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Abstract

This paper concerns classifying completely positive maps between certain
(*-algebras. Several invariants for classifying completely positive maps are
constructed. It is proved that one of them is isomorphic to the Ext-group of
C*-algebra extensions in special circumstances. Furthermore, this invariant
induces a functor from C*-algebras to abelian groups which is split-exact.
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1. Introduction

The theory of completely positive maps plays an important part in operator al-
gebras, operator spaces, and extensions of C*-algebras. Many fundamental con-
cepts and theorems are defined and proved via completely positive maps respec-
tively, such as nuclearity, invertible extension, Stinespring’s Theorem ([1] [2]),
Voiculescu’s Theorem ([3]), etc.

On the other hand, as an effective tool to study the structure of C*-algebras
and to classify C*-algebras, the theory extensions of C*-algebras originated from
Busby’s work in 1960’s ([4]). Subsequently, Brown, Douglas and Fillmore estab-
lished their famous BDF theory ([5] [6]) to study essentially normal operators
on a separable infinite-dimensional Hilbert space and extensions of C*-algebra
(AX) by compact operators, where C{X) is the C*-algebra of continuous func-
tions on a compact metric space X. Since then, the theory of extensions of
C*-algebras has developed rapidly, and becomes an important invariant for clas-
sifying C*-algebras together with K-theory and KK-theory (see [1] [7] [8] [9],
etc.).

As we know, an extension of C*-algebras is determined by its Busby invariant
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with respect to unitary equivalence, so to an extent classifying extensions of
(C*-algebras is a sort of classifying homomorphisms between C*-algebras. It
should be pointed out that the KX-groups were defined via homomorphisms in
this way at the beginning ([8]), and it was already used to classify homomor-
phisms (see [10] [11] [12], etc.). Completely positive maps can be seen as gene-
ralization of homomorphisms and what is particularly important is that Ext-
groups were characterized by completely positive maps, so it is natural to con-
sider classifying completely positive maps.

This note is engaging in classifying completely positive maps between certain
(*-algebras. Specifically, several invariants for classifying completely positive
maps are introduced. As a main result, one of them is isomorphic to the Ext-
group of C¥-algebra extensions. In addition, this invariant induces a functor

from C*-algebras to abelian groups which is split-exact.

2. Preliminaries

In this section, we need to recall some notations and definitions for C*-algebras
and extensions. One can also see [1] [7] [13] [14] [15] for more details.

Suppose that D is a C*-algebra. Recall that 6,:M,(D)—>D is an inner
isomorphism, if there are isometries S;,---,S, in D with > S;§" =1 and
S;S;=0 for i j,suchthat g, = Adv, namely, =

o([n]) =[x 1 =TS

for [Xij } €M, (D), where v=(S,,--,S,). Suppose that V, and V, are such
elements. Then vV, e D and V,\V,V,V, =V,V;V,v, =1, and hence v,v, is a uni-
tary in D.

Let A and Bbe C*-algebras. An extension of A by Bis a short exact sequence

e:0>B—25>E—L3A0.

Denote this extension by eor (E,a, ).

The extension (E,«,f) is called trivial, if the above sequence splits, Ze. if
there is a homomorphism y:A— E suchthat foy=id,.

For an extension (E,a, f3), there is a unique homomorphism o :E — M (B)
such that coa =1, where M (B) is the multiplier algebra of B, and ; is the
inclusion map from Binto M (B). The Busby invariant of (E,a, /) is a ho-
momorphism 7 from A into the corona algebra Q(B)=M (B)/B defined by
r(a)= E(U(b)) for ae A, where 7:M(B)—>Q(B) is the quotient map,
and beE suchthat g(b)=a.

Two extensions € and €, are called (strongly) unitarily equivalent, denoted
by e ie2 , if there exists a unitary ue M (B) such that
7,(a)=7z(u)z(a)z(u) forall ae A.Denoteby Ext(A,B) or Ext,(A B)
the set of (strong) unitary equivalence classes of extensions of 4 by B.

Let H be a separable infinite-dimensional Hilbert space and K the ideal of
compact operators in B(H ). If Bis a stable C*-algebra (i.e. B®K =B, where

® is the tensor product operation), then the sum of two extensions 7, and 7,
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is defined to be the homomorphism 7, ®r,, where
7, ®7, :A—)Q(B)@Q(B)g MZ(Q(B)) ;Q(B)

and the isomorphism M, (Q(B)) = Q(B) is induced by an inner isomorphism
from M, (M (B)) onto M (B) , where @ is the direct sum of C*-algebras.

The above sets of equivalence classes of extensions are commutative semi-
groups with respect to this addition when B is stable. One can similarly define
these semigroups replacing Bby B®K if Bis not stable. Denote by Ext(A,B)
the quotient of Ext,(A,B) by the subsemigroup of trivial extensions.

3. Main Result

Suppose that D is a unital properly infinite C*-algebra, namely, there are two
elements S;,S, € D such that

2
S'S, =1(i=12),5'S,=0(i#j), 2S5 =1.
i=1

For every C*-algebra A, we denote by CP(A,D) the set of all completely
positive maps from A into D.

Definition 3.1. Two elements ¢,y € CP(A,D) are called (unitarily) equiva-
lent, denoted by ¢ ~ , if there is a unitary ue D such that Aducp =y .

It is easy to check that ~ is an equivalence relation on CP(A, D). Denote by
{p} the equivalence class of ¢.

Definition 3.2. CP,(A,D) is the equivalence classes in CP(A,D) under
the equivalence relation =, i.e. CP (A D)=CP(A, D)/z .

Now we can define a diagonal addition in CP, (A, D) as follows:

aee-en(” o o0 )

where Adv:M,(D)— D is the inner isomorphism with v=(S,,S,).

Proposition 3.3. Equipped with the above addition, CP,(A,D) is an abelian
semigroup.

Proof. The following is similar to the proof of ([7], 3.2.3), and we give it here
for the sake of completeness.

Suppose that ¢,¢",w and y' are in CP(A D) such that ¢~¢' and
w ~'. Then there are unitary elements U;,U, € D such that ¢'=Adu,o¢
and y'=Adu, oy . Thus

S (Y (O

Since
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is a unitary in D, we have

ol bl )

It follows that the addition is well-defined.
Let 6 and 6, be two inner isomorphisms from M, (D) onto D with

6, = Adv, and 6, = Adv, . Then
Ady, o ((o j =V,\,V, ((o jv;vzvf
% %

= Ad (vlv;)o Adv, o[¢ V/J’

ol o)

Therefore, the addition is independent of the choices of inner isomorphisms.

Suppose that ¢,y € CP(A,D). Then
0 1)0 1 0 1)y0 1).
Advol| ? =V 4 v
v 1 0/)\1 O w){1 0J){1 O
01 «
=v v 01 v
1 0l o1 o0

, (01
vV =V .
10

Then AdV' is an inner isomorphism from M, (D) onto Dand hence
tol+ivi=tvi+lo)

Suppose that ¢;,¢,,¢, € CP(A D) andlet S,,S, beisometries with
S,S,=0 and S;S; +S,S, =1. One can check the following computation:

({(01} + {%}) o) = {812%81*2 +8,5,0,5,8, + Sz?’as;}
2 S,”
= (51218182182) P, S,S;

*

(2] S,

and hence,

Let

and
{?’1}‘ + {{‘ﬂz} + {%}} = {5140181* + stﬂ’zsl*sg + 3224035;2}

*

% S,
= (51’8281’822) ?, S
o )\ S

Put v, =(S/,5S,,S,) and v, =(S,,S,5,,S). Then Adv, and Adv, are

two inner isomorphisms from M, (D) onto D. Note that
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2] 2
Ady, o o, = Ad (vlv; ) o Adv, o ®,
2 2

Since v,v, isa unitary in D, it follows that
({‘Pl} +{¢z})+{¢3} ={n} +({¢2} +{¢3})'

This completes the proof of associativity.
Therefore, CP, (A, D) isan abelian semigroup.
Remark 3.4. Suppose that ¢,y € CP(A, D). We write

I
920[‘/’ V/]:(Sl SZ)V wj@j

Definition 3.5. Let Hom(A,D) be the set of homomorphisms from A into
D. An element is called degenerate in CP(A,D) ifitisalsoin Hom(A,D) .

Definition 3.6. Two elements {¢p},{y}eCP (A D) are called equivalent,
denoted by {p} ~, {¢/},if thereare ¢',y'e Hom(A,D) such that
{o}+{o'} ={wi+{v7}.

Then ~; is an equivalence relation. The equivalence class of {p} is de-
noted by [{(o}}o , or by [(p]o simply.

Definition 3.7. CP,(A,D) is the equivalence classes in CP, (A, D) under
the equivalence relation ~,, ie. CP,(A D)=CP, (A D)/~,.

We define an addition +in CP,(A,D) by

lo], +[v], =[{e} +1¥}], o.w €CP(AD).

To see the addition is well-defined, suppose that {¢'} ~; {9} and {y'} ~, {v}.

or

Then there exist ¢, ¢/, € Hom(A,D) such that
ot +{ot ={o}t+{olb {wt+v) = {w'} +{wi},

and hence
{ot +{v+{od +v) ={o}+ v} + o} +{vi}
Since
o )
0, o[% %j & Hom(A,D).
Similarly,

0, o[% ) & Hom(A,D).
141

It follows that the addition is well-defined.
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Remark 3.8. 1) Suppose that ¢,,, e CP(A,D). Then
[#], =[#.], €CP,(A/D) if and only if there exist o,,0, € Hom(A D) such
that ¢, @ o, is unitarily equivalentto ¢, @o,.

2) Suppose that eCP(AD). Then [7],
CP,(A D) ifand onlyifforeach ¢ € CP(A,D) thereexist o;,0, e Hom(A,D)
such that ¢ @7 @ o, is unitarily equivalentto ¢@o,.

is the neutral element in

Theorem 3.9. CP,(A, D) is a unital abelian semigroup. An element [¢] is
the unit of CP,(A,D) ifand onlyif ¢ eHom(A D).
Proof. Suppose that ¢,,¢,,p, € CP(A,D). Then

[401]0*([4"2]0 [o ]) [¢1]o+[ P} +1 (03}]
=[{el+(le) +{os))
=[({e} +{¢3}

([¢1] +[¢2] )*[%]o

It follows that CP,(A,D) is a semigroup. It is clear that CP,(A,D) is ab-
elian.

Let e Hom(A,D). For any ¢eCP(A,D), take o, € Hom(A D) and set
0, =n1®o,. Then

il
]

0

(p®n)®o,~p®(n®o,),
that is, (¢®7n)®o, ~9p®o,. Since 0,,n@0c;, e Hom(A D) and ¢®n~; ¢,
wehave [¢] +[77], =[¢], byRemark3.8. Hence [77], isthe unitof CP,(A D).
Suppose that y € CP(A,D) such that [y]; is the unit of CP,(A D). For
@ eHom(A D), [(p]o is also the unit of CP,(A,D), and hence [l//]o =[(o]o.
Thus there exist ¢y, e Hom(A, D) such that {y}+{y,}={p}+{p}. Note
that v @y, is unitarily equivalent to @@ ¢,. Since ¢ and ¢, are both ho-

" )
(2]

is a homomorphism. Furthermore,

)

is in Hom(A, M, (D)), and hence y isin Hom(A,D).

Remark 3.10. The only invertible element in CP, (A, D) is the unit. In fact,
suppose that [(p]o is an invertible element in CP,(A D) with the inverse
[],- Then [@], +[w], isthe unitand

)

is a homomorphism by Theorem 3.9. Thus,

-

momorphisms,
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is also a homomorphism. Therefore ¢ isin Hom(A,D). It follows that [(p]o
is the unit.

Definition 3.11. Let Bbe a closed ideal of Dand z:D — D/B the quotient
map. We define a relation ~ on CP,(A,D) as follows: for ¢,y € CP(A,D),
we write [@] ~[w], if there exist ¢y, e CP(A D) such that [¢] =[]
[vi], =lw],,and 7o =7oy,.

Suppose that ¢ ~w , w ~n.Then there exist ¢,,y,,¥,,n, such that

[(/)1]0 :[(0]0 ' [Wl]o :[l//]o yTOP =T oY,

0

[v.l, =lv], [m.], =[], 7ov, =7on,.

Since [l//1]0 = [l//2 ]O, there exist ¢,¢, € Hom(A, D) such that
{wi}+{a} ={w,} +{4,} . Thus there is a unitary ue D such that

0, o("’l J: Aduoo, o[% )
2} ¢,

, 2 : n
g01=¢92°(1 %],nzzAduOHZo( 2 ¢j.
2

[o], =[2), (4], =[a], = o],
[772’]0 = [’7210 +[¢2]o = [772]0 = [77]0 !

Put

Then we have

and

:noAduOﬁzo[% ]:Adﬂ(u)o@'o[”o% j
¢, mog,
=Adﬂ(U)0(9£O(ﬁonz ¢J=;zoAdUo020[772 ¢\J
T o ) )
:7[0772',

where 6, is the inner isomorphism from M, (D/B) onto D/B induced by
g.

It follows that ~ is transitive, and hence ~ is an equivalence relation on
CP,(A D). Denote the equivalence class of [¢] by [[go]o} , or by [¢]
simply.

Let CP,(A D)=CP,(AD)/~. It is natural that we define an addition in
CP, (A D) as follows:

[e]+lv]=[le) )]
Remark 3.12. The addition defined in Definition 3.11 is well-defined: for
[¢]=[¢'] and [w]=[w'], there exist @, @, w,, W, such that [(pl]0 =[¢)]0,
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(2], =1¢'],> [w], =lv],> [wi], =lv'],» #op=7cp, and 7oy =rmoy,.
Then

7 (S10(S; +S,01S; ) = 7 (SiS; +S,1S;3 ),

and hence

|:[(D]o + [l//]o:| = [[¢1]0 + [l//l]o] = |:[¢£]0 + [l//ll]o] = [[(0’]0 + [l//’]o:|'

It is easy to see that [0] is the unitof CP,(A D). Thus (CP,(A,D),+) isa
unital abelian semigroup. In particular, for B ={0}, we have
(CP, (AD),+)=(CP,(AD),+);and for B=D,wehave CP,(A D)={0}.

Definition 3.13. Let CP;* (A,D) be the set of invertible elements in
CP, (A D). Then CP;*(A D) isan abelian group.

Theorem 3.14. Let ¢ be in CP(A,D). Then [p]=0 in CPR;*(AD) if
and only if there exist ¢',4,4, e Hom(A,D) and a unitary ueM,(D) such

that
el )
¢ ,

Proof. Suppose that [¢]=0 in CP;*(A D). Since [p]=[0]=0, there exist
¢'.¢'€CP(AD) such that [¢'] =[¢], [¢'],=0 and 7o@' =7o¢. Hence,
by Theorem 3.9, we have ¢'e Hom(A, D) . Since [go']o = [q)]o , there exist
¢.¢, e Hom(A D) such that {p}+{4}={¢'}+{¢,}. Then there is a unitary

ueM, (D) such that
el
4 ¢,

Conversely, suppose that there exist ¢',¢,¢, e Hom(A D) and a unitary

ueM,(D) such that
C )
4 #,

Set v, =(S,,S,) and Vv, =vu. Then Adv,,Adv, are both inner isomor-
phisms from M, (D) onto D. Therefore

Adv, O(qo j = Adv, o[(p’ J
4 2

Note that [¢']=[¢]=[¢,]=0.Thus [¢]=[e]|+[4]=[¢]+[4.]=0.
Remark 3.15. Suppose that [p]=0 in CP;*(A D). By Theorem 3.14, we

have
ﬂo((p ¢1j:”0 AdUO((p, ¢2j
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where

’

¢=Adu{¢ Je Hom(A,M, (D)),

2
and 7:M,(D)—> M, (D/B) isinduced by the quotient map 7:D — D/B.
Set ¢=<¢,'j),wehave mod; =0(i#]j) and mop=7od,.
Theorem 3.16. Let ¢ < CP(A,D). Then [p]eCP;*(A D) if and only if
there is ¢=(¢I,j)eH0m(A,M2(D)) and y e CP(A D) such that

71'0(¢ ]=7Z'O¢.
v

Proof Suppose that [p]eCP;*(A,D) with the inverse [¢'].Let v=(S,S,).
Since [¢]+[¢'] =0, there exist ¢' :(¢|’ ) in Hom(A,M,(D)) and a unitary

i

u=(ui1j) in M, (D) such that
4 * 4
T o =Adz(v Je Adz(V)e
(" Jrrantr s ")
=Ad7[(V*)O¢£1
:7[0[81*@',151 31*¢1',152J_
S:4:8 S:4:S,
Set
S, 0
. I 0 0
v,=[S, 0] and VZ:[ ]
0 | 0 S S,

Then Adv, is an inner isomorphism from M,(D) onto M,(D) and
Adv, is an inner isomorphism from M, (D) onto M, (D). It follows that

Sl*¢1’,181 S1*¢1',152 s1*¢1’,2 4
moAdv,og' =7o| S;4,S, S,4,S, S,4, |=7o o .
$19 615, b, $.
Set

@’ S,

w=(S, S , .

( ' 2)( ¢2,2](SJ
and

¢ = Adv, o Adv, o ¢’ Hom(A, M, )(D),

Then we have

2
wog=rmoAdv, o o' :7[0[(/7 j
4

o Jers
v
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AdVOHO((o j:AdV07z0¢.
%
Then
;zoezo(¢ jzﬁo@zoqﬁ.
%
Thus
¢
:020 :Hzo =0.
ol (", |00

Proposition 3.17. Suppose that ¢ € CP(A,D) such that [p]eCP;*(A D).
Then 7o¢ isahomomorphism.
Proof Suppose that ¢, € CP,*(A,D) and [g,] isthe inverse of [¢,]. Set

w * *
‘//:920( : ]231%51 +5,0,5,.
2
By Theorem 3.14, there exist @€ Hom(A, M, (D)) and ¢ e Hom(A,D)
such that
%
o =7od.
{ ¢1J

Hence 7oy isahomomorphism, and thus
”(51)(72'°§01(ab)_”((ol(a)‘/’l(b)))”(sl*)
+7z(SZ)(7zoqo2(ab)—7r(go2 (a)%(b)))ﬁ(sg)=o.

Set x=rmop (ab)-7(p (a)e (b)) and y=rmop,(ab)-7(p,(a)p,(b)) .
Then

7 (8y)xx(S;)+7(S,)yz(S;) =0,

that is,

This implies that x =y =0, and furthermore 7o (ab)= 7[((/)1 (a)e (b)) It
follows that 7og, isa homomorphism.

Lemma 3.18. ([7], 3.2.9) Suppose that A is a separable C*-algebra and Bis a
stable C*-algebra. Let ¢ € Hom(A,Q(B)). Then the following three statements
are equivalent:

1) [¢] isinvertiblein Ext(A B).

2) There exists y € CP(A, M (B)) such that ¢g=r7oy .

3) There exists ¢ € Hom(A, M, (M (B))) such that

DOI: 10.4236/jamp.2022.1012243 3658 Journal of Applied Mathematics and Physics
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o o)rlle oo o)

It is well known that M, (M (B)) and M (B) are innerly isomorphic if Bis
a stable C*-algebra. Then we have the following result.
Theorem 3.19. Let A and Bbe C*-algebras with Bstable. Then

CP*(AM(B))=Ext™(AB).
Proof. Note that the condition that A is separable is not necessary in the proof
of (1) = (2) in Lemma 3.18 ([7], 3.2.9). Suppose that ¢ e Hom(A Q(B))

such that [¢] is invertible in Ext(A,B). Then there exists ¢ CP(A, M (B))
such that ¢ =70 . We define a map

®:Ext™(A,B)—>CP, (A M(B))
by [¢]+>[¢], where 7op=4¢.
1) Prove that @ is well-defined.
Suppose that ¢,¢, € Hom(A M (B)/B) such that [¢].[¢,]€ Ext™ (A B).

Then there exist (ol,wzeCPB(A,M(B)) such that @ =7o@ and ¢, =7og,.
If [¢]=[¢,], there exist ¢, ¢ eHom(A,M(B)) and UEMZ(M(B)) such

that
580(@ ,j:Adzr(u)oéBo(% j
o TToQ,

”[HB{% wl'D:”(AdUOQB{% wz'j]'

Since @ isan inner isomorphism,

1], {6’5 {(/91 (/JIHU and [¢,], {Ad”‘“gf‘ {% coéﬂ({

Then [¢]|=[¢,],and hence ® is well-defined.

2) Prove that @ is a homomorphism.

Hence,

Note that
o([#])+(g.]) =[n]+[e]=[la], +[2]) ]
Since
S )
we have

@([4]+[s]) = @([4])+ ([ ])-
It follows that @ is a homomorphism.
3) Prove that ®(Ext(A,B))< CP,*(A M (B)).
Suppose that [¢4] is an invertible element with the inverse [¢,]. Then we

have
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q>([¢1])+®([¢2]) = q>([¢1]+[¢2]) =0(0).

Therefore, CD([¢1]) is invertible.

4) Prove that @ Ext™ (A, B) — CPB_1 (A, M (B)) is injective.

Suppose that (D([qﬁl]) =[¢] and CD([¢2]) =[¢p,], where ¢ =7op and
b=7mop,.

If [p]=[p,] in CP,;I(A, M (B)) , then there exist ¢, ¢, € CP(A, M (B))
such that ¢ ], =[@}],, [2,], =[93], and 7@ =70 @). Therefore there exist
0,,0,,7,,7, € Hom(A M (B)) and unitary elements u;,u, € M, (M (B)) such

that
((pl j:Adulo[wl Mcoz J:Aduzo[% j
eg} O, 21 7
Put
, , 100
xz(g"1 j,v_(% j,E: 00 1
O, 7,
010

Then we have

S
" e e )
and
LGNV U
o
(W) 7[(1)}[( )(ﬂ;Y nfazj”(E)[”(u*) ”“J
(el 2
Thus,

Set
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One can check that U, isaunitaryin M, (M (B)) . Then we have
4 ¢,

ooy = Adr(uy)o ot

7ot oo,

It follows that
[d]=[d]+[zeoa]+[zor|=[g]+[ron]+[ro0,]=[4].

Therefore, @ is injective.

5) Prove that ®:Ext™ (A B)— CP,*(A,M(B)) is surjective.

Suppose that [¢, ] € CP;* (A M (B)). Then by Theorem 3.16 there exist [g,]
and an inner isomorphism ¢e Hom(A, M, (M (B))) with ¢=Adv and
v=(S,,S,), such that [¢ ]+[p,]=[Advog].Since 7op =¢ and 7o, =4,,
by Theorem 3.17, ¢ and ¢, are homomorphismsand

[¢]+[¢:] =[x Adveg]=[0]
Thus [¢]e EXt_l(A,B) and CD([¢1])=[(p] This implies that @ is surjec-

tive.
Similar to Lemma 3.18, we have the following result.
Corollary 3.20. Let A and Bbe C*-algebras with Bstable and let
¢ € Hom ( AQ ( B)) . Consider the following three statements:
1) [¢] is invertible in Ext(A,B).
2) There exists y € CP(A, M (B)) such that @ = oy .
3) There exist ¢ e Hom(A, M, (M (B))) and ¢'e Hom(A M (B)) such that

V j: rop

4

Then (1) < (3) = (2).

Proposition 3.21. Let A and Cbe C*-algebras and h,¢ € Hom(A,C). Then

1) The map h.:CP,(C,D)—CP,(A D) defined by [¢] = [poh], is a
semigroup homomorphism.

2) The map ¢ :CP,(C,D)—CP; (A D) defined by [¢]>[po4] is a un-
ital semigroup homomorphism. Furthermore, it is a group homomorphism
from CPBA(C, D) into CP,-;l(A, D).

Theorem 3.22. Let C be the category of C*-algebras and SG the category
of abelian semigroups. Define CP;(-,D):C—>SG by A+ CP,(A D) and
¢+ ¢ for any AeC and ¢eHom(AC). Then CP,(-D) is a contrava-
riant functor from C to SG.

Proof. 1) For a C*-algebra Aand [¢]eCP; (A D), we have
I ([(o]) =[po1]=[¢]. Then I. isthe unitof CP,(A D).

2) Let ¢, e Hom(AE) and ¢, e Hom(E,C).Set F =CP; (- D). Then

F((/’z °¢1)[(/7] :[¢°¢2 °¢1] = F((pl)[(0°¢z] = F((P1)° F(‘/’z)[(P]-

Thus CP, (-, D) isa contravariant functor.
Corollary 3.23. Let G be the category of abelian groups. Then CP;(-,D)

DOI: 10.4236/jamp.2022.1012243

3661 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.1012243

R.F. Wang et al.

induces a contravariant functor CP;*(+,D) from C into G by
A>CPR;*(AD), and from Hom(A,C) into Hom(CP,*(C,D),CP;*(A D))
by ¢ o..

For a short exact sequence of C*-algebras 0 >C—2—>E—25>A 0, the
functor CP, (-, D) from C to SG is not exact, and it is even not split-exact.
The following is a counterexample.

Example 3.24. Suppose that A is an infinite dimensional separable Hilbert
space. Let A=C=K(H), E=A®C, D=B(H) and B=0.Then
CP;(A,D)=CP,(AD).Let f :C—E be theinclusion map and let

f,E > A be the quotient map. Then the exact sequence
05C—15E—235A0
is split.

Take a nonzero element 7 eCP (A Cl,). We define a map ¢:E—>D by
¢|. =1c and ¢|, =n.Then peCP(E,D) and [pof,]=0.If
[wo f2]0 :[(p]o for some y €CP,(A D), then there exist 4,4, € Hom(E, D)
and a unitary ueU (M, (D)) such that

& ¢,
(u oy,
u= u, u, )

Since (o f,)(E)=0, ug@(E)u; +u,¢,(E)u; =0. Note that

ulqo(e)uf, u,d, (e)u; are positive if eis positive in E. It follows that

up(e)u; =u,g, (e)u, =0.

Put

Therefore UK (H)u; =0. Furthermore, u,u; =0 since there is a sequence
in K(H) which is convergent to /in the strong operator topology on B(H).
Then u; =0.Hence U, =0 and u,,u, €U (D). Therefore,

o A )
9, U;pU,

Since U,pu; =¢ is a homomorphism, ¢ is also a homomorphism. Howev-
er, (p| , is not a homomorphism by the definition of ¢ . Otherwise, if ¢J| , isa
homomorphism from K (H ) to C, then it follows that go| N 0 since a com-
pletely positive map preserves self-adjoint elements. This is in contradiction to
the fact that go|A #0.

Theorem 3.25. Suppose that

0>C—15E—"25A-0
is a split short exact sequence, then

0— CP;* (A D)—2:CR;*(E,D)—->CP;*(C,D) >0

is also a split short exact sequence.
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Proof. Since (f,),°(f,).([¢x])=[@a°f,° f;]=0, wehave
Im(f,), < Ker(f),.
Assume that E=A®C . For any [¢]e Ker((f )*) , let @, = ¢|A and
. =¢|. . Then ¢ =9, ® ¢, . Notethat [p] isinvertible and

[oc]=[oe .]=(1).([o])-

Hence, [‘/’c ] eCRh;! (C, D) . Similarly, [(pA] is also invertible.

Suppose that the inverses of [p,] and [¢.] are [¢,] and [¢.] respec-
tively. Let [¢']=[¢, ® ¢t ]. Now we show that [¢]+[¢’] is the unit. Suppose
that [@)] =[oa], +[2h], and [@¢], =[0c], +[#t], such that 7og) =704,
and 7wo@l =mod.,where ¢, and @, are homomorphisms. Then

(o], +[o], =[2 ®0t],-

Since 7(p} @ ¢@.) isahomomorphism, [p]+[¢'] is the unitof CP;*(E,D).
Since [p]e Ker(( ). ) [@of]=0. Then 7op. =7o¢, and hence [¢] is
the inverse of [¢]. Therefore, [¢p'|=[¢, ®0] is the inverse of [¢p]. Since
(fz)*([(PA])—[(ﬂ']’ [p] € Im((f )*)'Thus’

Im((f,).)=Ker((f,).).

Suppose that (f,),([@x])=0.Then [, ®0]=0,and there exist
y €CP(E,D) and ¢ Hom(E,D) suchthat [y] =[p,+0], and
woy =mwo¢. Hence, 7Z'Ol//|A :ﬁo¢|A.Note that ¢|A e Hom(A,D) and
[¢| J =[@4],- It follows that [¢,]=0 and (f,)
phism.

Suppose that [¢; ] e CR;* (C,D). Then we have

(fl)*([O@%]):[(O@(PC) f J:[%]

is surjective.

*

is an injective homomor-

*

Therefore, (f,)
Define

f.:CP;*(C,D)—>CP;*(E,D),[¢. | > [0@ . ].
Then (f,), o f.=1.Finally,
0> CP;*(A D)—"2- P (E,D)— 2P (C,D) -0
is a split short exact sequence.
Remark 3.26. For any C*-algebra B, we can define CP,(A B), CP,'l(A, B) ,
etc., to be CF’Z(A,M (/C® B)), CP,_l(A,M (/C® B)), respectively. Since for

any stable C*-algebra its multiplier algebra is properly infinite, these invariants
are well-defined.
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