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Abstract

This paper is concerned with the existence and upper semi-continuity of
random attractors for the nonclassical diffusion equation with arbitrary po-

lynomial growth nonlinearity and multiplicative noise in H* (R" ) First, we

study the existence and uniqueness of solutions by a noise arising in a conti-
nuous random dynamical system and the asymptotic compactness is estab-
lished by using uniform tail estimate technique, and then the existence of
random attractors for the nonclassical diffusion equation with arbitrary po-
lynomial growth nonlinearity. As a motivation of our results, we prove an ex-
istence and upper semi-continuity of random attractors with respect to the
nonlinearity that enters the system together with the noise.

Keywords

Random Attractors, Nonclassical Diffusion Equations, Asymptotic
Compactness, Upper Semi-Continuity

1. Introduction

In this paper, we investigate the asymptotic behavior of solution to the following
stochastic nonclassical diffusion equations with arbitrary polynomial growth non-

linearity and multiplicative noise defined in the entire space R":

du+(au—Au—Au,)dt =(g(u)+ f (x))dt+buodw (t), (1.1)
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with the initial value condition
u(x,0)=uy(x), xeR", (1.2)

where —A is the Laplacian operator with respect to the variable x e R",
u=u(x,t) is a real function of xeR" and t>0; a,b are proper positive
constants; f €L (Rn); g is a nonlinear function satisfying certain conditions;
W (t) is a two-sided real-valued Wiener process on a probability space (Q,F,P),
where Q= {a) eC(R,R):w(0)= 0} , F istheBorel o -algebrainduced by the
compact-open topology of €, and P is the corresponding Wiener measure on
F; o denotes the Stratonovich sense in the stochastic term. We identify w(t)
with W (t), ie, W(t)=W (t,0)=w(t), teR.

The nonclassical diffusion equation is an important mathematical model which
depicts such physical phenomena as non-Newtonian flows, solid mechanics, and
heat conduction, where the viscidity, the elasticity and the pressure of medium
are taken into account. Equations (1.1) is known as the nonclassical diffusion
equation when (& > 0) and the reaction-diffusion equation when (& =0), Equ-
ations (1.1) this kind of equation has been studied by many researchers and sev-
eral excellent results have been obtained in the recent twenty years, see Refs. [1]
(2] [3] [4].

Since Equations (1.1) contains the term -Au,, it’s different from the usual
reaction-diffusion equation essentially. For example, the reaction-diffusion equ-
ation has some smoothing effect, e.g., although the initial data only belongs to a
weaker topology space, the solution with initial conditions will belong to a strong-
er topology space with higher regularity. The existence, long-time behavior and
regularity of solutions of Equations (1.1) have been considered by some recent
related works [5]-[16] and the references therein. However, for Equations (1.1),
if the initial data u, belongs to Hl(Rn ), then the solution u(x,t) is always
in Hl(R”) and has no higher regularity because of —Au, . There are a great
number of results concerning the existence of random attractor involving sto-
chastic partial differential equations, we refer the readers to [17]-[32]. In [20],

the author has proved the existence of random attractor for the nonclassical
1 1
. . . . . > 2 + >
diffusion equation with memoryin M, = D(A2 )x L, (R , D(A2 B on bounded

domain.

In the case of unbounded domains established the existence of pullback at-
tractor for the stochastic nonclassical diffusion equation in [17], and existence of
random attractor with additive noise in [18]. For the upper semicontinuity of
corresponding attractors between autonomous and perturb non-autonomous
systems, we can refer to [16] [22] [23]. However, there are fewer results on the
existence and upper semi-continuity of pullback attractors for stochastic non-
classical diffusion equation with multiplicative noise on unbounded domain also
gives some difficulties since the embedding is no longer compact. Consequently,
for Equations (1.1), we cannot use the compact Sobolev embedding to verify the
asymptotic compactness of the solutions. Most recently, by using the tail-esti-
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mates method, and some omega-limit compactness argument and useful esti-
mates of nonlinearity of the random dynamical system, which shows that the
solutions are uniformly asymptotically small when space and time variables ap-
proach infinity, the reader can refer to [23] [24] [25] [26].

This paper is organized as follows. In Section 2, we recall some basic concepts
and properties for general random dynamics system. In Section 3, we provide
some basic settings about Equations (1.1) and show that it generates a random
dynamical system on H' (Rn ) . In Section 4, we prove the uniform estimates of
solutions, which include the uniform estimates on the tails of solutions. In Sec-
tion 5, we first establish the asymptotic compactness of the solution operator by
given uniform estimates on the tails of solutions, and then prove the existence of
a random attractor. The existence and upper semicontinuity (in Hl(Rn)) of

random attractors are given in the last section.

2. Preliminaries

As mentioned in the introduction, our main purpose is to prove the existence of
the random attractor. For that matter, first, we will recapitulate basic concepts
related to random attractors for stochastic dynamical systems. The reader is re-
ferred to [19] [22] [26] [29] for more details. Let (X ’””x ) be separable Hilbert
space with the Borel o -algebra B(X), and (Q,F,PP) be a probability space,
in the sequel, we use |-| and (-,-) to denote the norm and inner product of
L? (Rn ) , respectively.

Definition 2.1 (Q, F.P(4 )1€R) is called a metric dynamical system if
JRxQ->Q is (B(R)X .7:,.7:) -measurable, §, is the identity on Q,
G, =808 forall s,teR and $P=P forall teR.

Definition 2.2 A continuous random dynamical system (RDS) on X over a

metric dynamical system (Q, F.P(4 )tER) is a mapping
R xQxX > X, (t,0,%x) ¢(t,@,x),

which is (B (R* ) x FxB(X),B(X )) -measurable and satisfies, for [P -a.e.
weQ,

1) ¢(0,m,-) istheidentity on X

2) g(t+s,0,)=¢(t, %0, )od(s o) foral t,seR",

3) ¢(t,w,-): X — X iscontinuous forall teR".

Hereafter, we always assume that ¢ is continuous RDS on X over
(QFB(8),).

Definition 2.3 A set-valued mapping {D(a))} 02" 0> D(a)), is said
to be a random set if the mapping @ d (u, D(a))) is measurable for every
ue X .If D(w) isalso closed (compact) for each weQ, {D(a))} is called a
random closed (compact) set. A random set {D(a))} is said to be bounded if
there exist U, € X and arandom variable R, (@)>0 such that
D(w)c{ueX:Ju-t, <R (@)} forall @cQ.

Definition 2.4 A random bounded set {D(a))} is called tempered provided
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for P-ae, weQ,

lim,,.,e”d(D(%,0))=0 forall >0,

t—+0

where d (D) = sup{||b||x ‘be D} )

Definition 2.5 Let ® be a collection of random subset of Xand {K (a))} €®.
Then {K (a))} is called a random absorbing set for ¢ in ® forevery De®
and P-ae, weQ, there exist t,(w) such that ¢(t,19_ta), D(S_ta))) cK(w)
forall t>t,(w).

Definition 2.6 A random set {Kl (a))} is said to be a random attracting set if

for every tempered random set {D (a))} ,and P-ae, weQ,wehave
lim d,, (¢(t. 9,0, D(8,0),K, (@))) =0,

where d,, isthe Hausdorff semi-distance given by
d, (E,F)=sup,inf,
Definition 2.7 Let ® be the set of all random tempered sets in X. Then ¢

is said to be asymptotically compact in Xiffor P-ae. weQ,

|u—v||X forevery E,Fc X .

{¢(tn,t97tna),xn)}:_ has a convergent subsequence in X whenever t, — o,
and X, e B(.Sltna;j with {B(a))} €e®D.

Definition 2.8 A random compact set {A(a))} is said to be a random at-
tractor if it is a random attracting set and ¢(t, a),A(a))) =A(%,w) for P-ae.
weQ andall t20.

Theorem 2.9 Let ¢ be a continuous random dynamical system on X over
(Q,]:,IP’,(St )teR). If there is a closed random tempered absorbing set {K (a))}
of ¢ and ¢ is asymptotically compact in X, then {A(a))} is a random at-
tractor of ¢, where

A(w) = ﬂU¢(1, 9 .o, K (S_Ta))), weQ.

t>0 7t

Moreover, {A (a))} is the unique attractor of ¢.

Lemma 2.10 ([21]) Let (X,”"X) be a Banach space and ¢, be an auto-
nomous dynamical system with the global attractor .4, in X. Given b >0, sup-
pose that ¢, is the perturbed random dynamical system with a random attrac-

tor A €D andarandom absorbingset E, € D.Thenfor P-ae. weQ,
dist(A, (@),4,)—>0, asbl0

if the following conditions are satisfied:

1) For P-ae. weQ, t>0, b, >0, and x,,xe X with x, = X, it hold
that limg, (t,w)x, =¢ (t)x

2) "ln“ﬁzre exists some deterministic constant csuch that, for P-a.e. weQ,

Iimsup"Eb (a))"X <c,
b—0*

where "Eb (a))"x = sup "X"x;

3) There exists a“ﬁg@o such that, for P-ae. @eQ, |J A (@) is pre-
0O<b<by

compact in X.
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3. Random Dynamical System

In this section, we show that there is a continuous random dynamical system
generated by the stochastic nonclassical diffusion equation defined on R" with

arbitrary polynomial growth nonlinearity and multiplicative noise:

du+(au—Au—Au,)dt =(g(u)+ f (x))dt+buedw (t), (3.1)

with the initial value condition

u(x,0)=u,(x), xeR", (3.2)

where a,b are proper positive constants, f e L (R”) and g(u) is a nonli-

near function satisfying the following conditions are the same as those in [24]:

~By|s|" = 6,5 < g(s)s<-As|" +6,|s|" for seRand p>2, (3.3)
~Buls|" " ~6,[s|< g(s)<-B " +8s| forseRand p>2, (3.4)
g'(s)<L forseR, (3.5)

where L,z (i =12,3, 4) are a non-negative constant.
To model the random noise in Equation (3.1), we need to define a shift oper-
ator {Sl}leR on Q) (where  isdefined in the introduction) by

Jo()=w(-+t)-o(t), teR, (3.6)

then (Q, F.P(4 )teR) is an ergodic metric dynamical system, see [20] [24].
For our purpose, it is convenient to convert Equation (3.1) into a determinis-
tic system with a random parameter, and then show that it generates a random
dynamical system.
We now introduce an Ornstein-Uhlenbeck process given by the Brownian

motion. Put
(o) = —Jies(l%a;)(s)ds, teR, (3.7)

which is called the Ornstein-Uhlenbeck process and solves the It6 equation

dz + zdt = dW (t). (3.8)

From [19] [25] [27] [28], it is known that the random variable z(w) is tem-

pered, and there isa 4 -invariant set Q—Q of full P measure such that for

[2(%)] _

every weQ, t>z(9w) iscontinuousin g lim_,., |t| =0;and

. 1t
lim, .. {_[0 2(9,0)ds=0.
To show that Equation (3.1) generates a random dynamical system, we let
v(t)=e ™y 1), (3.9)

where uis a solution of Equation (3.1). Then we can consider the following evo-

lution equation with random coefficients but without white noise:

%+0¢v—Av—Avt =g ™) (g (ebz(‘g‘”)v)Jr f (x))+bz(l9ta))v, (3.10)
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with the initial value condition
v(%,0) = vy (x) = "4y  (x), xeR". (3.11)

Definition 3.1. A function v is called a weak solution of Equations (3.10)
and (3.11) on the interval [0,00) if

v(5@,0,) €C([0,00); H! (R"))NL* ([0,00); H? (R")),
v (~@0,) € L ([0,00); H} (R")),
and

(Vt n OZV—AV—AVt,(D) _ (e—bz(sﬁw) (g (ebz(ﬁf")v>+ f (X))+ bZ(lgta))V, (0),

for all test function @€ C([O,OO)XR”) .
Theorem 3.2, Under the assumptions (3.3)-(3.5), f e L2 (R") for P-a.e.

®eQ andany v, € H'(R"), there is a unique solution v(-,w,v,) satisfying
v(~@,0,) € C([0,0); H* (R"))N L2 ([0,00); H? (R")).
From Theorem 3.2 above, we now define a mapping
$:R*xQxH!(R") > H'(R")
by
#(to,uy) = u(t,o,uy ) =" N (t,0,v,),
for all
(t.o.uy) e R xQxH!(R").

Then ¢ satisfies conditions (1) and (2) in Definition 2.2. Therefore, ¢ is

a continuous random dynamical system associated with Equation (3.1) on
R".

4. Uniform Estimates of Solutions

In this section, we derive uniform estimates on the solutions of (3.10) and (3.11)
defined on R" when t—> o0 with the purpose of proving the existence of a
bounded random absorbing set and the asymptotic compactness of the random
dynamical system associated with the equation. In particular, we will show that
the tails of the solutions for large space variable are uniformly small when time is
sufficiently large. Some techniques about the unbounded case can be founded in
[14] [24] [25] [26]. Here we always assume that ® is the collection of all tem-
pered random subsets of H* (]Rn) with respect to (Q,]:,P,(lgt )teR) . The next
Lemma shows that ¢ has a random absorbing setin D .

Lemma 4.1 Assume that f eL? (R" ) , and (3.3)-(3.5) hold. Then there exists
a random ball {K (a))} €D centered at 0 with random radius p(@)>0 such
that { K (a))} is a random absorbing set for ¢ in ®, that is, for any
{B(w)} €D and P-ae. weQ,thereis T,(w)>0 such that
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#(t.9.0,B(3,0))c K (o) foralt>T; (o). (4.1)

Proof We first derive uniform estimates on V(t)= e ™4l (t) from which
the uniform estimates on u(t). Multiplying Equation (3.10) with vand then in-
tegrating over R", we have

1d
St (MF 9 )+« v

e g6t 1) s

(4.2)

By the Holder inequality and the Young inequality, we conclude

e—bz Go) (f V) 1 e—ZbZ(‘ﬂu))
200

(< 3
2
By condition (3.3), we get
esz(.s}m) _[Rn g (ebz(‘““’)v)vdx
= g (%) [0 9(u)udx
< g (%) .[R" [—ﬂl Juf® +6,|uf J dx (4.4)

2
Y }dx

< e—ZbZ(‘gl(U) J'Rn [_ﬂl |u|P +51 ebz(ﬁw)

<= ullp + Sy M
Then inserting (4.3) and (4.4) into (4.2), it yields

d obr(Go
(I 19T )~ (202(80) - + 2] + 2 ™5

(4.5)
ie—zbz(lﬁm)

a

< i,

where a-26,=¢,>0.
Noticing that, from (4.5), let » =min {—(sz ($o)-a, ) ,l} , it follows that

d (o
prd (L NI R (1 R Y R N Sl Vi

(4.6)
< T2 £,
a
Hence, we can rewrite the above equation as
d ~2b2(go
SV 19" 7 (P + 9w )+ 2840l wr
4.7
< e |2,
o
By applying Gronwall’s lemma to (4.7), we find that
||v (t,w.v, (@) |2+|Vv (tov, (o) "2
+2pe7 [ e u(s,w,u, || (4.8)

<o (wlof 7w (of o5 v e

By replacing @ by ¢, @ in (4.8), we get
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||v(t, 9,0,V (%)) 4 ||Vv(t, 9.,V (.9460))”2

t
" Zﬁlefyt _[0 e 2bz(9s_w)+ys

u(s, &,o,u, (‘9-“"))”2 ds (4.9)

2
(R iy S L

By the properties of Ornstein-Uhlenbeck process,

[° e ) 72gs < yon, (4.10)
Notice that {B (a))} €D istempered, then for any v, (9 ,»)eB(4,®),
Jim et ("Vo (940))”2 + ||Vv0 (1940))"2 ) =0. (4.11)
We can choose
1 o
_qo i —2bz(So)+ys
p(@)=1+ - [ e ds. (4.12)
And let
K(@)={veH!(R"):[W[" < p(a)). (4.13)

Then {K(a))} €®, and {K (a))} is a random absorbing set for ¢ in D,
which completes the proof. [J

Lemma 4.2 Assume that f eL° (R" ) , and (3.3)-(3.5) hold. Then there exists
a tempered random variable R (©)>0, such that for any {B(a))} €® and
Vo (@) € B(w), there existsa T, (w)>0 such that the solution ¢ of (3.10) sa-
tisfies for P-a.e. weQ,forall t>T, (),

J-l+l
t

Proof By substituting ¢ by T and @ by ¢, in (4.8) for any T>0, we
find that

V(s 9,40,V (S_t_la)))”z ds <R, (®). (4.14)

2

“V(f, 9,0,V (9450))“2 + HVV(f, 9,0,V (&ta)))

o A (4.15)
<o (w(8.0)f + ¥ (9.0 +@ e

Multiplying two sides of Equation (4.15) by ey(m>, then simplifying it, we
find that forall t>T

o 2)

2
<o (Ju (8.0 +[vvy (91w>||2)+@£ e B g,

‘v(f, 9,0, (S_tw))”z + “Vv(ﬁ 9,0,V (19_ta)))

(4.16)

By the Gronwall lemma to (4.6), we get that for all t> T,

"V (t, o,V (a)))"2 + "Vv(t, o,V, (a)))”2
< ey(ft)( v(f,w,vo (a)))

[V |wy(s, v, (o)) ds,
[ vy (s.0% ()]

2
’ + ”Vv (f, ,V, (a))) ’ ] + M'[Tt g 2ouSel (5 gs  (4.17)
a
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which obviously gives

L6V vy (s, v, (o)) ds
[ vy (s.0% ()]

<¢/l™ (”v(f o,V (a)))
By replacing @ by ¢, into (4.18), we get
J'Tt e’ ||Vv(s, 3@,V (ISl_tco))”2 ds

<o (

5 . (4.18)
+ “VV (T , 0,V (a)))

W L iTper—
j+—.[Ae (%) r(st) g,
a T

2 ~
+ “VV(T 9.0,V (9,0))

‘V ('I:, 9,0,V (S_tw))

2
j (4.19)
4 MJ‘E e—2bz(‘95,tw)+7(s—t)dsl
a T

Together with (4.16) and (4.19), we have

Lt g/ ||vv(s, 9,0V, (,94@))"2 ds
2 (4.20)
<o (o 2.0 +[7uo(8.0)f )L 7 s

Replacing T by tand tby t+1 in (4.20), we have

L b gr(s-t-) ||vv(s, 9 oV, (.9471@))”2 ds
I1f o
<& (9o 4y (o o)f ) LT e s

For se[t,t+1], toyield that

Lwl o7t "VV ( S,9,,0,V, (194_160))”2 ds (4.22)

S J.t:+1 e "VV(S, 3, 0.V, ('9471(0))"2 ds.

By the property of z(w) and temperedness of ”V0 (a))” , there exists
Tg () >0 suchthatforall t>T, (), from (4.21) and (4.22), we find that

J~t+l
t

It is easy to check that R, (a)) is tempered. This completes the proof. [J

Lemma 4.3 Assume that f e L? (Rn), (3.3)-(3.5) hold. Then, there exists a
tempered random variable R, (®),R(@)> 0, such that for any {B(w)}e® and
Vo (@) € B(w), there existsa T, (w)>0 such that the solution ¢ of (3.10) sa-
tisfies for P-a.e. weQ,forall t>T, (),

jtm A¢(s, 0.V, (9471(0))”2 ds<R, (o). (4.24)

[Vo(t+1,9 0y, (19471@))”2 +[ag(t+1,.9 0., (194,1@))”2 <R(w). (4.25)

2
V(5,9 0.V ( '947160))"2 ds<1+ @ J'io e 57 s <R (). (4.23)

Proof Taking the inner product of Equation (3.10) with Av in L? (R" ) , we

have
1d 2 2 2 2
> IV +av )+ [ +av] 026
=e "I g (ebz(‘q“’)v)Avdx +e 4 (£, Av)+bz () VY[
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Now, we estimate the first term on the right-hand side of (4.26) by the condi-
tion (3.5), we get

() |

R

.9 (ebz(s"”)v) Avdx
~2bz( %) —2bz(% ) g 2 2 (4.27)
=e [.n9(u)audx<e IR"Elvul dx < L|wy|[".

On the other hand, in the second term on the right-hand side of (4.26) by

Holder’ inequality and Young inequality, we conclude
& (1 ,av) se M | fav|< Ze o+ . @2s)
Then inserting (4.27) and (4.28) into (4.26), it yields

fIf, (429

%(”VVHZ + "AV”2 ) - (ZbZ (u9ta)) - 0!1)||Vv”2 + "AV"Z < g 2(%0)

where 2(a—-L)=¢, >0.

Noticing that, from (4.29), let 7 =min {—(sz ($o)- al) , %} , it follows that

(I I )+ (19l )+ avlf <™ e a0

Hence, we can rewrite the above equation as

%(”w"z +[av ) + y(||w||2 +[av]? ) <e ) £, (4.31)
By applying the Gronwall lemma to (4.30), we find that
||Vv (tov, (@) || +||Av (tov, (@) || +—f e [AV(s, @,V (@ ||
(4.32)
<o (o (ol 111 e o
which obviously gives
j; e’ ||Av(s, oV, (co))”2 ds
(4.33)

<e (||w0 (@) +[av, ()] ) ST [Le e g

By replacing @ by $,@ and tby t+1 into (4.33), we get

Yy rep g y Y g
2

I:l 7(et2) “Av (5,940, (9,0 “ ds

" ) (4.34)
< [wu, (8 o o (9 o) 1 [ e

Thanks to
J‘(Z*lei(sf‘*l) "Av(s, 840,V (g_t_la)))||2 dZS (4.35)
> [ Jav(s, 8, 40, (9 ,0)) @

Together with (4.34) and (4.35), we have
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fﬂef (1) “Av(s, 80,V (‘9—t—1a’))“2 ds
(4.36)

<o 7(t4) ( |Vv0 ( 19,[,150)"2 +||Av0 ( S,t,lw)"Z)Jr" f "2 L;He—ZbZ(95471“‘)4-}7(S—t—1)ds.
For se[t,t+1], toyield that
1 5(s_t— 2
Lt tiy( t 1) "Av(s, 9,0,V (S_t_la))z)" ds )
>[ e ||Av(s,197tfla),vO (1947150))" ds.
Together with (4.36) and (4.37), we have
J'[Hl AV(s, 9,0,V (19471@))”2 ds
(4.38)

<e™ (”Vv0 (19_t_160)||2 +Av, (S_t_la))||z)+|| fIf ﬁfle’zm(gs”’)*’ (=1 gs,

By the property of z(w) and temperedness of "VO (a))" , there exists T, (@) >0
such that forall t>T, (®), from (4.38), we find that

J-H—l
t

It is easy to check that R, (@) is tempered.

AV(s, 9,0,V (194710)))”2 ds <1+ f[’ J'io e M7 ds <R, (o). (4.39)

Now, let T, (@) be the non-negative constant in Lemma 4.2 and Equation
(4.39), take t>T,(w) and se(t,t+1). Then integrate (4.31) over (s,t+1), we
find that

"Vv(t +1,0,v, (a)))"2 +||Av(t +1,0,v, (co))"z
<& ([9v(s0 (@) +|av(s. 0 (o)) (440)

+ef(—t—1) J't+1ef772bz(.9,w) f "2 dr.
S

Now integrating (4.40) with respect to sover (t,t+1), we conclude that
"Vv(t +1,w,v, (ao))"2 + "Av(t +1,0,v, (a)))"2
< fﬂe-f ("Vv(s, w,V, (w))"2 + ||Av(s, ,V, (w))"2 )ds (4.41)

t+1 _5
—7-2bz(% )
+f, e

f||2d‘r.

Replacing @ by ¢, @
"Vv(t +1,.9 0,V (Isl_t_la)))"2 + "Av(t +1,.9 0, (lsl_t_la)))"2
< L a7 ("Vv(s,&tflw,vo (347150))”2 +||Av(s,l97171a),vo (97171a)))||2)ds (4.42)

N I”le—f—zbz(sf,t,lw)
t

f|f dz.

By Lemma 4.2 and Equation (4.39), it follows from (4.42) it yield that, for all
t>T, (@)

vt son (@ o) v(nson@ao)f

<e”’ (Ii1 (0)+R, (a)))+J‘iefifzbz(9’”) If ||2 dr <R().
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This proof is concluded. [J

Lemma 4.4 Assume that f e ? (R" ), and (3.3)-(3.5) hold. Let {B(a))} e®
and v, (w)eB(w). Then, for any ¢ >0, there exist T ='|:(Cf,a),B)>0 and
K=K (¢ @) >0, such that the solution ¢ of Equation (3.10) satisfies for PP
e weQ, Vt>T,

fiol

Proof We first need to define a smooth function o(-) from R into [0,1]
such that o(-)=0 on [0,1] and o()=1 on [2,+w), which evidently im-
plies that there is a positive constant c¢ such that the |O"(S)| <c forall s>0.

v(t, %o,V (1940)))‘2 +‘Vv(t, 3.0, (&ta)))‘z)dx < (444)

2

K
For convenience, we write o, = O'[ j .
K

Multiplying Equation (3.10) with o, v and integrating over R", we have

1d
S g o VIV ok vl o v de
:_[ (Av) o, vdx +bz (o) j o, V[ dx (4.45)
(%) (.[]R" c.9 ( (%) )vdx+j o, fvdx)
where
.[Rn (Av)o,vdx = — ? o dx— j Vo, 2—(Vv)dx
(4.46)
Yo 2
qm+xmm+wmy
where (; isanon-negative constant.
By condition (3.3), we get
g (o) .[R" c.9 (ebz(S‘”)v)de
g 2be) j ,o.g(u)udx (4.47)
< —pe i) J'Rn o v[° dx+ 51JR” o, |v|2 dx.
For the last term on the right-hand side of (4 45), we have that
g (%) o fudx <= I V] dx = > L gam(so) IR" o, | f[* dx. (4.48)
Then inserting (4.46)-(4.48) into (4.45) to see that
d
EIIR" o (|\,|2 +|Vv|2)dx—(2bz(l9ta) )-a,)],.0 o _dx .
1 om(go '
s;ezmm f.o Kﬁ|dx+__{wu+ﬂvw|)
Hence, we can rewrite (4.49) as
d
EJ.R” o, (|v| +[vy|° )dx+ 7.[Rn ; (|V|2 +|Vv|2)dx
(4.50)

< le—ZbZ(S[w J'

n Ok
o R

£ =2 WWI+HVWI)
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By applying the Gronwall’s lemma to (4.50), for every t > T, we find that

[0 K( t, o,V (@ | +|Vv(t,a),v0(a)))|2)dx
<) o GK( (f,a),vo(a)))z + Vv(f,w,vo(a)))zjdx
(4.51)
+= j e[ o | [ dxds
+% e (s o (@) +[7v(s.0, (o)) Jas
Then, substituting @ by 4, into (4.51), we have that
[0 ( Vo (9,@) | +|Vv(t,19_ta),v0(S_tw))r)dx
<e7tT) IR" JK(V(TA,Qta),vO (19460))‘2 +‘VV(TA,ISLta),v0 (Stw))zjdx
(4.52)

Lpgtrmen] o jif o
a’l o
ol s 0 o) (s 0 o) o

Then, we estimate every term on the right-hand side of (4.52). Firstly by (4.8),
and replacing ¢by T and @ by 4,m,then we get

o () [L.o, (

~ 2 r
<o (uvo(stw)uz+||wo(stw>|r)ﬂe”‘JJ e sy
(04

v(f, 4,0,V (S_tw))r + ‘Vv(f, 8 ,@,V, (1940)))‘2)‘1)(

<e (||V0 (9.0 +[vv, ('9,160)"2) It et e Al g,
Then, there exists 'I:l = T~1 ( B,<, a)) >T , such that forall t> T~1 , then
efy(tff)J‘ o (
Rn K

For the second term on the right-hand side of (4.52), Since f € L2 (Rn),
there are T,=T,({,w)>T and K, =K,({,®)>0, such that for all t>T,

and x> K,, then

v(f, 9,0,V (S_tw)) ’ +

~ 2
(f.9.0., (3_@))‘ )dx <£. (4.54)

1 [fe/ 02| o | dxds <= j e[ [ dds <. (4.55)
a

For the last term on the right-hand side of (4.52). By replacing ¢by sand @
by 9, in (4.8), we get

%J‘t e/ (”v(s, 9.0, (,9460))”2 + ||Vv(s, 9,0,V (:97la)))||2)ds
<20 e vy (2.0)f + [V (9,0) s

I ZCO ” f " J“ ey(H)J'Sey(T*S)*ZbZ(‘%w)d rds
T 0
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<2 g (1) (3 0)f + 7 (3.0) i
(4.56)

2
L 2G]f] [L [P0 s,

Then, by feLz( ) there exist T, =T,(B,¢, a))>TA and
K, =K,({,®)>0,such thatforall t>T, and « >K,,we find that

o)
20 1 [u(s, 8,009 (9,0))[ +[P(s.L0m (0 Jis<c. @

By letting T = maX{Tl,TZ,T} and K:maX{Kl,Kz}.
Then, inserting (4.54) and (4.55) and (4.57) into (4.52), for all t>T and
k> K, we obtain that

o

which shows that

v(t. 9,0, (lslta;))\2 v (t.9.0,v (s,ta;))r)dx <3, (4.58)

(\¢ (69,0 (9,0 \2+\v¢(t,l9,ta),vo(g,tw))r)dxssg. (4.59)

x‘>K

This proof is completed. [J

5. Random Attractors

In this section, we prove the existence of a global random attractor for the ran-
dom dynamical system ¢ associated with the stochastic reaction-diffusion Eq-
uations (3.1) and (3.2) on R". The main result of this section can now be stated
as follows.

Lemma 5.1 Assume that f e L? (R" ) , and (3.3)-(3.5) hold. Then the random
dynamical system ¢ generated by (3.10) is asymptotically compact in H* (Rn ) ,
that is, for P-a.e. weQ, the sequence {g/ﬁ(tn,&tn o,V , (94“ a)))} has a con-
vergent subsequence in H' (Rn ) provided t, — 40, {B (a))} €® and
Vo (194”(0) € B(Sftna)) .

Proof Let t, >+», {B(w)}eD and v,, (&tna)) = B(&tna)) . Then by
Lemma 4.1, for P-ae. weQ, we have that {gb(tn 3oV, (‘94 a,))}‘” is

n ' n n=1
bounded in H' (Rn ) .
Hence, there exist & e H* (Rn) such that, up to a subsequence,

B(t &, @V, (8, @) > & weakly in H'(R"). (5.1)

Next, we prove the weak convergence of (5.1) is actually strong convergence.
Given ¢ >0, by Lemma 4.4, there exist 'I:l ='|:1(B,§,a)) >0, & =({,)>0
and N, =N,(B,{,®)>0,suchthat t, >T, forevery n>N,

J.\XP'%
~

On the other hand, by Lemma 4.1 and 4.3, there exist T, =T, (B,®) >0, such
that forall t>T,,

Vo[t &, @V (9, a)))‘z dx<¢. (5.2)
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2

l6(t. 9.0, (9,0))-¢]. ) S R, (). (5.3)

Let N, =N,(B,®) be large enough such that t,>T, for n>N,. Then by
(5.3) we find that, forall n>N,,

2

(18, 0%, (9,,0))-¢] . <R(@). (5.4)

HE(R")

Denote by Q = {X eR" :|X| < /?1} . By the compactness of embedding

H? (Ql%) o HY (Q,;l) . It follows from (5.4) that, up to a subsequence depend-
ingon x;

¢(tn,.9_tna),vo’n (.9_tna))) — & strongly in Hl(Qﬁl), (5.5)

which shows that for the given ¢ >0, there exist N3 = N3 (B,w)(B,C,a)) >0,

such that for all n>N,,

2

“"j(t”"gftn“"vovn (‘9*tn“’))“f <¢. (5.6)

H(Qa)
Note that & e H' (Rn) . Therefore, there exist £, =&, (&) >0, such that

J-\x\zﬁz £(x) ax<¢. (5.7)

By letting N = max{Nl, N,, N3} ,and K =max{«x,,K,}.
Then, by (5.2), (5.6) and (5.7), we find that for all n> N R

H¢(tn 9, 0.V, (8, 0))-& ’

Hl(R")

Bty &, @y, (9, 0)) - gr dx (5.8)

<]
<&

+[
‘X‘ZK‘

<CC.

Bty &, @ Vo0 (9, 0)) - gr dx

which shows that

¢(tn,l97tna),vo,n (94“&’))—) & strongly in H*(R"). (5.9)

This as desired. [

We are now in a position to present our main result, the existence of a global
random attractor for ¢ in H' (R” )

Lemma 5.2 Assume that f e L2 (Rn ) ,and (3.3)-(3.5) hold. Then the random
dynamical system ¢ generated by (3.10) has a unique global random attractor
in H(R").

Proof Notice that the random dynamical system ¢ has a random absorbing
set {K (a))} in ©® by Lemma 4.1. On the other hand, by Lemma 5.1, the ran-
dom dynamical system ¢ is asymptotically compact in H* (R" ) Then by
Theorem 2.9, the random dynamical system ¢ generated by (3.10) has a
unique global random attractor in Hl(R”). O
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6. Upper Semi-Continuity of Random Attractorin H'* (]R” )

In this section, we investigate the existence and upper semi-continuity of ran-
dom attractors for (3.1) and (3.2) by studying (3.10) and (3.11). To indicate the
dependence of solutions on b, we respectively write the solutions of (3.1) and
(3.2) and (3.10) and (3.11) as u° and V°. Let v(x,t) be the solution of the
following deterministic system corresponding to (3.10) and (3.11):
ﬂ+0:V—AV—AV =g(v)+ f(x)

dt ‘ ’ (6.1)
V(%,0)=Vy(x)=Uy(x), xeR".

In fact, the system (6.1) is also equivalent to (3.1) and (3.2) provided b=0,
thatis, v(t,x)=u(t,x), where u(t,x) is the solution of corresponding to (3.1)
and (3.2).

Remark 6.1 Correspondingly, the deterministic and autonomous system ¢,
generated by (6.1) is readily verified to admit a global attractor A, in H' (Rn ) .

The next lemma shows the convergence ¢, (t, @)V (@)—> ¢, (t)V, (@) pro-
vided Vg (a)) —V, with b 1 0, which is important for the upper semi-conti-
nuity of random attractors.

Lemma 6.2 Assume that f el? (Rn), b 6(0,1] and (3.3)-(3.5) hold. Then,
foreach t>0 and P-ae. ®eQ, there exist constants m, (t,w) and I (t,®)
independent of b, such that

”vb (t.o,vg (@))-v(t.Y, (x))”2 + ”va (to.vy (0))-Vv(ty, (x))”2

<m0 (1 (@)~ O +948 (0) -7 (0 ) (62

1— e—bz(.95(u)

+1(t@) sup +b[2z(8,0))).

0<s<t
Proof Let W =V" —v . Then, by (3.10) and (3.11) and (6.1), W satisfies

dw __2(§(@) [ 1b ~bz( () b
W AW —aw, e g (u) - g (u)+e M (x) - () + bz (8 (@))V, (6.3)
W (X,0) =} (@) Vo (X) =g —v,,

where we have used the relations v(x,t)=u(x,t). Taking the inner product of
(6.3) with Win L (Rn ) we find that

%%(IIWIIZ VW) W+ [vw]f
— (e 4g (u) =g (u)W )+ (e D ()~ ()W) (6.4)
(028 (@))v" W)
By conditions (3.4) and (3.5), to yield that
(ebe(ﬂ(m))g (ub ) —g (u),W)
:(e*"ZW’”))g(ub)—g(u),w)+(1—e*bz<5*<‘”)))(g(u),W)

<Le ™y -y w)| +‘1—e’bz(‘*(”’)) [l (<5 0"+ 5 Ju ) | ox
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S Lesz(‘g (a)))

(ebZ(gt(w))vb _ &y, | @)y )‘

DN (= ol W], + & ul - )

(W +u (1—e‘bz(‘9‘(‘”>) ) W )‘ (6.5)

+ ‘l— e™

<L

+Cl\1 e A (IIUIIp W2+ ulf W)
< LW + G = ™A (7l + WL + ol + ).
On the other hand,

(e-bZW””f ()= £ (X)W ) +(bz(8 (@) W)
(1 + W )+ 2]z (S W +[oz (s.0) I
Then inserting (6.5) and (6.6) into (6.4) to see that
2dt(IIWII +|[vw]’ )+a|lW|| +[vw’
<LW[+c e (IIVII +Jull? + WD+ | f (X)IIZ) (6.7)
+2|pz(Go)|W[ +[oz ()| M-
since. W[ <28 (v +|ul} )= 22 e Ju]] + ul} )) by (5.7) we con-

clude that

d
S (WE oW+ 2vwf

- bZ (o)

s‘l e

<(2L-2a |[vv|| +C,

(P +lally 15 + W +1)

+4|bz(g0)| W +2|bz(de)| V[ (6.8)
bz(4 (@) +4|bZ(19ta))|)|[W "2

(@) (”VHZ +”u"z +e—PbZ(‘9l(w)) "ub"z +1)+ 2|b2(5‘ta))|||v||2

S(ZL—2a+C4 -

‘e, ‘1— g 4
Hence, we can rewrite (6.8) as
d
E(IIW [+ VW )+ m, (6 o) (W + VW) < cm (1), (6.9)

~bz(4 ()

where ml(t,a))::min{—(ZL—ZoH-C4 - +4|bz(19ta))|),2} , indepen-

dent of band [P -a.s. bounded for each teR;

m? (t,0) = (‘1_ )

+2Joe(80))( W+l +e ™ o]} +1). 610)
By applying Gronwall’s lemma to (6.9), we find that
W (£, oW (0))] +[vW (.o (0)[

t (6.11)
<o (o) + W O] L i
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Now for each fixed te R and P-ae. @eQ, consider the last term in (6.11).
First, notice that, by (6.10),

J.ejml Mmp (s )ds<eHm1 e sup(l—e’bz(g‘(‘”)) +2|bz(l91w)|)
t - bj(:ft» bP PP o
e Pl ).

According to (4.9), by replacing @ with & @, we conclude that

[le Ay
0

u® (s, @,ug (@) H ds

bl(2-p)2(&@)|+r(t-s) [ -2bz(%w)+r(s-1) || b b P
< supe joe ”u (s,a),u0 (a)))“p ds (6.13)
<C (t, a))
where C, (t,w) isindependent of b, P -a.s. bounded for each fixed # and given
by
C, (t,@):=csup glZ Pl (5] gy p (o), (6.14)
0<s<t 0<b<l

where p(w) isthe tempered random variable given by (4.12).
By taking b=0 in (6.13) we find that

j;"u(s,uo (x))”z ds < ce’. (6.15)

Similarly, from (4.8) we know that, when b=0,

.[;"v(s,vo (x))”2 ds

2
<L b0l ool o e 029
1 i ] ;
L)l o+l o {3 b L

Therefore, from (6.11)-(6.16), to yield that

”vb (t..vg (@))-v(t.v, (x))”2 + “va (t.o.vg (@)= Vv(t,V, (x))”z

<O (Iv8 () v, (X + ]9 () -7, ()] ) (6.17)

1— e—bZ (%)

+1(t, a))sup(

0<s<t

+ b|22 9 a))|)
where

|(t,0) = CeH™ [e (to) e+ (1) (v (9 + [V (3 )

+(£— e Jrle’zyt jM]
2 2 o

is P -a.s. bounded for each t>0 (since z(Sw)) is pathwise continuous) and
independent of b. This proof is completed. [J
Theorem 6.3 Assume that f € L (Rn), be (0,1] and (3.3)-(3.5) hold. Then,
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P-ae. ®eQ,wehave
limdist o) (A (@), A4)=0.

Proof To achieve the result, it suffices to verify conditions (1), (2) and (3) in
Lemma 2.10.

Notice that, condition (1) is actually proved by Lemma 6.2. For condition (2),
since Lemma 4.1, has proved that random dynamical system ¢ possesses a

closed random absorbing set {K (@)} € ©, which is given by
K(@)={ve B! (R"): |V < p(w)},
where
p(@)=1+ Mfw e 2N gs
a
it is readily to obtain that, P -a.e.,

imsuplK (o) =1+ L
blo a

which deduces condition (2) immediately. Now consider condition (3). Given
be(0,1]. From Lemma 4.3 we know that Ii(a)) €® is also closed and tem-
pered random absorbing set ¢, in H* (]Rn ) , where

R(), = {v e H(R"): v} +[vv]f <7 (R (o) +R, ()
+ e i f e,
with R (®) and R,(@) are tempered random variables in @€ Q and con-

tinuous in b. Let

R(w)= {v E Hl(]R” ) V[ + Vv < sup [e‘f( (@) +R, (a)))J

0<b<1
fIf dr}.

Then, we know R (@) is compactin H ! (]Rn ) . From

U 4 (o)c U R(@), cR(@),

0<b<1 0<b<1

n J‘Ol e—i+‘2bz(.91w)‘

it follows that UosbslAb (@) is precompact in Hl(R"). Hence, condition (3)
is clear and this proof is completed. []
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