

A Classification of Completely Positive Maps

Ruofei Wang¹, Shudong Liu², Changguo Wei^{3*}

¹School of Mathematical Sciences, East China Normal University, Shanghai, China ²School of Mathematical Sciences, Qufu Normal University, Qufu, China ³School of Mathematical Sciences, Ocean University of China, Qingdao, China Email: 1035119039@qq.com, lshd008@163.com, *weicgqd@163.com

How to cite this paper: Wang, R.F., Liu, S.D. and Wei, C.G. (2022) A Classification of Completely Positive Maps. *Journal of Applied Mathematics and Physics*, **10**, 3649-3664.

https://doi.org/10.4236/jamp.2022.1012243

Received: November 21, 2022 Accepted: December 23, 2022 Published: December 26, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

<u>()</u>

Open Access

Abstract

This paper concerns classifying completely positive maps between certain C^* -algebras. Several invariants for classifying completely positive maps are constructed. It is proved that one of them is isomorphic to the Ext-group of C^* -algebra extensions in special circumstances. Furthermore, this invariant induces a functor from C^* -algebras to abelian groups which is split-exact.

Keywords

Completely Positive Map, Extension, Ext-Group

1. Introduction

The theory of completely positive maps plays an important part in operator algebras, operator spaces, and extensions of C^{t} -algebras. Many fundamental concepts and theorems are defined and proved via completely positive maps respectively, such as nuclearity, invertible extension, Stinespring's Theorem ([1] [2]), Voiculescu's Theorem ([3]), etc.

On the other hand, as an effective tool to study the structure of C^* -algebras and to classify C^* -algebras, the theory extensions of C^* -algebras originated from Busby's work in 1960's ([4]). Subsequently, Brown, Douglas and Fillmore established their famous BDF theory ([5] [6]) to study essentially normal operators on a separable infinite-dimensional Hilbert space and extensions of C^* -algebra C(X) by compact operators, where C(X) is the C^* -algebra of continuous functions on a compact metric space X. Since then, the theory of extensions of C^* -algebras has developed rapidly, and becomes an important invariant for classifying C^* -algebras together with K-theory and KK-theory (see [1] [7] [8] [9], etc.).

As we know, an extension of C^* -algebras is determined by its Busby invariant

with respect to unitary equivalence, so to an extent classifying extensions of C^* -algebras is a sort of classifying homomorphisms between C^* -algebras. It should be pointed out that the *KK*-groups were defined via homomorphisms in this way at the beginning ([8]), and it was already used to classify homomorphisms (see [10] [11] [12], etc.). Completely positive maps can be seen as generalization of homomorphisms and what is particularly important is that Ext-groups were characterized by completely positive maps, so it is natural to consider classifying completely positive maps.

This note is engaging in classifying completely positive maps between certain C^{*} -algebras. Specifically, several invariants for classifying completely positive maps are introduced. As a main result, one of them is isomorphic to the Ext-group of C^{*} -algebra extensions. In addition, this invariant induces a functor from C^{*} -algebras to abelian groups which is split-exact.

2. Preliminaries

In this section, we need to recall some notations and definitions for C^* -algebras and extensions. One can also see [1] [7] [13] [14] [15] for more details.

Suppose that D is a C^* -algebra. Recall that $\theta_n : M_n(D) \to D$ is an inner isomorphism, if there are isometries S_1, \dots, S_n in D with $\sum_{i=1}^n S_i S_i^* = 1$ and $S_i^* S_i = 0$ for $i \neq j$, such that $\theta_n = Adv$, namely,

$$\theta_n\left(\left[x_{ij}\right]\right) = v\left[x_{ij}\right]v^* = \sum_{i,j} S_i x_{ij} S_j^*,$$

for $[x_{ij}] \in M_n(D)$, where $v = (S_1, \dots, S_n)$. Suppose that v_1 and v_2 are such elements. Then $v_1v_2^* \in D$ and $v_1v_2^*v_2v_1^* = v_2v_1^*v_1v_2^* = 1$, and hence $v_1v_2^*$ is a unitary in D.

Let A and B be C^* -algebras. An extension of A by B is a short exact sequence

$$e: 0 \to B \xrightarrow{\alpha} E \xrightarrow{\beta} A \to 0.$$

Denote this extension by *e* or (E, α, β) .

The extension (E, α, β) is called trivial, if the above sequence splits, *i.e.* if there is a homomorphism $\gamma: A \to E$ such that $\beta \circ \gamma = id_A$.

For an extension (E, α, β) , there is a unique homomorphism $\sigma: E \to M(B)$ such that $\sigma \circ \alpha = \iota$, where M(B) is the multiplier algebra of B, and ι is the inclusion map from B into M(B). The Busby invariant of (E, α, β) is a homomorphism τ from A into the corona algebra Q(B) = M(B)/B defined by $\tau(a) = \pi(\sigma(b))$ for $a \in A$, where $\pi: M(B) \to Q(B)$ is the quotient map, and $b \in E$ such that $\beta(b) = a$.

Two extensions e_1 and e_2 are called (strongly) unitarily equivalent, denoted by $e_1 \sim e_2$, if there exists a unitary $u \in M(B)$ such that

 $\tau_2(a) = \pi(u)\tau_1(a)\pi(u)^*$ for all $a \in A$. Denote by $\mathbf{Ext}(A,B)$ or $\mathbf{Ext}_s(A,B)$ the set of (strong) unitary equivalence classes of extensions of A by B.

Let *H* be a separable infinite-dimensional Hilbert space and \mathcal{K} the ideal of compact operators in B(H). If *B* is a stable C^{t} -algebra (*i.e.* $B \otimes \mathcal{K} \cong B$, where \otimes is the tensor product operation), then the sum of two extensions τ_{1} and τ_{2}

is defined to be the homomorphism $au_1 \oplus au_2$, where

$$\tau_1 \oplus \tau_2 : A \to \mathcal{Q}(B) \oplus \mathcal{Q}(B) \subseteq M_2(\mathcal{Q}(B)) \cong \mathcal{Q}(B)$$

and the isomorphism $M_2(\mathcal{Q}(B)) \cong \mathcal{Q}(B)$ is induced by an inner isomorphism from $M_2(M(B))$ onto M(B), where \oplus is the direct sum of C^{*}-algebras.

The above sets of equivalence classes of extensions are commutative semigroups with respect to this addition when *B* is stable. One can similarly define these semigroups replacing *B* by $B \otimes \mathcal{K}$ if *B* is not stable. Denote by Ext(A, B)the quotient of $\mathbf{Ext}_s(A, B)$ by the subsemigroup of trivial extensions.

3. Main Result

Suppose that D is a unital properly infinite C^{*}-algebra, namely, there are two elements $S_1, S_2 \in D$ such that

$$S_i^* S_i = 1 (i = 1, 2), S_i^* S_j = 0 (i \neq j), \sum_{i=1}^2 S_i S_i^* = 1.$$

For every C^{*}-algebra A, we denote by CP(A, D) the set of all completely positive maps from A into D.

Definition 3.1. Two elements $\varphi, \psi \in CP(A, D)$ are called (unitarily) equivalent, denoted by $\varphi \approx \psi$, if there is a unitary $u \in D$ such that $Adu \circ \varphi = \psi$.

It is easy to check that \approx is an equivalence relation on CP(A, D). Denote by $\{\varphi\}$ the equivalence class of φ .

Definition 3.2. $CP_1(A, D)$ is the equivalence classes in CP(A, D) under the equivalence relation \approx , *i.e.* $CP_1(A, D) = CP(A, D)/\approx$.

Now we can define a diagonal addition in $CP_1(A, D)$ as follows:

$$\{\varphi\} + \{\psi\} = \left\{ Adv \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right\} = \left\{ \begin{pmatrix} S_1 & S_2 \end{pmatrix} \begin{pmatrix} \varphi & \\ \psi \end{pmatrix} \begin{pmatrix} S_1^* \\ S_2^* \end{pmatrix} \right\},$$

where $Adv: M_2(D) \rightarrow D$ is the inner isomorphism with $v = (S_1, S_2)$.

Proposition 3.3. Equipped with the above addition, $CP_1(A, D)$ is an abelian semigroup.

Proof. The following is similar to the proof of ([7], 3.2.3), and we give it here for the sake of completeness.

Suppose that φ, φ', ψ and ψ' are in CP(A, D) such that $\varphi \approx \varphi'$ and $\psi \approx \psi'$. Then there are unitary elements $u_1, u_2 \in D$ such that $\varphi' = Adu_1 \circ \varphi$ and $\psi' = Adu_2 \circ \psi$. Thus

$$Adv \circ \begin{pmatrix} \varphi' \\ \psi' \end{pmatrix} = v \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \begin{pmatrix} u_1^* \\ u_2^* \end{pmatrix} v^*$$
$$= v \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} v^* v \begin{pmatrix} \varphi \\ \psi \end{pmatrix} v^* v \begin{pmatrix} u_1^* \\ u_2^* \end{pmatrix} v^*.$$

 $v \begin{pmatrix} u_1 & \\ & u_2 \end{pmatrix} v^*$

Since

is a unitary in *D*, we have

$$\left\{Adv\circ\begin{pmatrix}\varphi'\\&\psi'\end{pmatrix}\right\} = \left\{Adv\circ\begin{pmatrix}\varphi\\&\psi\end{pmatrix}\right\}.$$

It follows that the addition is well-defined.

Let θ_1 and θ_2 be two inner isomorphisms from $M_2(D)$ onto D with $\theta_1 = Adv_1$ and $\theta_2 = Adv_2$. Then

$$Adv_{1} \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = v_{1}v_{2}^{*}v_{2} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} v_{2}^{*}v_{2}v_{1}^{*}$$
$$= Ad(v_{1}v_{2}^{*}) \circ Adv_{2} \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix},$$

and hence,

$$\left\{Adv_1\circ\begin{pmatrix}\varphi\\&\psi\end{pmatrix}\right\} = \left\{Adv_2\circ\begin{pmatrix}\varphi\\&\psi\end{pmatrix}\right\}.$$

Therefore, the addition is independent of the choices of inner isomorphisms. Suppose that $\varphi, \psi \in CP(A, D)$. Then

$$Adv \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = v \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} v^{*}$$
$$= v \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \psi \\ \varphi \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} v^{*}.$$

Let

$$v' = v \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then Adv' is an inner isomorphism from $M_2(D)$ onto D and hence $\{\varphi\} + \{\psi\} = \{\psi\} + \{\varphi\}.$

Suppose that $\varphi_1, \varphi_2, \varphi_3 \in CP(A, D)$ and let S_1, S_2 be isometries with $S_1^*S_2 = 0$ and $S_1S_1^* + S_2S_2^* = 1$. One can check the following computation:

$$\left(\left\{ \varphi_1 \right\} + \left\{ \varphi_2 \right\} \right) + \left\{ \varphi_3 \right\} = \left\{ S_1^2 \varphi_1 S_1^{*2} + S_1 S_2 \varphi_2 S_2^{*} S_1^{*} + S_2 \varphi_3 S_2^{*} \right\}$$

$$= \left\{ \left(S_1^2, S_1 S_2, S_2 \right) \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix} \begin{pmatrix} S_1^{*2} \\ S_2^{*} S_1^{*} \\ S_2^{*} \end{pmatrix} \right\}$$

and

$$\begin{split} \left\{\varphi_{1}\right\} + \left\{\left\{\varphi_{2}\right\} + \left\{\varphi_{3}\right\}\right\} &= \left\{S_{1}\varphi_{1}S_{1}^{*} + S_{2}S_{1}\varphi_{2}S_{1}^{*}S_{2}^{*} + S_{2}^{2}\varphi_{3}S_{2}^{*2}\right\} \\ &= \left\{\left(S_{1}, S_{2}S_{1}, S_{2}^{2}\right) \begin{pmatrix}\varphi_{1} & \\ & \varphi_{2} \\ & & & \varphi_{3} \end{pmatrix} \begin{pmatrix}S_{1}^{*} \\ S_{1}^{*}S_{2}^{*} \\ S_{2}^{*2} \end{pmatrix}\right\} \end{split}$$

Put $v_1 = (S_1^2, S_1S_2, S_2)$ and $v_2 = (S_1, S_2S_1, S_2^2)$. Then Adv_1 and Adv_2 are two inner isomorphisms from $M_3(D)$ onto D. Note that

$$Adv_{1} \circ \begin{pmatrix} \varphi_{1} & & \\ & \varphi_{2} & \\ & & \varphi_{3} \end{pmatrix} = Ad\left(v_{1}v_{2}^{*}\right) \circ Adv_{2} \circ \begin{pmatrix} \varphi_{1} & & \\ & \varphi_{2} & \\ & & \varphi_{3} \end{pmatrix}.$$

Since $v_1 v_2^*$ is a unitary in *D*, it follows that

$$(\{\varphi_1\} + \{\varphi_2\}) + \{\varphi_3\} = \{\varphi_1\} + (\{\varphi_2\} + \{\varphi_3\}).$$

This completes the proof of associativity.

Therefore, $CP_1(A, D)$ is an abelian semigroup.

Remark 3.4. Suppose that $\varphi, \psi \in CP(A, D)$. We write

$$\varphi \oplus \psi = \begin{pmatrix} S_1 & S_2 \end{pmatrix} \begin{pmatrix} \varphi & \\ & \psi \end{pmatrix} \begin{pmatrix} S_1^* \\ S_2^* \end{pmatrix},$$

or

$$\theta_2 \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \begin{pmatrix} S_1 & S_2 \end{pmatrix} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \begin{pmatrix} S_1^* \\ S_2^* \end{pmatrix}.$$

Definition 3.5. Let Hom(A, D) be the set of homomorphisms from A into D. An element is called degenerate in CP(A, D) if it is also in Hom(A, D).

Definition 3.6. Two elements $\{\varphi\}, \{\psi\} \in CP_1(A, D)$ are called equivalent, denoted by $\{\varphi\} \sim_0 \{\psi\}$, if there are $\varphi', \psi' \in Hom(A, D)$ such that $\{\varphi\} + \{\varphi'\} = \{\psi\} + \{\psi'\}$.

Then \sim_0 is an equivalence relation. The equivalence class of $\{\varphi\}$ is denoted by $\lceil \{\varphi\} \rceil_0$, or by $\lceil \varphi \rceil_0$ simply.

Definition 3.7. $CP_2(A, D)$ is the equivalence classes in $CP_1(A, D)$ under the equivalence relation \sim_0 , *i.e.* $CP_2(A, D) = CP_1(A, D)/\sim_0$.

We define an addition + in $CP_2(A, D)$ by

$$\left[\varphi\right]_{0}+\left[\psi\right]_{0}=\left[\left\{\varphi\right\}+\left\{\psi\right\}\right]_{0},\,\varphi,\psi\in CP(A,D).$$

To see the addition is well-defined, suppose that $\{\varphi'\} \sim_0 \{\varphi\}$ and $\{\psi'\} \sim_0 \{\psi\}$. Then there exist $\varphi_1, \varphi'_1, \psi_1, \psi'_1 \in Hom(A, D)$ such that

$$\{\varphi\} + \{\varphi_1\} = \{\varphi'\} + \{\varphi_1'\}, \{\psi\} + \{\psi_1\} = \{\psi'\} + \{\psi_1'\},$$

and hence

$$\{\varphi\} + \{\psi\} + \{\varphi_1\} + \{\psi_1\} = \{\varphi'\} + \{\psi'\} + \{\varphi'_1\} + \{\psi'_1\}.$$

Since

$$\{\varphi_1\} + \{\psi_1\} = \left\{ \theta_2 \circ \begin{pmatrix} \varphi_1 \\ \psi_1 \end{pmatrix} \right\},$$
$$\theta_2 \circ \begin{pmatrix} \varphi_1 \\ \psi_1 \end{pmatrix} \in Hom(A, D).$$

Similarly,

$$\theta_2 \circ \begin{pmatrix} \varphi_1' \\ & \psi_1' \end{pmatrix} \in Hom(A, D).$$

It follows that the addition is well-defined.

Remark 3.8. 1) Suppose that $\varphi_1, \varphi_2 \in CP(A, D)$. Then

 $[\varphi_1]_0 = [\varphi_2]_0 \in CP_2(A, D)$ if and only if there exist $\sigma_1, \sigma_2 \in Hom(A, D)$ such that $\varphi_1 \oplus \sigma_1$ is unitarily equivalent to $\varphi_2 \oplus \sigma_2$.

2) Suppose that $\eta \in CP(A, D)$. Then $[\eta]_0$ is the neutral element in $CP_2(A, D)$ if and only if for each $\varphi \in CP(A, D)$ there exist $\sigma_1, \sigma_2 \in Hom(A, D)$ such that $\varphi \oplus \eta \oplus \sigma_1$ is unitarily equivalent to $\varphi \oplus \sigma_2$.

Theorem 3.9. $CP_2(A, D)$ is a unital abelian semigroup. An element $[\varphi]_0$ is the unit of $CP_2(A, D)$ if and only if $\varphi \in Hom(A, D)$.

Proof. Suppose that $\varphi_1, \varphi_2, \varphi_3 \in CP(A, D)$. Then

$$\begin{split} [\varphi_{1}]_{0} + ([\varphi_{2}]_{0} + [\varphi_{3}]_{0}) &= [\varphi_{1}]_{0} + [\{\varphi_{2}\} + \{\varphi_{3}\}]_{0} \\ &= [\{\varphi_{1}\} + (\{\varphi_{2}\} + \{\varphi_{3}\})]_{0} \\ &= [(\{\varphi_{1}\} + \{\varphi_{2}\}) + \{\varphi_{3}\}]_{0} \\ &= ([\varphi_{1}]_{0} + [\varphi_{2}]_{0}) + [\varphi_{3}]_{0}. \end{split}$$

It follows that $CP_2(A,D)$ is a semigroup. It is clear that $CP_2(A,D)$ is abelian.

Let $\eta \in Hom(A,D)$. For any $\varphi \in CP(A,D)$, take $\sigma_1 \in Hom(A,D)$ and set $\sigma_2 = \eta \oplus \sigma_1$. Then

$$(\varphi \oplus \eta) \oplus \sigma_1 \approx \varphi \oplus (\eta \oplus \sigma_1),$$

that is, $(\varphi \oplus \eta) \oplus \sigma_1 \approx \varphi \oplus \sigma_2$. Since $\sigma_1, \eta \oplus \sigma_1 \in Hom(A, D)$ and $\varphi \oplus \eta \sim_0 \varphi$, we have $[\varphi]_0 + [\eta]_0 = [\varphi]_0$ by Remark 3.8. Hence $[\eta]_0$ is the unit of $CP_2(A, D)$.

Suppose that $\psi \in CP(A,D)$ such that $[\psi]_0$ is the unit of $CP_2(A,D)$. For $\varphi \in Hom(A,D)$, $[\varphi]_0$ is also the unit of $CP_2(A,D)$, and hence $[\psi]_0 = [\varphi]_0$. Thus there exist $\varphi_1, \psi_1 \in Hom(A,D)$ such that $\{\psi\} + \{\psi_1\} = \{\varphi\} + \{\varphi_1\}$. Note that $\psi \oplus \psi_1$ is unitarily equivalent to $\varphi \oplus \varphi_1$. Since φ and φ_1 are both homomorphisms,

$$heta_2 \circ \begin{pmatrix} arphi & & \ & & \ & & arphi_1 \end{pmatrix}$$

is a homomorphism. Furthermore,

$$\begin{pmatrix} \psi & \\ & \psi_1 \end{pmatrix}$$

is in $Hom(A, M_2(D))$, and hence ψ is in Hom(A, D).

Remark 3.10. The only invertible element in $CP_2(A,D)$ is the unit. In fact, suppose that $[\varphi]_0$ is an invertible element in $CP_2(A,D)$ with the inverse $[\psi]_0$. Then $[\varphi]_0 + [\psi]_0$ is the unit and

$$\theta_2 \circ \begin{pmatrix} \varphi & \\ & \psi \end{pmatrix}$$

is a homomorphism by Theorem 3.9. Thus,

$$\begin{pmatrix} p & \\ & \psi \end{pmatrix}$$

is also a homomorphism. Therefore φ is in Hom(A, D). It follows that $[\varphi]_0$ is the unit.

Definition 3.11. Let *B* be a closed ideal of *D* and $\pi: D \to D/B$ the quotient map. We define a relation ~ on $CP_2(A, D)$ as follows: for $\varphi, \psi \in CP(A, D)$, we write $[\varphi]_0 \sim [\psi]_0$ if there exist $\varphi_1, \psi_1 \in CP(A, D)$ such that $[\varphi_1]_0 = [\varphi]_0$, $[\psi_1]_0 = [\psi]_0$, and $\pi \circ \varphi_1 = \pi \circ \psi_1$.

Suppose that $\varphi \sim \psi$, $\psi \sim \eta$. Then there exist $\varphi_1, \psi_1, \psi_2, \eta_2$ such that

$$\begin{bmatrix} \varphi_1 \end{bmatrix}_0 = \begin{bmatrix} \varphi \end{bmatrix}_0, \begin{bmatrix} \psi_1 \end{bmatrix}_0 = \begin{bmatrix} \psi \end{bmatrix}_0, \pi \circ \varphi_1 = \pi \circ \psi_1,$$
$$\begin{bmatrix} \psi_2 \end{bmatrix}_0 = \begin{bmatrix} \psi \end{bmatrix}_0, \begin{bmatrix} \eta_2 \end{bmatrix}_0 = \begin{bmatrix} \eta \end{bmatrix}_0, \pi \circ \psi_2 = \pi \circ \eta_2.$$

Since $[\psi_1]_0 = [\psi_2]_0$, there exist $\phi_1, \phi_2 \in Hom(A, D)$ such that $\{\psi_1\} + \{\phi_1\} = \{\psi_2\} + \{\phi_2\}$. Thus there is a unitary $u \in D$ such that

$$\theta_2 \circ \begin{pmatrix} \psi_1 \\ \phi_1 \end{pmatrix} = A du \circ \theta_2 \circ \begin{pmatrix} \varphi_2 \\ \phi_2 \end{pmatrix}.$$

Put

$$\varphi_1' = \theta_2 \circ \begin{pmatrix} \varphi_1 \\ \phi_1 \end{pmatrix}, \eta_2' = Adu \circ \theta_2 \circ \begin{pmatrix} \eta_2 \\ \phi_2 \end{pmatrix}.$$

Then we have

$$\begin{bmatrix} \varphi_1' \end{bmatrix}_0 = \begin{bmatrix} \varphi_1 \end{bmatrix}_0 + \begin{bmatrix} \phi_1 \end{bmatrix}_0 = \begin{bmatrix} \varphi_1 \end{bmatrix}_0 = \begin{bmatrix} \varphi \end{bmatrix}_0,$$
$$\begin{bmatrix} \eta_2' \end{bmatrix}_0 = \begin{bmatrix} \eta_2 \end{bmatrix}_0 + \begin{bmatrix} \phi_2 \end{bmatrix}_0 = \begin{bmatrix} \eta_2 \end{bmatrix}_0 = \begin{bmatrix} \eta \end{bmatrix}_0,$$

and

$$\pi \circ \varphi_{1}' = \pi \circ \theta_{2} \circ \begin{pmatrix} \varphi_{1} \\ \phi_{1} \end{pmatrix} = \theta_{2}' \circ \begin{pmatrix} \pi \circ \varphi_{1} \\ \pi \circ \phi_{1} \end{pmatrix}$$
$$= \theta_{2}' \circ \begin{pmatrix} \pi \circ \psi_{1} \\ \pi \circ \phi_{1} \end{pmatrix} = \pi \circ \theta_{2} \circ \begin{pmatrix} \psi_{1} \\ \phi_{1} \end{pmatrix}$$
$$= \pi \circ Adu \circ \theta_{2} \circ \begin{pmatrix} \psi_{2} \\ \phi_{2} \end{pmatrix} = Ad\pi (u) \circ \theta_{2}' \circ \begin{pmatrix} \pi \circ \psi_{2} \\ \pi \circ \phi_{2} \end{pmatrix}$$
$$= Ad\pi (u) \circ \theta_{2}' \circ \begin{pmatrix} \pi \circ \eta_{2} \\ \pi \circ \phi_{2} \end{pmatrix} = \pi \circ Adu \circ \theta_{2} \circ \begin{pmatrix} \eta_{2} \\ \phi_{2} \end{pmatrix}$$
$$= \pi \circ \eta_{2}',$$

where θ'_2 is the inner isomorphism from $M_2(D/B)$ onto D/B induced by θ .

It follows that ~ is transitive, and hence ~ is an equivalence relation on $CP_2(A,D)$. Denote the equivalence class of $[\varphi]_0$ by $[[\varphi]_0]$, or by $[\varphi]$ simply.

Let $CP_B(A, D) = CP_2(A, D)/\sim$. It is natural that we define an addition in $CP_B(A, D)$ as follows:

$$\left[\varphi\right] + \left[\psi\right] = \left[\left[\varphi\right]_0 + \left[\psi\right]_0\right].$$

Remark 3.12. The addition defined in Definition 3.11 is well-defined: for $[\varphi] = [\varphi']$ and $[\psi] = [\psi']$, there exist φ_1 , φ'_1 , ψ_1 , ψ'_1 such that $[\varphi_1]_0 = [\varphi]_0$,

 $\begin{bmatrix} \varphi_1' \end{bmatrix}_0 = \begin{bmatrix} \varphi' \end{bmatrix}_0, \quad \begin{bmatrix} \psi_1 \end{bmatrix}_0 = \begin{bmatrix} \psi \end{bmatrix}_0, \quad \begin{bmatrix} \psi_1' \end{bmatrix}_0 = \begin{bmatrix} \psi' \end{bmatrix}_0, \quad \pi \circ \varphi_1' = \pi \circ \varphi_1, \text{ and } \quad \pi \circ \psi_1' = \pi \circ \psi_1.$ Then

$$\pi \Big(S_1 \varphi_1' S_1^* + S_2 \psi_1' S_2^* \Big) = \pi \Big(S_1 \varphi_1 S_1^* + S_2 \psi_1 S_2^* \Big),$$

and hence

$$\left[\left[\varphi\right]_{0}+\left[\psi\right]_{0}\right]=\left[\left[\varphi_{1}\right]_{0}+\left[\psi_{1}\right]_{0}\right]=\left[\left[\varphi_{1}'\right]_{0}+\left[\psi_{1}'\right]_{0}\right]=\left[\left[\varphi'\right]_{0}+\left[\psi'\right]_{0}\right].$$

It is easy to see that [0] is the unit of $CP_B(A,D)$. Thus $(CP_B(A,D),+)$ is a unital abelian semigroup. In particular, for $B = \{0\}$, we have

 $(CP_B(A,D),+)=(CP_2(A,D),+);$ and for B=D, we have $CP_D(A,D)=\{0\}$.

Definition 3.13. Let $CP_B^{-1}(A,D)$ be the set of invertible elements in

 $CP_B(A,D)$. Then $CP_B^{-1}(A,D)$ is an abelian group.

Theorem 3.14. Let φ be in CP(A, D). Then $[\varphi] = 0$ in $CP_B^{-1}(A, D)$ if and only if there exist $\varphi', \phi_1, \phi_2 \in Hom(A, D)$ and a unitary $u \in M_2(D)$ such that

$$\begin{pmatrix} \varphi & \\ & \phi_1 \end{pmatrix} = A du \circ \begin{pmatrix} \varphi' & \\ & \phi_2 \end{pmatrix}.$$

Proof. Suppose that $[\varphi] = 0$ in $CP_B^{-1}(A, D)$. Since $[\varphi] = [0] = 0$, there exist $\varphi', \varphi' \in CP(A, D)$ such that $[\varphi']_0 = [\varphi]_0$, $[\varphi']_0 = 0$ and $\pi \circ \varphi' = \pi \circ \varphi'$. Hence, by Theorem 3.9, we have $\varphi' \in Hom(A, D)$. Since $[\varphi']_0 = [\varphi]_0$, there exist $\varphi_1, \varphi_2 \in Hom(A, D)$ such that $\{\varphi\} + \{\varphi_1\} = \{\varphi'\} + \{\varphi_2\}$. Then there is a unitary $u \in M_2(D)$ such that

$$\begin{pmatrix} \varphi \\ \phi_1 \end{pmatrix} = Adu \circ \begin{pmatrix} \varphi' \\ \phi_2 \end{pmatrix}.$$

Conversely, suppose that there exist $\varphi', \phi_1, \phi_2 \in Hom(A, D)$ and a unitary $u \in M_2(D)$ such that

$$\begin{pmatrix} \varphi \\ \phi_1 \end{pmatrix} = Adu \circ \begin{pmatrix} \varphi' \\ \phi_2 \end{pmatrix}.$$

Set $v_1 = (S_1, S_2)$ and $v_2 = vu$. Then Adv_1, Adv_2 are both inner isomorphisms from $M_2(D)$ onto *D*. Therefore

$$Adv_1 \circ \begin{pmatrix} \varphi \\ \phi_1 \end{pmatrix} = Adv_2 \circ \begin{pmatrix} \varphi' \\ \phi_2 \end{pmatrix}.$$

Note that $[\phi'] = [\phi_1] = [\phi_2] = 0$. Thus $[\phi] = [\phi] + [\phi_1] = [\phi'] + [\phi_2] = 0$.

Remark 3.15. Suppose that $[\varphi] = 0$ in $CP_B^{-1}(A, D)$. By Theorem 3.14, we have

$$\pi \circ \begin{pmatrix} \varphi \\ \phi_1 \end{pmatrix} = \pi \circ Adu \circ \begin{pmatrix} \varphi' \\ \phi_2 \end{pmatrix}$$
$$= Ad\pi (u) \circ \begin{pmatrix} \pi \circ \varphi' \\ \pi \circ \phi_2 \end{pmatrix}$$
$$= Ad\pi (u) \circ \begin{pmatrix} \pi \circ \phi' \\ \pi \circ \phi_2 \end{pmatrix}$$
$$= \pi \circ Adu \circ \begin{pmatrix} \phi' \\ \phi_2 \end{pmatrix}$$
$$= \pi \circ \phi,$$

where

$$\phi = Adu \circ \begin{pmatrix} \phi' \\ & \phi_2 \end{pmatrix} \in Hom(A, M_2(D)),$$

and $\pi: M_2(D) \to M_2(D/B)$ is induced by the quotient map $\pi: D \to D/B$. Set $\phi = (\phi_{i,j})$, we have $\pi \circ \phi_{i,j} = 0 (i \neq j)$ and $\pi \circ \phi = \pi \circ \phi_{i,1}$.

Theorem 3.16. Let $\varphi \in CP(A,D)$. Then $[\varphi] \in CP_B^{-1}(A,D)$ if and only if there is $\phi = (\phi_{i,j}) \in Hom(A,M_2(D))$ and $\psi \in CP(A,D)$ such that

$$\pi \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \pi \circ \phi.$$

Proof. Suppose that $[\varphi] \in CP_B^{-1}(A, D)$ with the inverse $[\varphi']$. Let $v = (S_1, S_2)$. Since $[\varphi] + [\varphi'] = 0$, there exist $\varphi' = (\varphi'_{i,j})$ in $Hom(A, M_2(D))$ and a unitary $u = (u_{i,j})$ in $M_2(D)$ such that

$$\pi \circ \begin{pmatrix} \varphi \\ \varphi' \end{pmatrix} = Ad\pi \begin{pmatrix} v^* \end{pmatrix} \circ Ad\pi \begin{pmatrix} v \end{pmatrix} \circ \begin{pmatrix} \varphi \\ \varphi' \end{pmatrix}$$
$$= Ad\pi \begin{pmatrix} v^* \end{pmatrix} \circ \phi'_{1,1}$$
$$= \pi \circ \begin{pmatrix} S_1^* \phi'_{1,1} S_1 & S_1^* \phi'_{1,1} S_2 \\ S_2^* \phi'_{1,1} S_1 & S_2^* \phi'_{1,1} S_2 \end{pmatrix}.$$

Set

$$v_1 = \begin{pmatrix} S_1^* & 0 \\ S_2^* & 0 \\ 0 & I \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} I & 0 & 0 \\ 0 & S_1 & S_2 \end{pmatrix}$.

Then Adv_1 is an inner isomorphism from $M_2(D)$ onto $M_3(D)$ and Adv_2 is an inner isomorphism from $M_3(D)$ onto $M_2(D)$. It follows that

$$\pi \circ Adv_1 \circ \phi' = \pi \circ \begin{pmatrix} S_1^* \phi'_{1,1} S_1 & S_1^* \phi'_{1,1} S_2 & S_1^* \phi'_{1,2} \\ S_2^* \phi'_{1,1} S_1 & S_2^* \phi'_{1,1} S_2 & S_2^* \phi'_{1,2} \\ \phi'_{2,1} S_1 & \phi'_{2,1} S_2 & \phi'_{2,2} \end{pmatrix} = \pi \circ \begin{pmatrix} \varphi \\ & \varphi' \\ & \phi'_{2,2} \end{pmatrix}$$

Set

$$\psi = \begin{pmatrix} S_1 & S_2 \end{pmatrix} \begin{pmatrix} \varphi' & \\ & \phi'_{2,2} \end{pmatrix} \begin{pmatrix} S_1^* \\ S_2^* \end{pmatrix}$$

and

$$\phi = Adv_2 \circ Adv_1 \circ \phi' \in Hom(A, M_2)(D).$$

Then we have

$$\pi \circ \phi = \pi \circ Adv_2 \circ \begin{pmatrix} \varphi & & \\ & \varphi' & \\ & & \phi'_{2,2} \end{pmatrix} = \pi \circ \begin{pmatrix} \varphi & & \\ & \psi \end{pmatrix}.$$

Conversely, since

$$\pi \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \pi \circ \phi,$$

DOI: 10.4236/jamp.2022.1012243

$$Adv \circ \pi \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = Adv \circ \pi \circ \phi.$$

Then

$$\pi \circ \theta_2 \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \pi \circ \theta_2 \circ \phi$$

Thus

$$[\varphi] + [\psi] = \left[\theta_2 \circ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right] = \left[\theta_2 \circ \phi \right] = 0.$$

Proposition 3.17. Suppose that $\varphi \in CP(A, D)$ such that $[\varphi] \in CP_B^{-1}(A, D)$. Then $\pi \circ \varphi$ is a homomorphism.

Proof. Suppose that $\varphi_1 \in CP_B^{-1}(A, D)$ and $[\varphi_2]$ is the inverse of $[\varphi_1]$. Set

$$\psi = \theta_2 \circ \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} = s_1 \varphi_1 s_1^* + s_2 \varphi_2 s_2^*.$$

By Theorem 3.14, there exist $\phi \in Hom(A, M_2(D))$ and $\phi_1 \in Hom(A, D)$ such that

$$\pi \circ \begin{pmatrix} \psi \\ \phi_1 \end{pmatrix} = \pi \circ \phi.$$

Hence $\pi \circ \psi$ is a homomorphism, and thus

$$\pi(S_1)(\pi \circ \varphi_1(ab) - \pi(\varphi_1(a)\varphi_1(b)))\pi(S_1^*) + \pi(S_2)(\pi \circ \varphi_2(ab) - \pi(\varphi_2(a)\varphi_2(b)))\pi(S_2^*) = 0.$$

Set $x = \pi \circ \varphi_1(ab) - \pi(\varphi_1(a)\varphi_1(b))$ and $y = \pi \circ \varphi_2(ab) - \pi(\varphi_2(a)\varphi_2(b))$. Then

$$\pi(S_1)x\pi(S_1^*) + \pi(S_2)y\pi(S_2^*) = 0,$$

that is,

$$\begin{pmatrix} \pi(S_1), \pi(S_2) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} \pi(S_1^*) \\ \pi(S_2^*) \end{pmatrix} = 0.$$

Put $v' = (\pi(S_1), \pi(S_2))$. Then $v'^* v' = I \in M_2(D)$. Hence $\begin{pmatrix} x \\ y \end{pmatrix} = 0.$

This implies that x = y = 0, and furthermore $\pi \circ \varphi_1(ab) = \pi(\varphi_1(a)\varphi_1(b))$. It follows that $\pi \circ \varphi_1$ is a homomorphism.

Lemma 3.18. ([7], 3.2.9) Suppose that *A* is a separable *C*^{*}-algebra and *B* is a stable *C*^{*}-algebra. Let $\phi \in Hom(A, Q(B))$. Then the following three statements are equivalent:

- 1) $[\phi]$ is invertible in Ext(A, B).
- 2) There exists $\psi \in CP(A, M(B))$ such that $\phi = \pi \circ \psi$.
- 3) There exists $\varphi \in Hom(A, M_2(M(B)))$ such that

$$\begin{pmatrix} \phi & 0 \\ 0 & 0 \end{pmatrix} = \pi \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \varphi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right).$$

It is well known that $M_2(M(B))$ and M(B) are innerly isomorphic if B is a stable C^{*}-algebra. Then we have the following result.

Theorem 3.19. Let A and B be C^{*} -algebras with B stable. Then

$$CP_B^{-1}(A, M(B)) \cong Ext^{-1}(A, B).$$

Proof. Note that the condition that *A* is separable is not necessary in the proof of (1) \Rightarrow (2) in Lemma 3.18 ([7], 3.2.9). Suppose that $\phi \in Hom(A, Q(B))$ such that $[\phi]$ is invertible in Ext(A, B). Then there exists $\varphi \in CP(A, M(B))$ such that $\phi = \pi \circ \varphi$. We define a map

$$\Phi: Ext^{-1}(A, B) \to CP_B(A, M(B))$$

by $[\phi] \mapsto [\phi]$, where $\pi \circ \phi = \phi$.

1) Prove that Φ is well-defined.

Suppose that $\phi_1, \phi_2 \in Hom(A, M(B)/B)$ such that $[\phi_1], [\phi_2] \in Ext^{-1}(A, B)$. Then there exist $\phi_1, \phi_2 \in CP_B(A, M(B))$ such that $\phi_1 = \pi \circ \phi_1$ and $\phi_2 = \pi \circ \phi_2$. If $[\phi_1] = [\phi_2]$, there exist $\phi'_1, \phi'_2 \in Hom(A, M(B))$ and $u \in M_2(M(B))$ such that

$$\tilde{\theta}_B \circ \begin{pmatrix} \phi_1 \\ \pi \circ \phi_1' \end{pmatrix} = A d \pi (u) \circ \tilde{\theta}_B \circ \begin{pmatrix} \phi_2 \\ \pi \circ \phi_2' \end{pmatrix}.$$

Hence,

$$\pi \left(\theta_B \circ \begin{pmatrix} \varphi_1 \\ \varphi_1' \end{pmatrix} \right) = \pi \left(A du \circ \theta_B \circ \begin{pmatrix} \varphi_2 \\ \varphi_2' \end{pmatrix} \right).$$

Since $\theta_{\scriptscriptstyle B}$ is an inner isomorphism,

$$\begin{bmatrix} \varphi_1 \end{bmatrix}_0 = \begin{bmatrix} \theta_B \circ \begin{pmatrix} \varphi_1 \\ \varphi_1' \end{bmatrix} \end{bmatrix}_0 \text{ and } \begin{bmatrix} \varphi_2 \end{bmatrix}_0 = \begin{bmatrix} Adu \circ \theta_B \circ \begin{pmatrix} \varphi_2 \\ \varphi_2' \end{bmatrix} \end{bmatrix}_0$$

Then $[\varphi_1] = [\varphi_2]$, and hence Φ is well-defined.

2) Prove that Φ is a homomorphism.

Note that

$$\Phi([\phi_1]) + \Phi([\phi_2]) = [\phi_1] + [\phi_2] = [[\phi_1]_0 + [\phi_2]_0].$$

Since

$$\pi \circ \theta_B \circ \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} = \tilde{\theta}_B \circ \begin{pmatrix} \pi \circ \varphi_1 \\ \pi \circ \varphi_2 \end{pmatrix} = \tilde{\theta}_B \circ \begin{pmatrix} \phi_1 \\ \varphi_2 \end{pmatrix},$$

we have

$$\Phi\left(\left[\phi_{1}\right]+\left[\phi_{2}\right]\right)=\Phi\left(\left[\phi_{1}\right]\right)+\Phi\left(\left[\phi_{2}\right]\right).$$

It follows that Φ is a homomorphism.

3) Prove that $\Phi(Ext^{-1}(A,B)) \subseteq CP_B^{-1}(A,M(B))$.

Suppose that $[\phi_1]$ is an invertible element with the inverse $[\phi_2]$. Then we have

$$\Phi([\phi_1]) + \Phi([\phi_2]) = \Phi([\phi_1] + [\phi_2]) = \Phi(0).$$

Therefore, $\Phi([\phi_1])$ is invertible.

4) Prove that $\Phi : Ext^{-1}(A, B) \to CP_B^{-1}(A, M(B))$ is injective.

Suppose that $\Phi([\phi_1]) = [\phi_1]$ and $\Phi([\phi_2]) = [\phi_2]$, where $\phi_1 = \pi \circ \phi_1$ and $\phi_2 = \pi \circ \phi_2$.

If $[\varphi_1] = [\varphi_2]$ in $CP_B^{-1}(A, M(B))$, then there exist $\varphi'_1, \varphi'_2 \in CP(A, M(B))$ such that $[\varphi_1]_0 = [\varphi'_1]_0$, $[\varphi_2]_0 = [\varphi'_2]_0$ and $\pi \circ \varphi'_1 = \pi \circ \varphi'_2$. Therefore there exist $\sigma_1, \sigma_2, \tau_1, \tau_2 \in Hom(A, M(B))$ and unitary elements $u_1, u_2 \in M_2(M(B))$ such that

$$\begin{pmatrix} \varphi_1 \\ \sigma_1 \end{pmatrix} = A du_1 \circ \begin{pmatrix} \varphi_1' \\ \sigma_2 \end{pmatrix}, \begin{pmatrix} \varphi_2 \\ \tau_1 \end{pmatrix} = A du_2 \circ \begin{pmatrix} \varphi_2' \\ \tau_2 \end{pmatrix}$$

Put

$$X = \begin{pmatrix} \varphi_1' \\ & \sigma_2 \end{pmatrix}, Y = \begin{pmatrix} \varphi_2' \\ & \tau_2 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Then we have

$$\begin{pmatrix} \varphi_1 & & \\ & \sigma_1 & \\ & & \tau_2 \end{pmatrix} = \begin{pmatrix} u_1 X u_1^* & 0 \\ 0 & \tau_2 \end{pmatrix} = \begin{pmatrix} u_1 & \\ & 1 \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & \tau_2 \end{pmatrix} \begin{pmatrix} u_1^* & \\ & 1 \end{pmatrix},$$

$$\begin{pmatrix} \varphi_2 & & \\ & \tau_1 & \\ & & \sigma_2 \end{pmatrix} = \begin{pmatrix} u_2 Y u_2^* & 0 \\ 0 & \sigma_2 \end{pmatrix} = \begin{pmatrix} u_2 & \\ & 1 \end{pmatrix} \begin{pmatrix} Y & 0 \\ 0 & \tau_2 \end{pmatrix} \begin{pmatrix} u_2^* & \\ & 1 \end{pmatrix},$$

and

$$\begin{aligned} \pi & \left(\begin{pmatrix} u_1 \\ 1 \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & \tau_2 \end{pmatrix} \begin{pmatrix} u_1^* \\ 1 \end{pmatrix} \right) \\ &= \begin{pmatrix} \pi (u_1) \\ \pi (1) \end{pmatrix} \begin{pmatrix} \pi \circ X & 0 \\ 0 & \pi \circ \tau_2 \end{pmatrix} \begin{pmatrix} \pi (u_1^*) \\ \pi (1) \end{pmatrix} \\ &= \begin{pmatrix} \pi (u_1) \\ \pi (1) \end{pmatrix} \pi (E) \begin{pmatrix} \pi \circ Y & 0 \\ 0 & \pi \circ \sigma_2 \end{pmatrix} \pi (E) \begin{pmatrix} \pi (u_1^*) \\ \pi (1) \end{pmatrix} \\ &= \pi \begin{pmatrix} \begin{pmatrix} u_1 \\ 1 \end{pmatrix} E \begin{pmatrix} Y & 0 \\ 0 & \sigma_2 \end{pmatrix} E \begin{pmatrix} u_1^* \\ 1 \end{pmatrix} \end{pmatrix}. \end{aligned}$$

Thus,

$$\pi \left(\begin{pmatrix} \varphi_1 & & \\ & \sigma_1 & \\ & & \tau_2 \end{pmatrix} \right) = \pi \left(\begin{pmatrix} u_1 & \\ & 1 \end{pmatrix} E \begin{pmatrix} u_2^* & & \\ & 1 \end{pmatrix} \begin{pmatrix} \varphi_2 & & \\ & \tau_1 & \\ & & \sigma_2 \end{pmatrix} \begin{pmatrix} u_2 & & \\ & 1 \end{pmatrix} E \begin{pmatrix} u_1^* & & \\ & 1 \end{pmatrix} \right).$$

 $u_3 = \begin{pmatrix} u_1 & \\ & 1 \end{pmatrix} E \begin{pmatrix} u_2^* & \\ & 1 \end{pmatrix}.$

Set

One can check that u_3 is a unitary in $M_3(M(B))$. Then we have

$$\begin{pmatrix} \phi_1 \\ \pi \circ \sigma_1 \\ \pi \circ \tau_2 \end{pmatrix} = A d \pi (u_3) \circ \begin{pmatrix} \phi_2 \\ \pi \circ \tau_1 \\ \pi \circ \sigma_2 \end{pmatrix}.$$

It follows that

$$[\phi_1] = [\phi_1] + [\pi \circ \sigma_1] + [\pi \circ \tau_2] = [\phi_2] + [\pi \circ \tau_1] + [\pi \circ \sigma_2] = [\phi_2].$$

Therefore, Φ is injective.

5) Prove that $\Phi: Ext^{-1}(A, B) \to CP_B^{-1}(A, M(B))$ is surjective.

Suppose that $[\varphi_1] \in CP_B^{-1}(A, M(B))$. Then by Theorem 3.16 there exist $[\varphi_2]$ and an inner isomorphism $\phi \in Hom(A, M_2(M(B)))$ with $\phi = Adv$ and $v = (S_1, S_2)$, such that $[\varphi_1] + [\varphi_2] = [Adv \circ \phi]$. Since $\pi \circ \varphi_1 = \phi_1$ and $\pi \circ \varphi_2 = \phi_2$, by Theorem 3.17, ϕ_1 and ϕ_2 are homomorphisms and

$$[\phi_1] + [\phi_2] = [\pi \circ Adv \circ \phi] = [0].$$

Thus $[\phi_1] \in Ext^{-1}(A, B)$ and $\Phi([\phi_1]) = [\phi]$. This implies that Φ is surjective.

Similar to Lemma 3.18, we have the following result.

Corollary 3.20. Let A and B be C^* -algebras with B stable and let

 $\phi \in Hom(A, \mathcal{Q}(B))$. Consider the following three statements:

1) $[\phi]$ is invertible in Ext(A, B).

2) There exists $\psi \in CP(A, M(B))$ such that $\phi = \pi \circ \psi$.

3) There exist $\varphi \in Hom(A, M_2(M(B)))$ and $\phi' \in Hom(A, M(B))$ such that

$$\begin{pmatrix} \phi \\ & \phi' \end{pmatrix} = \pi \circ \phi.$$

Then (1) \Leftrightarrow (3) \Rightarrow (2).

Proposition 3.21. Let A and C be C^{*}-algebras and $h, \phi \in Hom(A, C)$. Then

1) The map $h_*: CP_2(C, D) \to CP_2(A, D)$ defined by $[\varphi]_0 \mapsto [\varphi \circ h]_0$ is a semigroup homomorphism.

2) The map $\phi_*: CP_B(C,D) \to CP_B(A,D)$ defined by $[\varphi] \mapsto [\varphi \circ \phi]$ is a unital semigroup homomorphism. Furthermore, it is a group homomorphism from $CP_B^{-1}(C,D)$ into $CP_B^{-1}(A,D)$.

Theorem 3.22. Let C be the category of C^* -algebras and SG the category of abelian semigroups. Define $CP_B(\cdot, D): C \to SG$ by $A \mapsto CP_B(A, D)$ and $\phi \mapsto \phi_*$ for any $A \in C$ and $\phi \in Hom(A, C)$. Then $CP_B(\cdot, D)$ is a contravariant functor from C to SG.

Proof. 1) For a C^* -algebra A and $[\varphi] \in CP_B(A, D)$, we have $I_*([\varphi]) = [\varphi \circ I] = [\varphi]$. Then I_* is the unit of $CP_B(A, D)$. 2) Let $\varphi_1 \in Hom(A, E)$ and $\varphi_2 \in Hom(E, C)$. Set $F = CP_B(\cdot, D)$. Then $F(\varphi_2 \circ \varphi_1)[\varphi] = [\varphi \circ \varphi_2 \circ \varphi_1] = F(\varphi_1)[\varphi \circ \varphi_2] = F(\varphi_1) \circ F(\varphi_2)[\varphi].$

Thus $CP_{R}(\cdot, D)$ is a contravariant functor.

Corollary 3.23. Let \mathcal{G} be the category of abelian groups. Then $CP_B(\cdot, D)$

induces a contravariant functor $CP_B^{-1}(\cdot, D)$ from \mathcal{C} into \mathcal{G} by $A \mapsto CP_B^{-1}(A, D)$, and from Hom(A, C) into $Hom(CP_B^{-1}(C, D), CP_B^{-1}(A, D))$ by $\phi \mapsto \phi_*$.

For a short exact sequence of C^* -algebras $0 \to C \xrightarrow{\varphi_1} E \xrightarrow{\varphi_2} A \to 0$, the functor $CP_B(\cdot, D)$ from C to SG is not exact, and it is even not split-exact. The following is a counterexample.

Example 3.24. Suppose that *H* is an infinite dimensional separable Hilbert space. Let A = C = K(H), $E = A \oplus C$, D = B(H) and B = 0. Then $CP_B(A,D) = CP_2(A,D)$. Let $f_1: C \to E$ be the inclusion map and let $f_2: E \to A$ be the quotient map. Then the exact sequence

$$0 \to C \xrightarrow{f_1} E \xrightarrow{f_2} A \to 0$$

is split.

Take a nonzero element $\eta \in CP(A, \mathbb{C}I_D)$. We define a map $\varphi: E \to D$ by $\varphi|_C = I_C$ and $\varphi|_A = \eta$. Then $\varphi \in CP(E,D)$ and $[\varphi \circ f_1] = 0$. If $[\psi \circ f_2]_0 = [\varphi]_0$ for some $\psi \in CP_2(A,D)$, then there exist $\phi_1, \phi_2 \in Hom(E,D)$ and a unitary $u \in U(M_2(D))$ such that

$$\begin{pmatrix} \psi \circ f_2 \\ \phi_1 \end{pmatrix} = u \begin{pmatrix} \varphi \\ \phi_2 \end{pmatrix} u^*.$$

Put

$$u = \begin{pmatrix} u_1 & u_2 \\ u_3 & u_4 \end{pmatrix}.$$

Since $(\psi \circ f_2)(E) = 0$, $u_1 \varphi(E) u_1^* + u_2 \varphi_2(E) u_2^* = 0$. Note that $u_1 \varphi(e) u_1^*, u_2 \varphi_2(e) u_2^*$ are positive if *e* is positive in *E*. It follows that

$$u_1\varphi(e)u_1^* = u_2\phi_2(e)u_2^* = 0.$$

Therefore $u_1K(H)u_1^* = 0$. Furthermore, $u_1u_1^* = 0$ since there is a sequence in K(H) which is convergent to *I* in the strong operator topology on B(H). Then $u_1 = 0$. Hence $u_4 = 0$ and $u_2, u_3 \in U(D)$. Therefore,

$$u\begin{pmatrix} \varphi \\ \phi_2 \end{pmatrix} u^* = \begin{pmatrix} u_2\phi_2u_2^* \\ u_3\varphi u_3^* \end{pmatrix}$$

Since $u_3\varphi u_3^* = \phi_1$ is a homomorphism, φ is also a homomorphism. However, $\varphi|_A$ is not a homomorphism by the definition of φ . Otherwise, if $\varphi|_A$ is a homomorphism from K(H) to \mathbb{C} , then it follows that $\varphi|_A = 0$ since a completely positive map preserves self-adjoint elements. This is in contradiction to the fact that $\varphi|_A \neq 0$.

Theorem 3.25. Suppose that

$$0 \to C \xrightarrow{f_1} E \xrightarrow{f_2} A \to 0$$

is a split short exact sequence, then

$$0 \to CP_B^{-1}(A, D) \xrightarrow{(f_2)_*} CP_B^{-1}(E, D) \xrightarrow{(f_1)_*} CP_B^{-1}(C, D) \to 0$$

is also a split short exact sequence.

Proof. Since $(f_1)_* \circ (f_2)_* ([\varphi_A]) = [\varphi_A \circ f_2 \circ f_1] = 0$, we have $Im(f_2)_* \subset Ker(f_1)_*$.

Assume that $E = A \oplus C$. For any $[\varphi] \in Ker((f_1)_*)$, let $\varphi_A = \varphi|_A$ and $\varphi_C = \varphi|_C$. Then $\varphi = \varphi_A \oplus \varphi_C$. Note that $[\varphi]$ is invertible and $[\varphi_C] = [\varphi \circ f_1] = (f_1)_* ([\varphi]).$

Hence, $[\varphi_C] \in CP_B^{-1}(C, D)$. Similarly, $[\varphi_A]$ is also invertible.

Suppose that the inverses of $[\varphi_A]$ and $[\varphi_C]$ are $[\varphi'_A]$ and $[\varphi'_C]$ respectively. Let $[\varphi'] = [\varphi'_A \oplus \varphi'_C]$. Now we show that $[\varphi] + [\varphi']$ is the unit. Suppose that $\left[\varphi_A''\right]_0 = \left[\varphi_A\right]_0 + \left[\varphi_A'\right]_0$ and $\left[\varphi_C''\right]_0 = \left[\varphi_C\right]_0 + \left[\varphi_C'\right]_0$ such that $\pi \circ \varphi_A'' = \pi \circ \phi_A$ and $\pi \circ \varphi_C'' = \pi \circ \phi_C$, where ϕ_A and ϕ_C are homomorphisms. Then $\left[\varphi\right]_{0} + \left[\varphi'\right]_{0} = \left[\varphi''_{A} \oplus \varphi''_{C}\right]_{0}.$

Since $\pi(\varphi_A'' \oplus \varphi_C'')$ is a homomorphism, $[\varphi] + [\varphi']$ is the unit of $CP_B^{-1}(E, D)$. Since $[\varphi] \in Ker((f_1)_*)$, $[\varphi \circ f_1] = 0$. Then $\pi \circ \varphi_C = \pi \circ \phi_C$ and hence $[\varphi'_C]$ is the inverse of $[\varphi_c]$. Therefore, $[\varphi'] = [\varphi'_A \oplus 0]$ is the inverse of $[\varphi]$. Since $(f_2)_*([\varphi'_A]) = [\varphi'], [\varphi] \in Im((f_2)_*).$ Thus,

$$Im((f_2)_*) = Ker((f_1)_*).$$

Suppose that $(f_2)_*([\varphi_A]) = 0$. Then $[\varphi_A \oplus 0] = 0$, and there exist $\psi \in CP(E,D)$ and $\phi \in Hom(E,D)$ such that $[\psi]_0 = [\varphi_A + 0]_0$ and $\pi \circ \psi = \pi \circ \phi$. Hence, $\pi \circ \psi|_A = \pi \circ \phi|_A$. Note that $\phi|_A \in Hom(A, D)$ and $\left[\phi|_{A}\right]_{0} = \left[\varphi_{A}\right]_{0}$. It follows that $\left[\varphi_{A}\right] = 0$ and $(f_{2})_{*}$ is an injective homomorphism.

Suppose that $[\varphi_C] \in CP_B^{-1}(C, D)$. Then we have $(f_1)_*([0 \oplus \varphi_C]) = \lceil (0 \oplus \varphi_C) \circ f_1 \rceil = \lceil \varphi_C \rceil$

$$(f_1)_*([0\oplus\varphi_C]) = \lfloor (0\oplus\varphi_C)\circ f_1 \rfloor = [\varphi_C].$$

Therefore, $(f_1)_*$ is surjective. Define

$$f_*: CP_B^{-1}(C, D) \to CP_B^{-1}(E, D), [\varphi_C] \mapsto [0 \oplus \varphi_C].$$

Then $(f_1)_* \circ f_* = I$. Finally, $0 \to CP_{B}^{-1}(A,D) \xrightarrow{(f_{2})_{*}} CP_{B}^{-1}(E,D) \xrightarrow{(f_{1})_{*}} CP_{B}^{-1}(C,D) \to 0$

is a split short exact sequence.

Remark 3.26. For any C^{*}-algebra B, we can define $CP_2(A,B)$, $CP_1^{-1}(A,B)$, etc., to be $CP_2(A, M(\mathcal{K} \otimes B))$, $CP_1^{-1}(A, M(\mathcal{K} \otimes B))$, respectively. Since for any stable C*-algebra its multiplier algebra is properly infinite, these invariants are well-defined.

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2020MA009).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Blackadar, B. (1998) K-Theory for Operator Algebras. 2nd Edition, Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge. <u>https://doi.org/10.1112/S0025579300007713</u>
- [2] Christopher Lance, E. (1995) Hilbert C*-Module. Cambridge University Press, Cambridge. <u>https://doi.org/10.1017/CBO9780511526206</u>
- [3] Voiculescu, D. (1976) A Non-Commutative Weyl-Von Neumann Theorem. *Revue Roumaine de Mathématiques Pures et Appliquées*, 21, 97-113.
- Busby, R.C. (1968) Double Centralizers and Extensions of C*-Algebras. Transactions of the American Mathematical Society, 132, 79-99. <u>https://doi.org/10.2307/1994883</u>
- [5] Brown, L.G., Douglas, R.G. and Fillmore, P.A. (1973) Extensions of C*-Algebras, Operators with Compact Self-Commutators, and K-Homology. Bulletin of the American Mathematical Society, 79, 973-978. https://doi.org/10.1090/S0002-9904-1973-13284-7
- [6] Brown, L.G., Douglas, R.G. and Fillmore, P.A. (1977) Extensions of C*-Algebras and K-Homology. Annals of Mathematics, 105, 265-324. https://doi.org/10.2307/1970999
- [7] Jensen, K. and Thomsen, K. (1991) Elements of KK-Theory. Birkhäuser, Basel.
- [8] Kasparov, G.G. (1981) The Operator K-Functor and Extensions of C*-Algebras. Mathematics of the USSR-Izvestiya, 16, 513-572. https://doi.org/10.1070/IM1981v016n03ABEH001320
- [9] Wegge-Olsen, N. (1993) K-Theory and C*-Algebras. Oxford University Press, Oxford, New York, Tokyo.
- [10] Lin, H. (2007) Classification of Homomorphisms and Dynamical Systems. *Transactions of the American Mathematical Society*, **359**, 859-895. <u>https://doi.org/10.1090/S0002-9947-06-03932-8</u>
- [11] Lin, H. (2010) Approximate Homotopy of Homomorphisms from C(X) into a Simple C*-Algebra. Memoirs of the American Mathematical Society, 205, Article No. 963. <u>https://doi.org/10.1090/S0065-9266-09-00611-5</u>
- [12] Lin, H. and Niu, Z. (2014) Homomorphisms into Simple Z-Stable C*-Algebras. Journal of Operator Theory, 71, 517-569. <u>https://doi.org/10.7900/jot.2012jul10.1975</u>
- [13] Wang, R., Wei, C. and Liu, S. (2019) On the Ideal of Compact Operators on a Hilbert C*-Module. *Journal of Mathematical Analysis and Applications*, 474, 441-451. https://doi.org/10.1016/j.jmaa.2019.01.053
- [14] Wei, C. (2015) On the Classification of Certain Unital Extensions of C*-Algebras. Houston Journal of Mathematics, 41, 965-991.
- [15] Zhang, H. and Si, H. (2016) Fixed Points Associated to Power of Normal Completely Positive Maps. *Journal of Applied Mathematics and Physics*, 4, 925-929. <u>https://doi.org/10.4236/jamp.2016.45101</u>