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Abstract 
In this paper, we will present a new method for making first-order systems of 
nonlinear autonomous ODEs that exhibit limit cycles with a specific geome-
tric shape in two and three dimensions, or systems of ODEs where surfaces in 
three dimensions have attractor behavior. The method is to make the general 
solutions first by using the exponential function, sine and cosine. We are 
building up the general solutions bit for bit according to the constant terms 
that contain the formula of the desired limit cycle, and differentiating them. 
We will obtain a system of ODEs with the desired behavior. We design the gen-
eral solutions for a distinct purpose. Using the methods described in this pa-
per, it is possible to make some systems of nonlinear ODEs that are exhibiting 
limit cycles with a distinct geometric shape in two or three dimensions, and 
some surfaces having attractor behavior. The pictures show the result. 
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1. Introduction 

In the Introduction to [1], we can read: nonlinear dynamical systems exhibiting 
limit cycles are found in a large variety of fields including biology, chemistry, 
mechanics and electronics. 

Over the past two decades, the theory of limit cycles, especially for quadratic 
differential systems, has progressed dramatically in China as well as in other 
countries [2]. 

If somebody wants to make a system of ODEs that is exhibiting a limit cycle 
(LC) with a certain geometric shape, or a distinct surface that has attractor beha-
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vior, how can we do it?  
1) For example, making a system of ODEs exhibiting a LC with the three- 

dimensional shape determined by the projection of the closed curve  
4 2 2 4 4x x y y f− + =  onto the paraboloid 2 2z x y= + . f is a parameter.  
2) Or making a system of ODEs and their general solutions that are exhibiting 

four LC, one in each quadrant. 
3) Or making a system of ODEs where the surface of an ellipsoid has attrac-

tor-behavior, that is attracting the solution curves from both inside and outside 
the ellipsoid, and then following the surface of the ellipsoid as the variable t goes 
to infinity. 

In this paper, we will describe some techniques I have developed for making 
nonlinear first-order systems with some special behavior. For the most part, we 
are going to work with systems of ODEs exhibiting limit cycles in two and three 
dimensions. For the first, we will decide how to write the general solutions in 
order to make them easier to work with. Then, we will make general solutions to 
systems of ODEs that are exhibiting limit cycles, and give a two-dimensional LC 
a three-dimensional shape by projecting it onto a surface for which we know the 
formula to. No difficult or impossible integrals, just some “funny” differentia-
tions. 

The general solutions that we are building up in this paper are very logic and 
are giving a simple and logic explanation of why limit cycles appear, namely that 
all exponential functions have disappeared when the solution curves arrive a spe-
cific closed curve, whether this curve is in two or three dimensions. At a limit 
cycle, the general solutions have only the functions sine and cosine left. That ex-
plains why we see only rotation at a limit cycle. 

The method that we will use in this paper is new to the literature, at least to 
my knowledge. My background for the investigations is the textbook Differential 
Equations [3]. The number I have given each system of equations, is the number 
they have in my collection. These techniques have been funny to develop, so let 
us make some funny limit cycles! 

2. How to Write the Solutions 

For the first we will look at the way I have chosen to write the solutions, in order 
to “simplify” the derivations. 

The differential equation  

2d
d
x x x
t
= −                             (1) 

has the general solution 

( )
( )0

0

1
11 1 e t

x t
x

x
−

=
− −

                       (2) 

This is how we find the solution in textbooks. 
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Multiply the numerator and the denominator with 0etx : 

( ) 0

0 0

e
e 1

t

t

x
x t

x x
=

− +
                        (3) 

The drawback with the last expression is that we have got the same exponen-
tial function both in the numerator and the denominator. I prefer to use (3) be-
cause: 

1) The exponent in the exponential function has the same sign than the coeffi-
cient in the differential equation. It is easier to see the connection between the 
solution and the equation. 

2) It is easier to differentiate the solution when it is written in the form (3). 
I have consequently chosen to write the solutions on the form (3). But when 

we want to analyze the solutions, we must use (2). 
Derivation of fraction: 

( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( )2 2

d
d

f x f x g x g x f x f x f x g x
x g x g xg x g x

′ ′ ′ ′−
= = −        (4) 

We will use the last expression when derivation of solutions. 
We can demonstrate by differentiating (3): 

( )
20 0 0

2
0 0 0 0

e e ed
d e 1 e 1

t t t

t t

x x xx x x
t x x x x
= − = −

− + − +
             (5) 

Here, we see how simple the derivation becomes, and how easy it is to see the 
connection between the derivative and the solution ( )x t , when we write the 
solution on the form (3). 

The general expression of the solution (3) is: 

( ) 0

0 0

e
e

at

at

fx
x t

x x f
=

− +
                        (6) 

2d
d
x aax x
t f
= −                           (7) 

In order to practice the method that we are going to use later, it is crucial ne-
cessary that we write the solutions so that ( ) ( )0 00 , 0x x y y= =  and ( ) 00z z=  
If we put 0t =  in the solution (6), we will get ( ) 00x x= . 

Another solution we will use is when the denominator is square root: 

( ) 0

2 2 2 2
0 0

e

e

at

at

fx
x t

x x f
=

− +
                     (8) 

( ) 00x x=  

( )

2 2
0 0

0

2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0

3
2

1e 2 eed 2
d e e e

at at
at

at at at

fx axafxx
t x x f x x f x x f

aax x
f

= −
− + − + − +

= −

     (9) 
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And once again we can see how easy it is to see the connection between the 

derivative d
d
x
t

 and the solution ( )x t  when we write the solution in this way.  

Notice that all parts in the square root are of same degree, namely second de-
gree. If the denominator is fourth root, all parts inside the root must be of fourth 
degree, and so on. This is important when we shall build up the solutions bit for 
bit, unless it will be wrong. 

3. How to Make Limit Cycles (LC) 
3.1. The Theory behind LC 

A spiral contains two types of motion: One rotating motion according to the 
function sine and cosine, and one outwards or inwards motion according to the 
exponential function. Remember that we are using only these three functions in 
the solutions described in this paper. In order to make a stable limit cycle, the 
equilibrium point must be spiral source. If we choose initial values ( )0 0,x y  in-
side the LC, the solution curve will make an outwards rotating spiral ending up 
at the LC. And if we choose initial values outside the LC, the solution curve will 
make an inwards rotating spiral ending up at the LC. When the solution curves 
arrive the LC, either from outside or inside the LC, the outwards or inwards mo-
tion will stop. We have only rotating motion left. What has happened? 

Regarding the general solutions this means that the exponential functions have 
disappeared, and the solutions contain only the functions sine and cosine, that 
provide rotation. If we choose initial values ( )0 0,x y  wherever on a stable LC, 
we will observe only rotation along the same closed curve over and over when 
the variable t goes to infinity. 

This tells us that we must make the general solutions so that if we choose ini-
tial values wherever on the LC, all exponential functions are gone. And if we 
choose initial values wherever else, the general solutions will contain exponential 
functions. The general solutions must contain a constant term made so that if we 
choose initial values on the LC, this constant term becomes zero. 

3.2. LC in Two Dimensions 

A well-known example is a circular LC that is the graph of 2 2 2x y R+ = . 
But let us try to make a system of two differential equations exhibiting a stable 

LC with the geometric shape of the ellipse 
2 2

2 2 1x y
g h

+ = . 

When I am making system of differential equations exhibiting LC, I always 
start with the constant term of the general solutions, and building the solution 
according to the constant term. 

When we want an elliptic LC, the constant term will be:  
2 2
0 0
2 2 1

x y
g h

 
− + + 
 

                      (10) 

This part of the general solution will become zero when we choose initial val-

https://doi.org/10.4236/jamp.2022.1012253


M. Stensland 
 

 

DOI: 10.4236/jamp.2022.1012253 3818 Journal of Applied Mathematics and Physics 
 

ues ( )0 0,x y  on the ellipse 
2 2

2 2 1x y
g h

+ = . But it will not become zero if we 

choose initial values outside or inside the ellipse. 
The general solutions to a system of linear differential equations making spiral 

are: 

( ) ( ) ( )( )0 0e cos sinatx t x bt y bt= +                (11) 

( ) ( ) ( )( )0 0e cos sinaty t y bt x bt= −                (12) 

These solutions give the system: 

d
d
x ax by
t
= +  

d
d
y ay bx
t
= −  

Here is (0, 0) spiral source when 0a > . 
But we will try to make the general solutions so that the spiral is ending at an 

ellipse 
2 2

2 2 1x y
g h

 
+ = 

 
 either we choose initial values inside or outside the  

ellipse. And the solution curves will follow the ellipse, and repeat the same 
closed curve over and over when the variable t goes to infinity.  

We start with placing the constant term 
2 2
0 0
2 2 1

x y
g h

 
− + + 
 

 under the fraction 

line: 

2 2
0 0
2 2 1x y

g h
 

− + + 
 

                      (13) 

In order to use this as a solution we must have 
2
0
2

x
g

 and 
2
0
2

y
h

 in front of the 

constant term:  

( ) ( )( ) ( ) ( )( )
2 2

2 22 2 0 0
0 0 0 02 2 2 2

1 1e cos sin e cos sin 1at at x yx bt y bt y bt x bt
g h g h

 
+ + − − + + 

 

 (14) 

We must take the square root of the denominator, since it contains parts of 
second degree. When 0t = , we will get 1 under the fraction line. Then we have 
the general solutions: 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

0 0

2 2
2 22 2 0 0

0 0 0 02 2 2 2

e cos sin

1 1e cos sin e cos sin 1

at

at at

x bt y bt
x t

x yx bt y bt y bt x bt
g h g h

+
=

 
+ + − − + + 

 

 (15) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

0 0

2 2
2 22 2 0 0

0 0 0 02 2 2 2

e cos sin

1 1e cos sin e cos sin 1

at

at at

y bt x bt
y t

x yx bt y bt y bt x bt
g h g h

−
=

 
+ + − − + + 

 

 (16) 
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We test that ( ) 00x x=  and ( ) 00y y=  This is important, unless these me-

thods will not work. We notice that when 
2 2
0 0
2 2 1

x y
g h

+ = , the exponential functions  

will disappear, and the general solutions have only parts left containing the func-
tions sine and cosine. This is what characterizes many of the general solutions to 
systems of differential equations exhibiting limit cycles. The exponential func-
tions disappear when the solution curves arrive the ellipse. The general solutions 
are giving a logic explanation to a special behavior. Study the solutions well. We 
will do the same many times with longer fraction line, but the principle is the 
same. 

We differentiate the solutions (15) and (16) and get the system (101): 
2 2

2
2 2 2 2

d 1 1
d
x x yax by ax bx y
t g h g h

   
= + − + − −   

  
            (17) 

2 2
2

2 2 2 2

d 1 1
d
y x yay bx ay bxy
t g h g h

   
= − − + − −   

  
            (18) 

And once again we see how simple the differentiations becomes when we 
write the solutions in this way, and how easy it is to express the derivative by 
means of the solutions ( )x t  and ( )y t . Notice that when g h= , the last part 
in each equation become zero, and we get the same equations as for a circular 
LC. Notice also that the parameter a belongs to the exponential functions, and 
the parameter b belongs to the function sine and cosine. 

When 
2 2

2 2 1x y
g h

+ = , all parts containing a disappear. That means that the  

exponential functions in the general solutions are gone. The parts that are left 
contain the parameter b. Only the sine and cosine parts in the solutions are left. 
That’s why we observe only rotation along the same closed curve over and over 
when the parameter t goes to infinity, and why the spiral stop when it arrives the 
ellipse no matter from which side. When 0a > , the ellipse is a stable LC.  

A more general ellipse is 
2 2

2 2 1x xy y
ghg h

β+ + = , 1 1β− ≤ ≤ . 

The constant term in these solutions is: 
2 2
0 0 0 0
2 2 1

x x y y
ghg h

β
 

− + + + 
 

                    (19) 

The fraction line in the solutions ( )x t  and ( )y t  is too long for the page. 
We leave it as an exercise to make the solutions. 

Differentiating the solutions give system (129), that makes a LC that can re-
mind a bit of Van der Pool’s LC. 

( )
2 2

2 2
2 2 2 2

d 1 1
d 2
x x xy y bax by x a bxy y x
t gh ghg h g h

β β
    

= + − + + + − + −    
    

 (20) 

( )
2 2

2 2
2 2 2 2

d 1 1
d 2
y x xy y bay bx y a bxy y x
t gh ghg h g h

β β
    

= − − + + + − + −    
    

 (21) 
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See Figure 1, where 1, 2, 3, 1a b g h β= = = = = − . 
Let us try to make a system of differential equations and their general solu-

tions where the closed curve 4 4 4x y f+ =  becomes a LC. Place the formula for 
this closed curve under the fraction line in form of a constant term, as done 
above: 

( )4 4
0 0

4x y f− + +                         (22) 

Then we must have fourth degree parts of 0x  and 0y  in front of the con-
stant term, and taking the fourth root of the denominator: 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
0 0

4 44 4 44
0 0 0

4 4
00 0

e cos sin

e cos sin e cos sin

at

at at

f x bt y bt
x t

x bt y bt y bt x bt x y f

+
=

+ + − − + +
 (23) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
0 0

4 44 4 44
0 0 0

4 4
00 0

e cos sin

e cos sin e cos sin

at

at at

f y bt x bt
y t

x bt y bt y bt x bt x y f

−
=

+ + − − + +
 (24) 

We differentiate these solutions and get the system (102): 

( )4 4 3 3
4

d
d
x xax by a x y bx y bxy
t f

 = + − + + −             (25) 

( )4 4 3 3
4

d
d
y yay bx a x y bx y bxy
t f

 = − − + + −             (26) 

In Figure 2, we see the result. Here are 1, 1, 2a b f= = = . 
 

 

Figure 1. An elliptic LC. 
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Figure 2. The closed curve 4 4 16x y+ =  as a LC. 

3.3. LC in Three Dimensions 

We will try to place a two-dimensional LC on a surface that we know the formu-
la to, so that the LC will completely follow this surface. The solution curves will 
then follow the surface, and repeat the same closed curve over and over when the 
variable t goes to infinity. We are going to give a two-dimensional LC a three- 
dimensional shape. 

We must make the solution ( )z t  so that the exponential function belonging 
to ( )z t  has disappeared when the solution curves have arrived this surface. We 
will make a constant term in a such way that when we choose initial values on 
this surface, this constant term will become zero, and for all other initial values is 
this constant term not zero. 

In the first example we will try to make a LC with a geometric shape of the 
projection of an ellipse on a paraboloid or hyperbolic paraboloid 2 2z cx dy= + . 
The solution ( )z t  contain two constant terms: One for the ellipse  

2 2
0 0
2 2 1

x y
g h

 
− + + 
 

, as we earlier have placed under the fraction line in both  

solutions ( )x t  and ( )y t . And one constant term containing the formula for 
the paraboloid or hyperbolic paraboloid ( )2 2

0 0 0z cx dy+ − − , and multiply this 
last constant term with an exponential function. When both constant terms are 
zero, are absolutely all exponential functions gone, and the general solutions 
contain only the functions sine and cosine. We have then obtained a three- 
dimensional LC. 
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( ) ( ) ( ) ( )2 2 2 2
0 0 0 ektz t cx t dy t z cx dy= + + − −               (27) 

The solutions ( )x t  and ( )y t  have we made earlier, (15) and (16). 
We put in the expressions for the solutions ( )x t  and ( )y t :  

( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )

2 22 2
0 0 0 0

2 22 2
2 2 0 0

0 0 0 02 2 2 2

2 2
0 0 0

e cos sin e cos sin

e ecos sin cos sin 1

e

at at

at at

kt

c x bt y bt d y bt x bt
z t

x yx bt y bt y bt x bt
g h g h

z cx dy

+ + −
=

 
+ + − − + + 

 

+ − −

(28) 

We take it step by step: 

( ) ( ) ( )

( )

2 2
2 2 2 2

2 2

2 2
0 0 02 2

d 2 2 2
d

1 12 ekt

z x ya cx dy bxy c d cx dy a
t g h

bxy k z cx dy
g h

  
= + + − − + +  

  
 

+ − + − − 
 

     (29) 

( ) ( )2 2 2 2
0 0 0 ektkz k cx dy k z cx dy= + + − −              (30) 

Subtract kz from both sides of the equation d
d
z
t

 and the result will be: 

( )( ) ( )

( )

2 2

2 2
2 2

2 2 2 2

d 2 2
d

1 12 2

z kz a k cx dy bxy c d
t

x ycx dy a bxy
g h g h

= + − + + −

    
− + + + −    

    

       (31) 

Here again we see how simple the derivations become, and how easy it is to 
express the derivative ( )z t  by means of the solutions ( )x t  and ( )y t , when 
we write the solutions in this way. 

Together with the solutions (15) and (16) we have the system (369). Figure 3 
shows the result. 
 

 

Figure 3. An elliptic LC on a hyperbolic paraboloid. 
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In Figure 3 are 1, 1, 2a b k c d= = = = − = . 
This system of three differential equations is exhibiting a LC with the desired 

geometric shape. Choose 0k < . Then the xy-plane will act as a sink, and pre-
vent the solution curves to go to infinity parallel with the z-axis. 

We see that when 
2 2

2 2 1x y
g h

+ = , all parts containing the parameter a are gone. 

And when 2 2z cx dy= + , all parts containing the parameter k are also gone. 

When the solution curves arrive the projection of the ellipse 
2 2

2 2 1x y
g h

+ =  on  

the paraboloid or hyperbolic paraboloid 2 2z cx dy= + , have all exponential 
functions disappeared. We have only parts containing the parameter b left. This 
parameter belongs to the function sine and cosine, that give rotation along this 
three-dimensional curve: 

2
2 2

d 1 1
d
x by bx y
t g h

 
= − − 

 
                    (32) 

2
2 2

d 1 1
d
y bx bxy
t g h

 
= − − − 

 
                   (33) 

( ) 2 2

d 1 12 2
d
z bxy c d bxyz
t g h

 
= − − − 

 
               (34) 

Now we are able to solve problem a) in the Introduction: Make a LC with the 
geometric shape of the closed curve 4 2 2 4 4x x y y f− + =  on the paraboloid 

2 2z x y= + . The constant term under the fraction line will be: 

( )4 2 2 4 4
0 0 0 0x x y y f− − + +                      (35) 

The fraction line will be too long for this page. We compress the solutions by 
putting ( ) ( )0 0cos sinA x bt y bt= + , ( ) ( )0 0cos sinB y bt x bt= −  

( ) ( )
( ) ( ) ( ) ( )( ) ( )4 2 2 44 4 2 2 4 44

0 0 0 0

e

e

at

at

f A
x t

A A B B x x y y f
=

− + − − + +
     (36) 

( ) ( )
( ) ( ) ( ) ( )( ) ( )4 2 2 44 4 2 2 4 44

0 0 0 0

e

e

at

at

f B
y t

A A B B x x y y f
=

− + − − + +
     (37) 

( ) ( ) ( ) ( )2 2 2 2
0 0 0 ektz t cx t dy t z cx dy= + + − −              (38) 

Then we have the solution ( )z t :  

( )
( ) ( )( )

( ) ( ) ( ) ( )( ) ( )
( )

2 22 2

4 2 2 44 4 2 2 4 4
0 0 0 0

2 2
0 0 0

e

e

e

at

at

kt

f c A d B
z t

A A B B x x y y f

z cx dy

+
=

− + − − + +

+ − −

     (39) 

These solutions give system (507): 
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( )4 2 2 4 3 3
4

d 3 3
d 2 2
x xax by a x x y y bx y bxy
t f

 = + − − + + −  
       (40) 

( )4 2 2 4 3 3
4

d 3 3
d 2 2
y yay bx a x x y y bx y bxy
t f

 = − − − + + −  
       (41) 

( )( ) ( )

( ) ( )

2 2

2 2 4 2 2 4 3 3
4

d 2 2
d

1 2 3 3

z kz a k cx dy bxy c d
t

cx dy a x x y y bx y bxy
f

= + − + + −

 − + − + + − 

      (42) 

See Figure 4 for the result. Here are 1, 1, 1, 1, 1, 1a b f c d k= = = = = = −  
In the same way we can use the more general closed curve  

4 2 2 4

4 2 2 4 1x x y y
g g h h

β+ + = , 1 1β− ≤ ≤ , and make a three-dimensional LC by pro-

jecting it on whatever surface that we know the formula to. 
In the next examples, we will try to project some limit cycles on surfaces, 

where the formula for the surface contains trigonometric functions. For the first 
we will try to place an elliptic LC on the surface sin sinz x y= . 

We are using the solutions ( )x t  and ( )y t , (15) and (16) to the system (101). 
The constant term belonging to the solution ( )z t  must be  

( ) ( )( )0 0 0sin sinz x y+ −  Multiply this term with an exponential function, and 
we have the solution ( )z t :  

( ) ( )( ) ( )( ) ( ) ( )( )0 0 0sin sin sin sin ektz t x t y t z x y= + −         (43) 

We will take it step by step: 

( ) ( )( )0 0 0
d d dsin cos sin cos sin sin e
d d d

ktz x yy x x y k z x y
t t t
= + + −     (44) 

Subtract kz  from both sides of the equation d
d
z
t

:  

 

 

Figure 4. The LC 4 2 2 4x x y y− +  on 2 2z x y= + . 
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d d dsin cos sin cos sin sin
d d d
z x ykz y x x y k x y
t t t
− = + −            (45) 

Put in the equation d
d
x
t

 and d
d
y
t

 and we become the equation d
d
z
t

:  

2 2
2

2 2 2 2

2 2
2

2 2 2 2

d 1 1sin sin sin cos
d

1 1sin cos

z x ykz k x y y x ax by ax bx y
t g h g h

x yx y ay bx ay bxy
g h g h

    
= − + + − + − −    

    
    

+ − − + − −    
    

 (46) 

Together with the Equations (17) and (18) we have the system (1187). 
See the result in Figure 5, where 1, 1, 3, 4a b k g h= = = − = = . 
In the next example we will try to project a circular LC on the surface  

( ) ( )arctan sin 3 cos 2z x y x y= − + +                 (47) 

By using the methods described earlier, you can place a two-dimensional LC 
on whatever surface, no matter how complicated the formula to this surface is. 
The general solution will become long, but not a big problem to differentiate. 
Not as difficult as it seems to be. 

The constant term belonging to the solution ( )z t  is 

( ) ( )( )0 0 0 0 0arctan sin 3 cos 2z x y x y + − − + +            (48) 

( ) ( )

( ) ( )

( ) ( )( )2

d arctan sin 3 cos 2
d

d d d dcos 3 3 sin 2 2
d d d d

1 sin 3 cos 2

z kz k x y x y
t

x y x yx y x y
t t t t

x y x y

= − − + +  

   − − − + +   
   +

+ − + +

      (49) 

 

 

Figure 5. An elliptic LC on the surface sin sinz x y= . 
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For a circular LC is 

( )2 2
2

d
d
x aax by x y
t R
= + − +                   (50) 

( )2 2
2

d
d
y aay bx x y
t R
= − − +                   (51) 

By putting these expressions for d
d
x
t

 and d
d
y
t

 into (39) we have a solution to 

problem (37). 
See Figure 6 for the result. 

3.4. Systems That Make 4 LC, One in Each Quadrant in Two and  
Three Dimensions 

In all the systems of differential equations we have made so far exhibiting LC, 
has (0, 0) been the only equilibrium point. Any point can be equilibrium point 
for a system giving LC. 

So now we will try to make the general solutions so that we will have a system 
of two differential equations giving 4 LC, one in each quadrant.  

A formula for four closed curves is  

( ) ( )2 22 2 2 2 4x p y q f− + − =                   (52) 

Centers for these 4 curves are ( ),p q± ±  
The constant term under the fraction line is 

( ) ( )( )2 22 2 2 2 4
0 0x p y q f− − + − +                 (53) 

The solutions ( )x t  and ( )y t  must be as we see below: 
 

 

Figure 6. A circular LC on the surface ( ) ( )arctan sin 3 cos 2z x y x y=  − + +   . 
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( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
2 2 2 2 2 2 2

0 0

2 2 2 24 2 2 2 2 4 2 2 2 2 2 2 2 2 4
0 0 0 0 0 0

e cos sin

e cos sin e cos sin

at

at at

f x p bt y q bt p
x t

x p bt y q bt y q bt x p bt x p y q f

− + − +
=

− + − + − − − − − + − +

(54) 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
2 2 2 2 2 2 2

0 0

2 2 2 24 2 2 2 2 4 2 2 2 2 2 2 2 2 4
0 0 0 0 0 0

e cos sin

e cos sin e cos sin

at

at at

f y q bt x p bt q
y t

x p bt y q bt y q bt x p bt x p y q f

− − − +
=

− + − + − − − − − + − +

(55) 

Notice the addition 2p  above the fraction line in the solution ( )x t , and the 
addition 2q  in the solution ( )y t . And also that we have taken the square root 
of the denominator, and taken the square root of the hole solution. Put 0t =  
into these solutions, and convince yourself that ( ) 00x x=  and that ( ) 00y y= . 
Then you will understand why the solutions must be so. 

We can also notice that when ( ) ( )2 22 2 2 2 4
0 0x p y q f− + − = , all exponential 

functions are gone. We will do the differentiation step by step. The expression 
inside the big square root is the same as 2x  in the first solution, and 2y  in the 
second solution. 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 22 2 2 2 2 2 2
42

2 2 2 2 2 2 2 2

d 1 2 4 4
d 22

2 2

x xax b y q a x p a y q
t fx

x p b y q y q b x p

 = + − − − + − 
+ − − − − − 

    (56) 

( ) ( ) ( )
2 2 22 2 2 2 2 2 2
4

d 1 2 2 2
d 2
x xax b y q a x p a y q
t x f

  = + − − − + −    
    (57) 

This gives the system (768): 

( ) ( ) ( )2 22 2 2 2 2 2
4

d
d 2
x b aax y q x x p y q
t x f

 = + − − − + −  
      (58) 

( ) ( ) ( )2 22 2 2 2 2 2
4

d
d 2
y b aay x p y x p y q
t y f

 = − − − − + −  
      (59) 

Notice that when ( ) ( )2 22 2 2 2 4x p y q f− + − = , are all parts containing the 
parameter a gone. And we will get the system: 

( )2 2d
d 2
x b y q
t x
= −                       (60) 

( )2 2d
d 2
y b x p
t y
= − −                      (61) 

This system has 4 centers. No spirals. We see also that d
d
x
t

 don’t exist when 

0x = , and that also d
d
y
t

 don’t exist for 0y = .  

The geometric shape of the 4 limit cycles shows a good similarity with the 
picture of the 4 closed curves ( ) ( )2 22 2 2 2 4x p y q f− + − =  See Figure 7 and 
compare with Figure 8. 
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Figure 7. Four LC with equilibrium points ( )7, 6± ± . 

 

 

Figure 8. The graph of ( ) ( )2 22 249 36 1200x y− + − = . 

 
In Figure 7 are 41, 7, 6, 1200a b p q f= = = = = . 
Let us try to give these 4 limit cycles a three-dimensional shape, by projecting 

them on a surface. The method is as shown in the last section. Make a solution 
( )z t  containing the formula for this surface as a constant term, and multiply 

this constant term with an exponential function. 
As an example, can we use the formula for a paraboloid or hyperbolic para-

boloid. We use the solutions and differential equations to system (768). The so-
lution ( )z t  will be: 
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( ) ( ) ( ) ( )2 2 2 2
0 0 0 ektz t cx t dy t z cx dy= + + − −            (62) 

Put in the solutions ( )x t  and ( )y t , (44) and (45), and differentiate.  

( )( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

2 22 2 2 2 2 2
4

d 2
d

2

z kz a k cx dy cb y q db x p
t

a cx dy x p y q
f

= + − + + − − −

 − + − + −  

    (63) 

Together with the differential equations in system (768), we become system 
(773).  

See Figure 9, where 41, 1, 1, 1, 7, 6, 1200a b c d p q f= = = = = = = . 

4. Some Other Attractors 

An attractor can be a point, a curve or a surface [4]. An attractor does attract the 
solution curves and keep them fast to the attractor, in the same way as a stable 
limit cycle. The solution curves will follow the curve or the surface when the va-
riable t goes to infinity. Along these curves or surfaces all exponential func-
tions are gone, and the general solutions contain only the functions sine and 
cosine. 

4.1. Curves as Attractors 

We will make the general solutions as shown earlier, and place the formula for 
the open curve as a constant term under the fraction line in the solutions, so that 
if we choose initial values on the curve, this constant term will become zero. And 
if we choose initial values anywhere outside the curve, this constant term will 
not become zero. 

For the straight line y cx f= +  the constant term will be 
 

 

Figure 9. Four LC on a paraboloid. 
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( )0 0y cx f− − + .                         (64) 

When 0 0y cx f− = , is this term zero. Then we have the solutions: 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
0 0

0 0 0 0 0 0

e cos sin
e cos sin e cos sin

at

at at

f x bt y bt
x t

y bt x bt c x bt y bt y cx f
+

=
− − + − − +

(65) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
0 0

0 0 0 0 0 0

e cos sin
e cos sin e cos sin

at

at at

f y bt x bt
y t

y bt x bt c x bt y bt y cx f
−

=
− − + − − +

(66) 

Notice that all exponential functions have disappeared when 0 0y cx f− = . 
When 0a > , this line will attract the solution curves when t goes to infinity. 
Differentiation of these solutions gives system (99): 

( )d
d
x xax by a y cx bx cby
t f
= + − − − −                  (67) 

( )d
d
y yay bx a y cx bx cby
t f
= − − − − −                  (68) 

We see that when y cx f− = , all terms containing a are gone. That means 
that the exponential functions have disappeared when the solution curves arrive 
this straight line. 

What about 2 2 4x y f=  as attractor? The constant term will here be 
2 2 4
0 0x y f− +                             (69) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
0 0

2 24 2 2 44
0 0 0 0 0 0

e cos sin

e cos sin cos sin

at

at

f x bt y bt
x t

x bt y bt y bt x bt x y f

+
=

+ − − +
 (70) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
0 0

2 24 2 2 44
0 0 0 0 0 0

e cos sin

e cos sin cos sin

at

at

f y bt x bt
y t

x bt y bt y bt x bt x y f

−
=

+ − − +
 (71) 

These solutions give system (95): 

( )2 2 2 2
4

d
d 2
x x bax by ax y xy y x
t f

 = + − + −  
              (72) 

( )2 2 2 2
4

d
d 2
y y bay bx ax y xy y x
t f

 = − − + −  
              (73) 

The solution curves will follow 2 2 4x y f=  to infinity along the axis. 
It is easy to make many other systems of differential equations that have open 

curves as attractors. 

4.2. Surfaces as Attractors 

Common for the systems of differential equations that we are going to make in 
this section, is that a three-dimensional surface will act as an attractor. If we 
choose initial values inside or outside a closed surface, the surface will attract the 
solution curves, for example an ellipsoid, and then follow the surface of the el-
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lipsoid over and over in the same orbit as the parameter t  goes to infinity. 
The orbit is determined by the initial values. It is a necessary condition that the 

equilibrium point is spiral source. All exponential functions have disappeared 
along the whole surface. This is what characterizes a stable three-dimensional at-
tractor. This kind of attractor can also be an open surface, where the solution 
curves follow the surface to infinity, no matter how complicated this surface is, 
provided it is continuous.  

We will start by making a system of three differential equations and their 

general solutions, where the ellipsoid 
2 2 2

2 2 2 1x y z
g h l

+ + =  behave as an attractor.  

When we made the solutions to a system of differential equations exhibiting an 
elliptic limit cycle, we placed the formula for the ellipse under the fraction line in 
the solutions ( )x t  and ( )y t , as a constant term. Now we will place the for-
mula for the ellipsoid under the fraction line to all the solutions ( ) ( ),x t y t  and 
( )z t . The constant term must then be: 

2 2 2
0 0 0
2 2 2 1

x y z
g h l

 
− + + + 
 

                     (74) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

0 0

2 2 2 2
2 22 2 20 0 0 0

0 0 0 02 2 2 2 2 2

e cos sin

1 1e cos sin e cos sin e 1

at

at at at

x bt y bt
x t

z x y zx bt y bt y bt x bt
g h l g h l

+
=

 
+ + − + − + + + 

 

 (75) 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

0 0

2 2 2 2
2 22 2 20 0 0 0

0 0 0 02 2 2 2 2 2

e cos sin

1 1e cos sin e cos sin e 1

at

at at at

y bt x bt
y t

z x y zx bt y bt y bt x bt
g h l g h l

−
=

 
+ + − + − + + + 

 

 (76) 

( )
( ) ( )( ) ( ) ( )( )

0

2 2 2 2
2 22 2 20 0 0 0

0 0 0 02 2 2 2 2 2

e

1 1e cos sin e cos sin e 1

at

at at at

z
z t

z x y zx bt y bt y bt x bt
g h l g h l

=
 

+ + − + − + + + 
 

 (77) 

Notice that when 
2 2 2
0 0 0
2 2 2 1

x y z
g h l

+ + = , all exponential functions belonging to 

( ) ( ),x t y t  and ( )z t  will disappear. The only functions left are sine and cosine, 
which give rotation. 

Derivation of these solutions gives system (533): 
2 2 2

2 2 2 2 2

d 1 1
d
x x y zax by x a bxy
t g h l g h

    
= + − + + + −    

    
          (78) 

2 2 2

2 2 2 2 2

d 1 1
d
y x y zay bx y a bxy
t g h l g h

    
= − − + + + −    

    
          (79) 

2 2 2

2 2 2 2 2

d 1 1
d
z x y zaz z a bxy
t g h l g h

    
= − + + + −    

    
           (80) 

Here we can see that when 
2 2 2

2 2 2 1x y z
g h l

+ + = , all parts containing a are gone.  
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The parameter a is the exponent in all three exponential functions. This tells us 
that these exponential functions have disappeared when the solution curves have 
arrived the surface of the ellipsoid. 

See Figure 10, where 1 , 1, 1, 2, 3
4

a b g h l= = = = = . We can see 9 LC on the 

surface of the ellipsoid, one for each initial value. 

In the next example we will try to make the hyperboloid 
2 2 2

2 2 2 1x y z
g h l

+ − =  as 

an attractor. 
The constant term will be  

2 2 2
0 0 0
2 2 2 1

x y z
g h l

 
− + − + 
 

                     (81) 

When 
2 2 2
0 0 0
2 2 2 1

z x y
l g h

= + + , is this constant term zero, and all exponential func-

tions are gone. 
The solutions will be almost the same as (64), (65) and (66), so we have the 

system (527): 
2 2 2

2 2 2 2 2

d 1 1
d
x x y zax by x a bxy
t g h l g h

    
= + − + − + −    

    
          (82) 

2 2 2

2 2 2 2 2

d 1 1
d
y x y zay bx y a bxy
t g h l g h

    
= − − + − + −    

    
          (83) 

2 2 2

2 2 2 2 2

d 1 1
d
z x y zaz z a bxy
t g h l g h

    
= − + − + −    

    
            (84) 

 

 

Figure 10. An ellipsoid as attractor. 
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When 
2 2 2

2 2 2 1x y z
g h l

+ − = , all parts containing a in the solutions ( ) ( ),x t y t  

and ( )z t  are gone. 

See Figure 11, where 1, 2, 3a b g h l= = = = = . We can see 5 LC on the sur-
face of the hyperboloid, one for each initial value. 

4.3. Bifurcation 

In some textbooks we can find examples of bifurcation. Blanchard, Devaney and 
Hall [3] define bifurcation as a drastic change in the long-term behavior of the 
solutions, as a parameter changes. One example is Hopf’ bifurcation [5]: 

( )2 2
2

d
d
x aax by x x y
t f
= + − +                    (85) 

( )2 2
2

d
d
y aay bx y x y
t f
= − − +                    (86) 

I have written the system in the way that I am used to. 
If 0a < , we will get an inwards rotating spiral. If 0a = , we will see a circle. If 

0a > , we will get an outwards rotating spiral ending up at a circular LC, if we 
choose the initial values inside a circle with radius f. And if we choose initial 
values outside the circle with radius f, the solution curves will rotate inwards 
ending up at the same circular LC. 

Similar examples of bifurcations are easy to make. As an example, we can use 
system (129), (20) and (21): 

( )
2 2

2 2
2 2 2 2

d 1 1
d 2
x x xy y bax by x a bxy y x
t gh ghg h g h

    
= + − + + + − + −    

    
β β  (20) 

 

 

Figure 11. A hyperboloid of one sheet as attractor. 
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( )
2 2

2 2
2 2 2 2

d 1 1
d 2
y x xy y bay bx y a bxy y x
t gh ghg h g h

    
= − − + + + − + −    

    
β β  (21) 

If 0a > , we will get an elliptic LC, where (0, 0) is spiral source. If 0a = , we 
will see an ellipse, where (0, 0) is center. If 0a < , we will get an inwards rotating 
spiral, where (0, 0) is spiral sink. The same ellipse is now an unstable LC. 

We can give this elliptic LC a three-dimensional form, for example project it 
on a paraboloid or hyperbolic paraboloid. 

( )( ) ( )

( ) ( )

2 2

2 2
2 2 2 2

2 2 2 2

d 2 2
d

1 12 2

z kz a k cx dy bxy c d
t

x xy y bcx dy a bxy y x
gh ghg h g h

= + − + + −

    
− + + + + − + −    

    
β β

 (87) 

Together with (20) and (21) we get system (502). If 0a > , we will see a three- 
dimensional LC, where (0, 0) is spiral source. If 0a = , we see a closed three- 
dimensional curve, where (0, 0) is center. If 0a < , we will get a three-dimen- 
sional unstable LC, where (0, 0) is spiral sink. 

5. Conclusions 

It is possible to make systems of nonlinear ODEs that are exhibiting limit cycles 
by making the general solutions first. Provided that we know the formula to the 
closed curve in two dimensions, and that all parts of the formula are of same de-
gree.  

It is also possible to give this two-dimensional LC a three-dimensional shape 
by projecting this closed curve onto a surface that we know the formula to, no 
matter how complicated this formula is. 

The solutions ( )x t  and ( )y t  must contain the formula to the closed curve 
as a constant term under the fraction line in the solutions. The solution ( )z t  
must contain the formula to the surface that we want to project the LC on. By 
building up the solutions according to the constant terms and differentiating the 
solutions, we will get a system of ODEs with the desired behavior. In this paper, 
we have used only the exponential function and sine and cosine to build up the 
solutions. 

Many more LC and attractors in two and three dimensions are easy to make.  
In Part Two, we are going to use an additional variable to make limit cycles 

where not all parts in the formula of the closed curve are of same degree. We are 
getting an extra ODE. Keeping this extra variable constant, we will achieve al-
most the desired result. We will try to make a system of ODEs that are exhibiting 
a limit cycle as near as possible to the closed curve  

( ) ( )4 22 2 2 3 2 83x y P x xy f+ − − =  and many other funny limit cycles. ,P f  are 
parameters.  

To be continued. 
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