ-
ence, finite element and finite volume methods which applied to the two-point 
boundary value problem [19]. Fauzi and Sulaiman, discussed the application of 

https://doi.org/10.4236/jamp.2022.1012258


T. S. Eldanaf et al. 
 

 

DOI: 10.4236/jamp.2022.1012258 3922 Journal of Applied Mathematics and Physics 
 

Half-Sweep Modified Successive Over Relaxation (HSMSOR) iterative method 
for solving second order two-point boundary value problems [20]. Recently, in 
2021 Hadhoude et al. showed how to approximate the solution to the genera-
lized time-fractional Huxley Burgers’ equation by a numerical method based on 
the cubic B-spline collocation method and the mean value theorem for integrals 
[21]. Next year, Hadhoude et al. introduced the cubic non-polynomial spline 
functions to develop a computational method for solving the fractional modified 
Burgers’ equation [22], Mustafa Inc and, Zeliha S Korpinar, Maysaa, Mohamed 
Al Qurashi and Dumitru Baleanu, introduced numerical solutions by Residual 
power series method of the sharma Tasso Oliver equation [23]. Doğan Kaya et 
al. compared exact and numerical Solutions for the Sharma-Tasso-Olver Equa-
tion [24]. Alzaid, N. and Alrayiqi, B. introduced Adomian decomposition me-
thod (ADM) implemented to approximate the solution of the KdV equations of 
the seventh order, which are Kaup-Kuperschmidt equation and seventh order 
Kawahara equation, the ADM is very efficient [25]. An, J. and Guo, X. discussed 
the numerical solution of the boundary value problem that is two-order fuzzy 
linear differential equations [26]. 

This paper is designed to determine the approximate solution of Shar-
ma-Tasso-Olive (STO) equation. The approximate solution is based on forward 
difference formula and B-spline collocation method. The paper is divided into 
four sections. The quintic B-spline basis function was given in Section 2. The 
stability and convergence analysis using the Von-Neumann method is discussed 
in Section 3. In Section 4 we apply an illustration example to discuss the applica-
bility of our designed method.  

The generalized STO equation [1] [2] [3] is defined as: 

2 23 3 3 0x x xx xxx
U U U U UU U
t

α α α α∂
+ + + + =

∂
           (1.1) 

where, α  is a parameter that 0α > . 

2. Description of Method 

In quintic B-splines collocation method the approximate solution which is ob-
tained as a linear combination of quintic B-spline basis functions ( )i xφ  ap-
proximation space under consideration and undetermined coefficients ( )iw t , 
From the above basis, the approximation solution ( ),nU x t  can be written in 
terms of linear combination of quentic B-Spline base function as follows: 

( ) ( ) ( )2
2, n

n i iiU x t x w tφ+

=−
= ∑                  (2.1) 

And its derivatives be in the form: 

( ) ( ) ( ) ( )2 2
2 2,n n

t i i x i ii iU x w t U x w tφ φ+ +

=− =−
′ ′= =∑ ∑          (2.2) 

( ) ( ) ( ) ( )2 2
2 2,n n

xx i i xxx i ii iU x w t U x w tφ φ+ +

=− =−
′′ ′′′= =∑ ∑         (2.3) 

In our work, we will use the quintic B-spline polynomial as a base function to 
construct the approximate solution. quintic splines defined as follow: 
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( )
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( ) ( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]
( ) ( )

5
3 3 2

5 5
3 2 2 1

5 5 5
3 2 1 1

5 5 5 5
5 3 2 1 1

5 5 5 5
3 2 1 1 1 2

5 5
3 2

,

6 ,

6 15 ,
1

6 15 20 ,

6 15 20 ,

6 15

i i i

i i i i

i i i i i

i i i i i i i

i i i i i i

i i i

x x x x x

x x x x x x x

x x x x x x x x x
x x x x x x x x x x x xh

x x x x x x x x x x x

x x x x x x

φ

− − −

− − − −

− − − −

− − − +

− − − + + +

− −

− ∈

− − − ∈

− − − + − ∈
= − − − + − − − ∈

− − − + − − − ∈

− − − + −( ) ( ) ( ) [ ]5 5 5
1 1 2 2 320 6 ,

0 otherwise.
i i i ix x x x x x x− + + + +












− − − − ∈



 

where 1i ih x x −= − , then the quintic spline function and its derivatives at nodes 

ix  defined as in Table 1 as follows: 
By substitution in Equations (2.1) and (2.2), with the values of the  
, , ,U U U U′ ′′ ′′′  at nodel points determined in terms of iw  can be written by: 

( )

( ) { }

( ) { }

( ) { }

2 1 1 2

2 1 1 2

2 1 1 22

2 1 1 23

26 66 26
5 10 10

20 2 6 2

60 2 2

n n n n n
i i i i i i

x i i i i i

xx i i i i i i

xxx i i i i i

U x w w w w w

U x w w w w
h

U x w w w w w
h

U x w w w w
h

− − + +

− − + +

− − + +

− − + +

= + + + +

= − − + +

= + − + +

= − + −

         (2.4) 

Also we can define: 

( )( )
1 1

,
2

n n n n
n ni i i i
i i

w w w w
w w t

k

+ ++ −′= =  

2
x x xU U U=                        (2.5) 

On substituting global approximation (2.1) and its necessary derivatives (2.2) 
in (1.1), following set of the first order ordinary differential equations is ob-
tained as, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 22 2 2 2

2 2 2 2

2 2 2

2 2 2

3 3

3 0

n n n n

i i i i i i i i
i i i i

n n n

i i i i i i
i i i

x w t x w t x w t x w t

x w t x w t x w t

φ α φ α φ φ

α φ φ α φ

+ + + +

=− =− =− =−

+ + +

=− =− =−

   ′ ′ ′+ + ∗   
   

  ′′ ′′′+ + =  
  

∑ ∑ ∑ ∑

∑ ∑ ∑
 

Then the equation takes the form: 
 
Table 1. The values of iφ  and its derivatives at the knots. 

 2ix −  1ix −  ix  1ix +  2ix +  

( )i xφ  1 26 66 26 1 

( )i xφ′  5/h 50/h 0 −50/h −5/h 

( )i xφ′′  20/h2 40/h2 −120/h2 40/h2 20/h2 

( )i xφ′′′  −60/h3 120/h3 0 120/h3 60/h3 
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( )( ) ( ) ( )

( ) ( )

( ) ( )

( )

12 2 2
1

2 2 2

212 2

2 2

12 2

2 2

12

2

1 3
2

3
2

3
2

n nn n n
n n i i

i i i i k k
i i k

n nn n
i i

i k k
i k

n nn n
i i

i k k
i k

n nn
i i

i
i

w w
x w w x x w

k

w w
x x w

w w
x x w

w w
x

φ α φ φ

α φ φ

α φ φ

α φ

++ + +
+

=− =− =−

++ +

=− =−

++ +

=− =−

++

=−

 +  ′ ′− +   
  

 +  ′+   
  

 +  ′′+   
  

+′′′+

∑ ∑ ∑

∑ ∑

∑ ∑

∑ 0
2

 
= 

 

 

Let we define: 

( )

( ) ( )

2

2 1 1 2
2

2

2 1 1 2
2

26 66 26

5 10 10

n
n n n n n

k k i i i i i
k
n

n n n n
k k k i i i i

k

k

Z x w w w w w w

x w w w w w
h

φ

γ φ

+

− − + +
=−

+

− − + +
=−

= = + + + +

′= = − + − −

∑

∑
       (2.6) 

So the D.E be:  

( )( ) ( ) ( )( )

( ) ( )

( )( ) ( ) ( )( )

( )

2 2 2
1 1 2 1

2 2 2
2 2

1 1

2 2
2 2 2

2

2 2 2
2

2

1 3 3
2 2

3
2 2
1 3 3

2 2
3
2 2

n n n
n n n

i i i k i i k i
i i i

n n
n n

i k i i i
i i

n n n
n n n

i i i k i i k i
i i i

n
n

i k i
i

x w x w x Z w
k

x Z w x w

x w x w x Z w
k

x Z w

α αφ φ γ φ

α αφ φ

α αφ φ γ φ

α αφ φ

+ + +
+ + +

=− =− =−

+ +
+ +

=− =−

+ + +

=− =− =−

+

=−

′ ′+ +

′′ ′′′+ +

′ ′= − −

′′ ′′′− −

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑ ( )
2

2

n
n

i i
i

x w
+

=−
∑

    (2.7) 

So we can represent the components of the general solution ( ),U x t  and its 
derivatives by using Table 1 for the coefficients for , ,i i iφ φ φ′ ′′ ′′′ : 

( )
( )( )

( )( )

1 1 1 1 1
2 1 1 2

2 1 1 1 1
2 1 1 2

1 1 1 1 1
2 1 1 22

1 1 1
2 1 1 23

26 66 26

3 5
2

3 20 2 6 2
2

60 2 2
2

n n n n n
i i i i i

n n n n
k k i i i i

n n n n n
k i i i i i

n n n
i i i i

w w w w w

k Z w w w w
h

k Z w w w w w
h

k w w w w
h

α γ

α

α

+ + + + +
− − + +

+ + + +
− − + +

+ + + + +
− − + +

+ + +
− − + +

+ + + +

 + ∗− + + + + 
 
 + ∗ + − + + 
 

− + ∗ − + − + 
 

( )1n+

 

( )( )

( )( )

( )

2 1 1 2

2
2 1 1 2

2 1 1 22

2 1 1 23

26 66 26
3 5

2
3 20 2 6 2

2
60 2 2

2

n n n n n
i i i i i

n n n n
k k i i i i

n n n n n
k i i i i i

n n n n
i i i i

w w w w w
k Z w w w w

h
k Z w w w w w

h
k w w w w

h

α γ

α

α

− − + +

− − + +

− − + +

− − + +

= + + + +

 − ∗− + + + + 
 
 − ∗ + − + + 
 

− − ∗ − + − + 
 

 

After simplifying the previous equation we will get the following system of 
equations: 

1 1 1 1 1
2 1 1 2

2 1 1 2

n n n n n
i i i i i i i i i i

n n n n n
i i i i i i i i i i

a w b w c w d w e w

A w B w C w D w E w

+ + + + +
− − + +

− − + +

+ + + +

= + + + +
             (2.8) 
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where , , , , , ,, ,i i i i i i i i ia b c d e A B C D  and iE  given as follows:  

( )( ) ( )( )
( )( ) ( )( )

( ) ( )
( )( ) ( )( )

( )( )

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

2 2

2 2
1 2 3 1 2 3

2
1 2 3 1

1 , 1

26 2 2 2 , 26 2 2 2

66 6 , 66 6

26 2 2 2 , 26 2 2 2

1 , 1

i k k k i k k k

i k k k i k k k

i k i k

i k k k i k k k

i k k k i k

a r Z r Z r A r Z r Z r

b r Z r Z r B r Z r Z r

c r Z C r Z

d r Z r Z r D r Z r Z r

e r Z r Z r E r

γ γ

γ γ

γ γ

γ γ

= − + + + = + + − −

= − + + − = + + − +

= − = +

= + + + + = − + − −

= + + + − = − +( )( )2
2 3

1 2 32 3

15 30 30and , ,
2

k kZ r Z r

k k kr r r
h h h
α α α

− +

= = =

 (2.9) 

For this purpose, we will use initial and boundary conditions. Then the system 
of linear equation with N + 3 unknown for expression (2.4) becomes: 

1n nPY QY+ =                         (2.10) 

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

1 26 66 26 1 0 0 0 0
5 50 0 50 5 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 5 50 0 50 5
0 0 0 0 1 26 66 26 1

a b c d e
a b c d e

P
a b c d e

 
 − − 
 
 
 =  
 
 
 − − 
  

� � � � � � � � �

 

( )T
0 1 2 1, , , , ,n nY w w w w w−= �  

3. Stability Analysis 

The Von Neumann technique will be used to investigate the stability of our sys-
tem (2.8) as in [18] [19]: 

1 1 1 1 1
2 1 1 2

2 1 1 2

n n n n n
i i i i i i i i i i

n n n n n
i i i i i i i i i i

a b c d e

A B C D E

ω ω ω ω ω

ω ω ω ω ω

+ + + + +
− − + +

− − + +=

+ + + +

+ + + +
 

Where , , , , , ,, ,i i i i i i i i ia b c d e A B C D  and iE  given as (2.9):  
To apply Von Neumann technique, we must linearize all of the nonlinear 

terms of system (2.9) by a local constant as follow: 
2 ,k k k k kZ M Z Nγ + = =                    (3.1) 

According to the Von Neumann stability analysis, we have  

( )exp e , 1n n n q ih
i q ih qφω ε φ ε= = = −              (3.2) 

where φ  the waves number and h are the step size of x. 
By substituting (3.2) in the system (2.8) with coefficients (2.9) we will get: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 1 21 1 1 1 1

2 1 1 2

e e e e e

e e e e e

q i h q i h q i h q i h q i hn n n n n
i i i i i

q i h q i h q i h q i h q i hn n n n n
i i i i i

a b c d e

A B C D E

φ φ φ φ φ

φ φ φ φ φ

ε ε ε ε ε

ε ε ε ε ε

− − + ++ + + + +

− − + +

+ + + +

= + + + +
 

Dividing both sides of the last equation by en qi hφε , we get the following rela-
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tion: 

( )2 2

2 2

e e e e

e e e e

q h q h q h q h

q h q h q h q h

a b c d e

A B C D E

φ φ φ φ

φ φ φ φ

ε − −

− −

+ + + + ∗

= + + + +
 

So we can get the value of 𝜀𝜀 by the following relation: 
2 2

2 2

e e e e
e e e e

q h q h q h q h

q h q h q h q h

A B C D E Y
Xa b c d e

φ φ φ φ

φ φ φ φε
− −

− −

+ + + +
= =

+ + + + ∗
           (3.3) 

With linear coefficients: 

( )1 2 31i k ka r M r N r= − + + , ( )1 2 31i k kA r M r N r= + − −  

( )1 2 326 2 2 2i k kb r M r N r= − + − , ( )1 2 326 2 2 2i k kB r M r N r= + − +  

( )266 6i kc r N= − , ( )266 6i kC r N= +  

( )1 2 326 2 2 2i k kd r M r N r= + + +  ( )2 326 2 2 2i k kD M r N r= − − −  

( )1 2 31i k ke r M r N r= + + − , ( )1 2 31i k kE r M r N r= − − + . 

So we have: 
cos 2 sin 2 cos sin

cos sin cos 2 sin
cos 2 sin 2 cos sin

cos sin cos 2 sin

X a h qa h b h qb h c
d h qd h e h qe h

Y A h qA h B h qB h c
D h qD h E h qE h

φ φ φ φ
φ φ φ φ
φ φ φ φ
φ φ φ φ

= − + − +
+ + + +

= − + − +
+ + + +

         (3.4) 

After substitution by the previous coefficients and simplifying the equation we 
get the final values of X and Y we get: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 2 2

1 3 3

2 2 2

1 3 1 3

2 2 cos 2 52 4 cos 66 6

2 2 sin 2 4 1 4 sin

2 2 cos 2 52 4 cos 66 6

2 2 sin 2 4 4 sin

k k k

k k

k k k

k k

X r N h r N h r N

q r M r h r M r h

Y r N h r N h r N

q r M r h r M r h

φ φ

φ φ

φ φ

φ φ

 = + + + + − 
 − − + + − − − 

 = − + − + + 
 − − + + 

   (3.5) 

We can put ε  in the following form: 

* *

Y A qB
X A qB

ε +
= =

+
 

with  

( ) ( ) ( )2 2 22 2 cos 2 52 4 cos 66 6k k kA r N h r N h r Nφ φ = − + − + +   

( ) ( )1 3 1 32 2 sin 2 4 4 sink kB r M r h r M r hφ φ = − − + +   

( ) ( ) ( )*
2 2 22 2 cos 2 52 4 cos 66 6k k kA r N h r N h r Nφ φ = + + + + −   

( ) ( )*
1 3 32 2 sin 2 4 1 4 sink kB r M r h r M r hφ φ = − + + +   

It is very clear that X and Y are complex numbers so: 
2 2

2 2

A B

A B
ε

∗ ∗

+
=

+
                    (3.6) 

It is clear that the value of B B∗= −  so 2 2B B∗=  so the value of ε  de-
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pends only on the value of 2A  and 2A∗ , also the only condition that this me-
thod is stable that the value of 1ε ≤ , so we must proof that 2 2A A∗≤ . 

The previous condition is very difficult to prove but it is easy to prove that 
2 2A A∗=  by taking the value of 2r  near zero and this happens when the value 

of (k) the step size of time (t) much less the value of (h) the step size of (x) as  

from Equation (2.5) the value of 2 2

30kr
h

= . 

This tends to reduce the step size of t to the maximum possible degree to 
guarantee stability. 

4. Applications and Discussion 

In this section, we apply the suggested method to solve STO equation with dif-
ferent initial value and exact solution, and we will show that our method pro-
duces a good approximation. Our proposed scheme’s accuracy is measured by 
computing the 2l  error norm and maximum absolute error for several choices. 

Error norms are defined as follows:  

( ) ( )
2

2 02
,ex app i ii ex app

nl u U h u U
=

= − = −∑  

( ) ( )
0
max .ex app i iex appi n

l u U u U∞ ∞ ≤ ≤
= − = −  

The computations associated with the experiments were performed in the 
Mathematica software package. 

Example 1: Consider Sharma-Tasso-Oliver Equation (STO) [23] 

2 23 3 3 0x x xx xxx
U U U U UU U
t

α α α α∂
+ + + + =

∂
 

Subject to initial condition: 

( ) 10,
1 e xu t −=
+

 

The exact solution for this equation is given by: 

( ) 1,
1 e x tU x t − +=
+

 

The numerical results are presented in Tables 2-4 which show the compari-
son between the approximate solution and exact solution values at different val-
ues of k t= ∆ , within 1α = , 0.1h x= ∆ =  and 0.00000001k t= ∆ = . Table 5 
show a comparison between the maximum absolute error and 2l  error norm at 
different values time levels. Figures 1-3 show that the numerical approximate 
solution and exact solution are randomly same at different values of time. Figure 
4 shows the behavior of approximate solutions at different time levels. 

Example 2: [23] 
Consider the STO equation with different initial value and exact solution as 

follow: 

2 23 3 3 0x x xx xxx
U U U U UU U
t

α α α α∂
+ + + + =

∂
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Figure 1. The behaviour of approximate and exact solutions at 71.0 10t −= × , 1α = , 
0.1h =  and 0.00000001k = . 

 

 

Figure 2. The behaviour of approximate and exact solutions at 61.0 10t −= × , 1α = , 
0.1h =  and 0.00000001k = . 

 

 

Figure 3. The behaviour of approximate and exact solutions at 0.0001t = , 1α = , 
0.1h =  and 0.00000001k = . 
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Figure 4. The behaviour of approximate solutions at different time levels when 1α = , 
0.1h =  and 0.00000001k = . 

 
Table 2. Comprising between the approximate and exact solutions with errors at  

71.0 10t −= × , 1α = , 0.1h =  and 0.00000001k = . 

x Approximate Exact Error 

0.1 0.5249791488547055 0.5249791625413359 1.36866 × 10−8 

0.2 0.5498339628667117 0.5498339725608206 9.69411 × 10−9 

0.3 0.5744424833260626 0.5744424923658276 9.03976 × 10−9 

0.4 0.5986876293875704 0.5986876360863772 6.69881 × 10−9 

0.5 0.6224593030471113 0.6224593077014831 4.65437 × 10−9 

0.6 0.6456562810552111 0.6456562833473711 2.29216 × 10−9 

0.7 0.6681877502916137 0.6681877499968785 2.94735 × 10−10 

0.8 0.6899744621041239 0.6899744597366424 2.36748 × 10−9 

0.9 0.7109494879255958 0.7109494820749729 5.85062 × 10−9 

1 0.7310585609349305 0.7310585589688111 1.96612 × 10−9 

 
Table 3. The Comprising between the approximate and exact solutions with errors at  

61.0 10t −= × , 1α = , 0.1h =  and 0.00000001k = . 

x Approximate Exact Error 

0.1 0.5249788044652626 0.5249789381028935 1.33638 × 10−7 

0.2 0.5498336516535283 0.549833749795893 9.81424 × 10−8 

0.3 0.5744421824914142 0.5744422723533291 8.98619 × 10−8 

0.4 0.5986873525956109 0.5986874198516825 6.72561 × 10−8 

0.5 0.6224590498410654 0.6224590961981136 4.6375 × 10−8 

0.6 0.6456560542785053 0.6456560774415216 2.3163 × 10−8 

0.7 0.6681875538674655 0.6681875504552555 3.41221 × 10−9 

0.8 0.6899742898556037 0.6899742672178754 2.26377 × 10−8 

0.9 0.7109493583958809 0.7109492971246533 6.12712 × 10−8 

1 0.7310583839841464 0.7310583820180263 1.96612 × 10−9 
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Table 4. The Comprising between the approximate and exact solutions with errors at  
0.0001t = , 1α = , 0.1h =  and 0.00000001k = . 

x Approximate Exact Error 

0.1 0.5249753748166394 0.5249766937179152 1.3189 × 10−6 

0.2 0.5498305242370441 0.5498315221455173 9.97908 × 10−7 

0.3 0.5744391826314204 0.5744400722267223 8.89595 × 10−7 

0.4 0.5986845798180531 0.5986852575026235 6.77685 × 10−7 

0.5 0.6224565211257466 0.6224569811618548 4.6003 × 10−7 

0.6 0.6456537826134064 0.6456540183800584 2.357666 × 10−7 

0.7 0.6681855954511939 0.6681855550357042 4.04154 × 10−7 

0.8 0.6899725577174401 0.6899723420265835 2.15690 × 10−7 

0.9 0.7109480723990547 0.7109474476175955 6.2478 × 10−7 

1 0.7310566144722581 0.7310566125061296 1.9661 × 10−9 

 
Table 5. The obtained 2l  and l∞  errors at different time steps k t= ∆  and 1α = , 

0.1h = . 

k t= ∆  2l  error norm Max. abs. error 

1 × 10−8 1.24425 × 10−9 2.50000 × 10−9 

5 × 10−8 3.60618 × 10−9 7.01476 × 10−9 

9 × 10−8 6.28548 × 10−9 1.23521 × 10−8 

1 × 10−7 6.96308 × 10−9 1.36862 × 10−8 

5 × 10−7 3.43304 × 10−8 6.70310 × 10−8 

9 × 10−7 6.17481 × 10−8 1.20322 × 10−7 

0.000001 6.86028 × 10−8 1.33638 × 10−7 

0.000005 3.42689 × 10−7 6.63631 × 10−7 

0.000009 6.16534 × 10−7 1.18849 × 10−6 

0.0001 6.84959 × 10−7 1.31890 × 10−6 

 
Subject to initial condition: 

( ) ( )0, 1 tanhu t x= − +  

The exact solution for this equation is given by: 

( ) ( ) ( )
2,

1 cosh 8 2 sinh 8 2
U x t

t x t x
−

=
+ − − −

 

The numerical results are presented in Tables 6-8 which show the compari-
son between the approximate solution and exact solution values at 1α = , 

0.1h x= ∆ =  and 0.00000001k t= ∆ = . Table 9 shows a comparison between 
the maximum absolute error and 2l  error norm at different values time levels. 
Figures 5-7 show that the numerical approximate solution and exact solution 
are randomly the same at different values of time. Figure 8 shows the 3D beha-
vior of approximate solutions at different time levels. 
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Figure 5. The behaviour of approximate and exact solutions at 71 10t −= ×  with 1α = , 
0.1h = . 

 

 

Figure 6. The behaviour of approximate and exact solutions at 61 10t −= ×  with 1α = , 
0.1h = . 

 

 

Figure 7. The behaviour of approximate and exact solutions at 0.00001t∆ =  with 
1α = , 0.1h = . 
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Table 6. The comprising between the approximate and exact solutions with errors at  
71 10t −= ×  and 1α = , 0.1h = . 

X Approximate Exact Error 

0.1 −0.9003239011700949 −0.9003324014015763 8.50023 × 10−6 

0.2 −0.8026198749681477 −0.8026250641923195 5.18922 × 10−6 

0.3 −0.7086831923373599 −0.7086877536032365 4.56127 × 10−6 

0.4 −0.6200481204620889 −0.6200513800003417 3.25954 × 10−6 

0.5 −0.5378805844147091 −0.5378831573191416 2.5729 × 10−6 

0.6 −0.4629488207007662 −0.4629507176331309 1.89693 × 10−6 

0.7 −0.3956310142120661 −0.39563247677873387 1.46257 × 10−6 

0.8 −0.33596238431652836 −0.3359634533542775 1.06904 × 10−6 

0.9 −0.28370142511481006 −0.28370232456797584 8.9945 × 10−7 

1 −0.23840584404423507 0.23840601203402295 1.67989 × 10−7 

 
Table 7. The Comprising between the approximate and exact solutions with errors at  

61 10t −= ×  with 1α = , 0.1h = . 

X Approximate exact Error 

0.1 −0.9002504780675539 −0.9003359656417863 8.54875 × 10−6 

0.2 −0.8025767352176667 −0.8026285239500627 5.17887 × 10−6 

0.3 −0.708645412135447 −0.708691048100522 4.56359 × 10−6 

0.4 −0.6200218727210606 −0.620054460305121 3.25875 × 10−6 

0.5 −0.5378602548079978 −0.537885988536737 2.57337 × 10−6 

0.6 −0.46293432379048866 −0.4629532793191295 1.89555 × 10−6 

0.7 −0.39562010376657514 −0.3956347618473343 1.46580 × 10−6 

0.8 −0.3359548541057984 −0.3359654659587617 1.061185 × 10−6 

0.9 −0.28369486530106436 −0.2837040774760006 9.21217 × 10−7 

1 −0.2384073559560102 −0.23840752394671919 1.67990 × 10−7 

 
Table 8. The Comprising between the approximate and exact solutions with errors at  

0.00001t =  with 1α = , 0.1h = . 

X Approximate exact Error 

0.1 −0.8995213036517695 −0.9003720042142316 8.50700 × 10−5 

0.2 −0.802128865390869 −0.8026635062211873 5.34640 × 10−5 

0.3 −0.7082701011953134 −0.7087243595167709 4.54258 × 10−5 

0.4 −0.6197534089903017 −0.6200856060823358 3.32197 × 10−5 

0.5 −0.537656212633913 −0.5379146158215734 2.58403 × 10−5 
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Continued 

0.6 −0.46278732644419796 −0.46297918136730526 1.91854 × 10−5 

0.7 −0.39550965012926387 −0.3956578669883961 1.48216 × 10−5 

0.8 −0.3358795169387979 −0.33598581616684337 1.062992 × 10−5 

0.9 −0.2836276012488011 −0.2837218018316331 9.42005 × 10−6 

1 −0.2384226435296663 −0.23842281152968955 1.6800002 × 10−7 

 
Table 9. The obtained 2l  and l∞  errors on different time steps k t= ∆ . 

k t= ∆  2l  error norm Max. abs. error 

1 × 10−7 3.80932 × 10−6 8.50023 × 10−6 

2 × 10−7 7.62879 × 10−6 1.70714 × 10−5 

3 × 10−7 1.14465 × 10−5 2.56274 × 10−5 

4 × 10−7 1.52661 × 10−5 3.41928 × 10−5 

5 × 10−7 1.90832 × 10−5 4.27431 × 10−5 

6 × 10−7 2.29021 × 10−5 5.13026 × 10−5 

7 × 10−7 2.67184 × 10−5 5.98472 × 10−5 

8 × 10−7 3.05365 × 10−5 6.84009 × 10−5 

9 × 10−7 3.43519 × 10−5 7.69394 × 10−5 

0.000001 3.81692 × 10−5 8.54876 × 10−5 

 

 

Figure 8. The 3D behaviour of approximate solutions at different time levels and 1α = , 
0.1h = . 
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5. Conclusion 

The Quintic B-spline collocation method is used in this study to numerically 
solve the Sharma-Tasso-Olive equation. For the spatial variables and derivatives, 
we used quintic B-splines, which results in a set of first-order ordinary differen-
tial equations. The finite difference approach and the collocation method are the 
foundations of the developed plan for solving the problem under consideration. 
Analysis of stability demonstrated that the proposed scheme is infallibly stable. 
By calculating 2L  and L∞  and comparing the error norms with past works, 
the precision and effectiveness of the proposed method have been demonstrated, 
and approximate solutions are explored. The acquired numerical results demon-
strate the present method’s remarkable performance as a numerical strategy for 
solving the (STO) problem and its applicability to a variety of situations. 
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