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Abstract 
This paper concerns classifying completely positive maps between certain 
C*-algebras. Several invariants for classifying completely positive maps are 
constructed. It is proved that one of them is isomorphic to the Ext-group of 
C*-algebra extensions in special circumstances. Furthermore, this invariant 
induces a functor from C*-algebras to abelian groups which is split-exact. 
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1. Introduction 

The theory of completely positive maps plays an important part in operator al-
gebras, operator spaces, and extensions of C*-algebras. Many fundamental con-
cepts and theorems are defined and proved via completely positive maps respec-
tively, such as nuclearity, invertible extension, Stinespring’s Theorem ([1] [2]), 
Voiculescu’s Theorem ([3]), etc. 

On the other hand, as an effective tool to study the structure of C*-algebras 
and to classify C*-algebras, the theory extensions of C*-algebras originated from 
Busby’s work in 1960’s ([4]). Subsequently, Brown, Douglas and Fillmore estab-
lished their famous BDF theory ([5] [6]) to study essentially normal operators 
on a separable infinite-dimensional Hilbert space and extensions of C*-algebra 
C(X) by compact operators, where C(X) is the C*-algebra of continuous func-
tions on a compact metric space X. Since then, the theory of extensions of 
C*-algebras has developed rapidly, and becomes an important invariant for clas-
sifying C*-algebras together with K-theory and KK-theory (see [1] [7] [8] [9], 
etc.). 

As we know, an extension of C*-algebras is determined by its Busby invariant 
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with respect to unitary equivalence, so to an extent classifying extensions of 
C*-algebras is a sort of classifying homomorphisms between C*-algebras. It 
should be pointed out that the KK-groups were defined via homomorphisms in 
this way at the beginning ([8]), and it was already used to classify homomor-
phisms (see [10] [11] [12], etc.). Completely positive maps can be seen as gene-
ralization of homomorphisms and what is particularly important is that Ext- 
groups were characterized by completely positive maps, so it is natural to con-
sider classifying completely positive maps. 

This note is engaging in classifying completely positive maps between certain 
C*-algebras. Specifically, several invariants for classifying completely positive 
maps are introduced. As a main result, one of them is isomorphic to the Ext- 
group of C*-algebra extensions. In addition, this invariant induces a functor 
from C*-algebras to abelian groups which is split-exact. 

2. Preliminaries  

In this section, we need to recall some notations and definitions for C*-algebras 
and extensions. One can also see [1] [7] [13] [14] [15] for more details. 

Suppose that D is a C*-algebra. Recall that ( ):n nM D Dθ →  is an inner 
isomorphism, if there are isometries 1, , nS S  in D with *

1
1

n

i i
i

S S
=

=∑  and 
* 0i jS S =  for i j≠ , such that n Advθ = , namely,  

( ) * *

,
,n ij ij i ij j

i j
x v x v S x Sθ    = =    ∑  

for ( )ij nx M D  ∈  , where ( )1, , nv S S=  . Suppose that 1v  and 2v  are such 
elements. Then *

1 2v v D∈  and * * * *
1 2 2 1 2 1 1 2 1v v v v v v v v= = , and hence *

1 2v v  is a uni-
tary in D. 

Let A and B be C*-algebras. An extension of A by B is a short exact sequence  

: 0 0.e B E Aα β→ → → →  

Denote this extension by e or ( ), ,E α β . 
The extension ( ), ,E α β  is called trivial, if the above sequence splits, i.e. if 

there is a homomorphism : A Eγ →  such that Aidβ γ = . 
For an extension ( ), ,E α β , there is a unique homomorphism ( ): E M Bσ →  

such that σ α ι=
, where ( )M B  is the multiplier algebra of B, and ι  is the 

inclusion map from B into ( )M B . The Busby invariant of ( ), ,E α β  is a ho-
momorphism τ  from A into the corona algebra ( ) ( )B M B B=  defined by 
( ) ( )( )a bτ π σ=  for a A∈ , where ( ) ( ): M B Bπ →  is the quotient map, 

and b E∈  such that ( )b aβ = . 
Two extensions 1e  and 2e  are called (strongly) unitarily equivalent, denoted 

by 1 2~
s

e e , if there exists a unitary ( )u M B∈  such that  
( ) ( ) ( ) ( )*2 1a u a uτ π τ π=  for all a A∈ . Denote by ( ),A BExt  or ( ),s A BExt  

the set of (strong) unitary equivalence classes of extensions of A by B. 
Let H be a separable infinite-dimensional Hilbert space and   the ideal of 

compact operators in ( )B H . If B is a stable C*-algebra (i.e. B B⊗ ≅ , where 
⊗  is the tensor product operation), then the sum of two extensions 1τ  and 2τ  
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is defined to be the homomorphism 1 2τ τ⊕ , where  

( ) ( ) ( )( ) ( )1 2 2: A B B M B Bτ τ⊕ → ⊕ ⊆ ≅     

and the isomorphism ( )( ) ( )2M B B≅   is induced by an inner isomorphism 
from ( )( )2M M B  onto ( )M B , where ⊕  is the direct sum of C*-algebras. 

The above sets of equivalence classes of extensions are commutative semi-
groups with respect to this addition when B is stable. One can similarly define 
these semigroups replacing B by B⊗  if B is not stable. Denote by ( ),Ext A B  
the quotient of ( ),s A BExt  by the subsemigroup of trivial extensions. 

3. Main Result  

Suppose that D is a unital properly infinite C*-algebra, namely, there are two 
elements 1 2,S S D∈  such that  

( ) ( )
2

* * *

1
1 1,2 , 0 , 1.i i i j i i

i
S S i S S i j S S

=

= = = ≠ =∑  

For every C*-algebra A, we denote by ( ),CP A D  the set of all completely 
positive maps from A into D. 

Definition 3.1. Two elements ( ), ,CP A Dϕ ψ ∈  are called (unitarily) equiva-
lent, denoted by ϕ ψ≈ , if there is a unitary u D∈  such that Adu ϕ ψ= . 

It is easy to check that ≈  is an equivalence relation on ( ),CP A D . Denote by 
{ }ϕ  the equivalence class of ϕ . 

Definition 3.2. ( )1 ,CP A D  is the equivalence classes in ( ),CP A D  under 
the equivalence relation ≈ , i.e. ( ) ( )1 , ,CP A D CP A D= ≈ . 

Now we can define a diagonal addition in ( )1 ,CP A D  as follows:  

{ } { } ( )
*
1

1 2 *
2

,
S

Adv S S
S

ϕ ϕ
ϕ ψ

ψ ψ
         + = =        

         
  

where ( )2:Adv M D D→  is the inner isomorphism with ( )1 2,v S S= . 
Proposition 3.3. Equipped with the above addition, ( )1 ,CP A D  is an abelian 

semigroup. 
Proof. The following is similar to the proof of ([7], 3.2.3), and we give it here 

for the sake of completeness. 
Suppose that , ,ϕ ϕ ψ′  and ψ ′  are in ( ),CP A D  such that ϕ ϕ′≈  and 

ψ ψ ′≈ . Then there are unitary elements 1 2,u u D∈  such that 1Aduϕ ϕ′ =   
and 2Aduψ ψ′ =  . Thus  

*
1 *1

*
2 2

*
1 * * *1

*
2 2

.

u u
Adv v v

u u

u u
v v v v v v

u u

ϕ ϕ
ψ ψ

ϕ
ψ

′      
=      ′      

    
=     

    



 

Since  

1 *

2

u
v v

u
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is a unitary in D, we have  

.Adv Adv
ϕ ϕ

ψ ψ
′         =      ′         

   

It follows that the addition is well-defined. 
Let 1θ  and 2θ  be two inner isomorphisms from ( )2M D  onto D with 

1 1Advθ =  and 2 2Advθ = . Then  

( )

* * *
1 1 2 2 2 2 1

*
1 2 2 ,

Adv v v v v v v

Ad v v Adv

ϕ ϕ
ψ ψ

ϕ
ψ

   
=   

   
 

=  
 



 

 

and hence,  

1 2 .Adv Adv
ϕ ϕ

ψ ψ
         =      
         

   

Therefore, the addition is independent of the choices of inner isomorphisms. 
Suppose that ( ), ,CP A Dϕ ψ ∈ . Then  

*

*

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

0 1 0 1
.

1 0 1 0

Adv v v

v v

ϕ ϕ
ψ ψ

ψ
ϕ

       
=       

       
   

=    
   



 

Let  

0 1
.

1 0
v v  ′ =  

 
 

Then Adv′  is an inner isomorphism from ( )2M D  onto D and hence  

{ } { } { } { }.ϕ ψ ψ ϕ+ = +  

Suppose that ( )1 2 3, , ,CP A Dϕ ϕ ϕ ∈  and let 1 2,S S  be isometries with  
*
1 2 0S S =  and * *

1 1 2 2 1S S S S+ = . One can check the following computation:  

{ } { }( ) { } { }

( )

2 *2 * * *
1 2 3 1 1 1 1 2 2 2 1 2 3 2

*2
1 1

2 * *
1 1 2 2 2 2 1

*
3 2

, ,

S S S S S S S S

S
S S S S S S

S

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ
ϕ

ϕ

+ + = + +

   
   =    
      

 

and  

{ } { } { }{ } { }

( )

* * * 2 *2
1 2 3 1 1 1 2 1 2 1 2 2 3 2

*
1 1

2 * *
1 2 1 2 2 1 2

*2
3 2

, , .

S S S S S S S S

S
S S S S S S

S

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ
ϕ

ϕ

+ + = + +

   
   =    
      

 

Put ( )2
1 1 1 2 2, ,v S S S S=  and ( )2

2 1 2 1 2, ,v S S S S= . Then 1Adv  and 2Adv  are 
two inner isomorphisms from ( )3M D  onto D. Note that  
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( )
1 1

*
1 2 1 2 2 2

3 3

.Adv Ad v v Adv
ϕ ϕ

ϕ ϕ
ϕ ϕ

   
   =   
   
   

  
 

Since *
1 2v v  is a unitary in D, it follows that  

{ } { }( ) { } { } { } { }( )1 2 3 1 2 3 .ϕ ϕ ϕ ϕ ϕ ϕ+ + = + +  

This completes the proof of associativity. 
Therefore, ( )1 ,CP A D  is an abelian semigroup.  
Remark 3.4. Suppose that ( ), ,CP A Dϕ ψ ∈ . We write  

( )
*
1

1 2 *
2

,
S

S S
S

ϕ
ϕ ψ

ψ
  

⊕ =   
  

 

or  

( )
*
1

2 1 2 *
2

.
S

S S
S

ϕ ϕ
θ

ψ ψ
    

=     
    
  

Definition 3.5. Let ( ),Hom A D  be the set of homomorphisms from A into 
D. An element is called degenerate in ( ),CP A D  if it is also in ( ),Hom A D  . 

Definition 3.6. Two elements { } { } ( )1, ,CP A Dϕ ψ ∈  are called equivalent, 
denoted by { } { }0~ϕ ψ , if there are ( ), ,Hom A Dϕ ψ′ ′∈  such that  
{ } { } { } { }ϕ ϕ ψ ψ′ ′+ = + . 

Then 0~  is an equivalence relation. The equivalence class of { }ϕ  is de-
noted by { }

0
ϕ   , or by [ ]0ϕ  simply. 

Definition 3.7. ( )2 ,CP A D  is the equivalence classes in ( )1 ,CP A D  under 
the equivalence relation 0~ , i.e. ( ) ( )2 1 0, , ~CP A D CP A D= . 

We define an addition + in ( )2 ,CP A D  by  

[ ] [ ] { } { } ( )0 0 0
, , , .CP A Dϕ ψ ϕ ψ ϕ ψ+ = + ∈    

To see the addition is well-defined, suppose that { } { }0~ϕ ϕ′  and { } { }0~ψ ψ′ . 
Then there exist ( )1 1 1 1, , , ,Hom A Dϕ ϕ ψ ψ′ ′∈  such that  

{ } { } { } { } { } { } { } { }1 1 1 1, ,ϕ ϕ ϕ ϕ ψ ψ ψ ψ′ ′ ′ ′+ = + + = +  

and hence  

{ } { } { } { } { } { } { } { }1 1 1 1 .ϕ ψ ϕ ψ ϕ ψ ϕ ψ′ ′ ′ ′+ + + = + + +  

Since  

{ } { } 1
1 1 2

1

,
ϕ

ϕ ψ θ
ψ

   + =   
   

  

( )1
2

1

, .Hom A D
ϕ

θ
ψ

 
∈ 

 
  

Similarly,  

( )1
2

1

, .Hom A D
ϕ

θ
ψ

′ 
∈ ′ 

  

It follows that the addition is well-defined. 
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Remark 3.8. 1) Suppose that ( )1 2, ,CP A Dϕ ϕ ∈ . Then  
[ ] [ ] ( )1 2 20 0

,CP A Dϕ ϕ= ∈  if and only if there exist ( )1 2, ,Hom A Dσ σ ∈  such 
that 1 1ϕ σ⊕  is unitarily equivalent to 2 2ϕ σ⊕ . 

2) Suppose that ( ),CP A Dη ∈ . Then [ ]0η  is the neutral element in 
( )2 ,CP A D  if and only if for each ( ),CP A Dϕ ∈  there exist ( )1 2, ,Hom A Dσ σ ∈  

such that 1ϕ η σ⊕ ⊕  is unitarily equivalent to 2ϕ σ⊕ . 
Theorem 3.9. ( )2 ,CP A D  is a unital abelian semigroup. An element [ ]0ϕ  is 

the unit of ( )2 ,CP A D  if and only if ( ),Hom A Dϕ ∈ . 
Proof. Suppose that ( )1 2 3, , ,CP A Dϕ ϕ ϕ ∈ . Then  

[ ] [ ] [ ]( ) [ ] { } { }
{ } { } { }( )
{ } { }( ) { }

[ ] [ ]( ) [ ]

1 2 3 1 2 30 0 00 0

1 2 3 0

1 2 3 0

1 2 30 0 0
.

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

 + + = + + 

 = + + 

 = + + 

= + +

 

It follows that ( )2 ,CP A D  is a semigroup. It is clear that ( )2 ,CP A D  is ab-
elian. 

Let ( ),Hom A Dη ∈ . For any ( ),CP A Dϕ ∈ , take ( )1 ,Hom A Dσ ∈  and set 

2 1σ η σ= ⊕ . Then  

( ) ( )1 1 ,ϕ η σ ϕ η σ⊕ ⊕ ≈ ⊕ ⊕  

that is, ( ) 1 2ϕ η σ ϕ σ⊕ ⊕ ≈ ⊕ . Since ( )1 1, ,Hom A Dσ η σ⊕ ∈  and 0~ϕ η ϕ⊕ , 
we have [ ] [ ] [ ]0 0 0

ϕ η ϕ+ =  by Remark 3.8. Hence [ ]0η  is the unit of ( )2 ,CP A D . 
Suppose that ( ),CP A Dψ ∈  such that [ ]0ψ  is the unit of ( )2 ,CP A D . For 

( ),Hom A Dϕ ∈ , [ ]0ϕ  is also the unit of ( )2 ,CP A D , and hence [ ] [ ]0 0
ψ ϕ= . 

Thus there exist ( )1 1, ,Hom A Dϕ ψ ∈  such that { } { } { } { }1 1ψ ψ ϕ ϕ+ = + . Note 
that 1ψ ψ⊕  is unitarily equivalent to 1ϕ ϕ⊕ . Since ϕ  and 1ϕ  are both ho-
momorphisms,  

2
1

ϕ
θ

ϕ
 
 
 
  

is a homomorphism. Furthermore,  

1

ψ
ψ

 
 
 

 

is in ( )( )2,Hom A M D , and hence ψ  is in ( ),Hom A D .  
Remark 3.10. The only invertible element in ( )2 ,CP A D  is the unit. In fact, 

suppose that [ ]0ϕ  is an invertible element in ( )2 ,CP A D  with the inverse 
[ ]0ψ . Then [ ] [ ]0 0

ϕ ψ+  is the unit and  

2

ϕ
θ

ψ
 
 
 
  

is a homomorphism by Theorem 3.9. Thus,  

ϕ
ψ
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is also a homomorphism. Therefore ϕ  is in ( ),Hom A D . It follows that [ ]0ϕ  
is the unit. 

Definition 3.11. Let B be a closed ideal of D and : D D Bπ →  the quotient 
map. We define a relation ~  on ( )2 ,CP A D  as follows: for ( ), ,CP A Dϕ ψ ∈ , 
we write [ ] [ ]0 0

~ϕ ψ  if there exist ( )1 1, ,CP A Dϕ ψ ∈  such that [ ] [ ]1 0 0
ϕ ϕ= , 

[ ] [ ]1 0 0
ψ ψ= , and 1 1π ϕ π ψ=  . 

Suppose that ~ϕ ψ , ~ψ η . Then there exist 1 1 2 2, , ,ϕ ψ ψ η  such that  

[ ] [ ] [ ] [ ]1 1 1 10 0 0 0
, , ,ϕ ϕ ψ ψ π ϕ π ψ= = =   

[ ] [ ] [ ] [ ]2 2 2 20 0 0 0
, , .ψ ψ η η π ψ π η= = =   

Since [ ] [ ]1 20 0
ψ ψ= , there exist ( )1 2, ,Hom A Dφ φ ∈  such that  

{ } { } { } { }1 1 2 2ψ φ ψ φ+ = + . Thus there is a unitary u D∈  such that  

1 2
2 2

1 2

.Adu
ψ ϕ

θ θ
φ φ

   
=   

   
    

Put  

1 2
1 2 2 2

1 2

, .Adu
ϕ η

ϕ θ η θ
φ φ

   ′ ′= =   
   
    

Then we have  

[ ] [ ] [ ] [ ] [ ]1 1 1 10 0 0 0 0
,ϕ ϕ φ ϕ ϕ′ = + = =  

[ ] [ ] [ ] [ ] [ ]2 2 2 20 0 0 0 0
,η η φ η η′ = + = =  

and  

( )

( )

1 1
1 2 2

1 1

1 1
2 2

1 1

2 2
2 2

2 2

2 2
2 2

2 2

2 ,

Adu Ad u

Ad u Adu

ϕ π ϕ
π ϕ π θ θ

φ π φ

π ψ ψ
θ π θ

π φ φ

ψ π ψ
π θ π θ

φ π φ

π η η
π θ π θ

π φ φ
π η

   ′ ′= =   
   

   ′= =   
   

   ′= =   
   
   ′= =   
   

′=



   





  





    





    





 

where 2θ ′  is the inner isomorphism from ( )2M D B  onto D B  induced by 
θ . 

It follows that ~  is transitive, and hence ~  is an equivalence relation on 
( )2 ,CP A D . Denote the equivalence class of [ ]0ϕ  by [ ]0ϕ   , or by [ ]ϕ  

simply. 
Let ( ) ( )2, , ~BCP A D CP A D= . It is natural that we define an addition in 
( ),BCP A D  as follows:  

[ ] [ ] [ ] [ ]0 0
.ϕ ψ ϕ ψ + = +   

Remark 3.12. The addition defined in Definition 3.11 is well-defined: for 
[ ] [ ]ϕ ϕ′=  and [ ] [ ]ψ ψ ′= , there exist 1ϕ , 1ϕ′ , 1ψ , 1ψ ′  such that [ ] [ ]1 0 0

ϕ ϕ= , 
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[ ] [ ]1 0 0
ϕ ϕ′ ′= , [ ] [ ]1 0 0

ψ ψ= , [ ] [ ]1 0 0
ψ ψ′ ′= , 1 1π ϕ π ϕ′ =  , and 1 1π ψ π ψ′ =  . 

Then  

( ) ( )* * * *
1 1 1 2 1 2 1 1 1 2 1 2 ,S S S S S S S Sπ ϕ ψ π ϕ ψ′ ′+ = +  

and hence 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 1 1 10 0 0 0 0 0 0 0
.ϕ ψ ϕ ψ ϕ ψ ϕ ψ       ′ ′ ′ ′+ = + = + = +         

It is easy to see that [ ]0  is the unit of ( ),BCP A D . Thus ( )( ), ,BCP A D +  is a 
unital abelian semigroup. In particular, for { }0B = , we have  

( )( ) ( )( )2, , , ,BCP A D CP A D+ = + ; and for B D= , we have ( ) { }, 0DCP A D = . 
Definition 3.13. Let ( )1 ,BCP A D−  be the set of invertible elements in  
( ),BCP A D . Then ( )1 ,BCP A D−  is an abelian group. 

Theorem 3.14. Let ϕ  be in ( ),CP A D . Then [ ] 0ϕ =  in ( )1 ,BCP A D−  if 
and only if there exist ( )1 2, , ,Hom A Dϕ φ φ′ ∈  and a unitary ( )2u M D∈  such 
that  

1 2

.Adu
ϕ ϕ

φ φ
′   

=   
   

  

Proof. Suppose that [ ] 0ϕ =  in ( )1 ,BCP A D− . Since [ ] [ ]0 0ϕ = = , there exist 
( ), ,CP A Dϕ φ′ ′∈  such that [ ] [ ]0 0

ϕ ϕ′ = , [ ]0 0φ′ =  and π ϕ π φ′ ′=  . Hence, 
by Theorem 3.9, we have ( ),Hom A Dφ′∈ . Since [ ] [ ]0 0

ϕ ϕ′ = , there exist 
( )1 2, ,Hom A Dφ φ ∈  such that { } { } { } { }1 2ϕ φ ϕ φ′+ = + . Then there is a unitary 

( )2u M D∈  such that  

1 2

.Adu
ϕ ϕ

φ φ
′   

=   
   

  

Conversely, suppose that there exist ( )1 2, , ,Hom A Dϕ φ φ′ ∈  and a unitary 
( )2u M D∈  such that  

1 2

.Adu
ϕ ϕ

φ φ
′   

=   
   

  

Set ( )1 1 2,v S S=  and 2v vu= . Then 1 2,Adv Adv  are both inner isomor-
phisms from ( )2M D  onto D. Therefore  

1 2
1 2

.Adv Adv
ϕ ϕ

φ φ
′   

=   
   
   

Note that [ ] [ ] [ ]1 2 0ϕ φ φ′ = = = . Thus [ ] [ ] [ ] [ ] [ ]1 2 0ϕ ϕ φ ϕ φ′= + = + = .  
Remark 3.15. Suppose that [ ] 0ϕ =  in ( )1 ,BCP A D− . By Theorem 3.14, we 

have  

( )

( )

1 2

2

2

2

,

Adu

Ad u

Ad u

Adu

ϕ ϕ
π π

φ φ
π ϕ

π
π φ

π φ
π

π φ
φ

π
φ

π φ

′   =   
   

′ =  
 

′ =  
 
′ =  

 
=
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where  

( )( )2
2

, ,Adu Hom A M D
φ

φ
φ

′ 
= ∈ 

 
  

and ( ) ( )2 2: M D M D Bπ →  is induced by the quotient map : D D Bπ → . 
Set ( ),i jφ φ= , we have ( ), 0i j i jπ φ = ≠  and 1,1π ϕ π φ=  . 
Theorem 3.16. Let ( ),CP A Dϕ ∈ . Then [ ] ( )1 ,BCP A Dϕ −∈  if and only if 

there is ( ) ( )( ), 2,i j Hom A M Dφ φ= ∈  and ( ),CP A Dψ ∈  such that  

.
ϕ

π π φ
ψ

 
= 

 
   

Proof. Suppose that [ ] ( )1 ,BCP A Dϕ −∈  with the inverse [ ]ϕ′ . Let ( )1 2,v S S= . 
Since [ ] [ ] 0ϕ ϕ′+ = , there exist ( ),i jφ φ′ ′=  in ( )( )2,Hom A M D  and a unitary 

( ),i ju u=  in ( )2M D  such that  

( ) ( )

( )

*

*
1,1

* *
1 1,1 1 1 1,1 2
* *
2 1,1 1 2 1,1 2

.

Ad v Ad v

Ad v

S S S S
S S S S

ϕ ϕ
π π π

ϕ ϕ

π φ

φ φ
π

φ φ

   
=   ′ ′   

′=

 ′ ′
=   ′ ′ 

  





 

Set  
*
1
*

1 2 2
1 2

0
0 0

0 and .
0

0

S
I

v S v
S S

I

 
  

= =   
  

 

 

Then 1Adv  is an inner isomorphism from ( )2M D  onto ( )3M D  and 

2Adv  is an inner isomorphism from ( )3M D  onto ( )2M D . It follows that  
* * *
1 1,1 1 1 1,1 2 1 1,2
* * *

1 2 1,1 1 2 1,1 2 2 1,2

2,1 1 2,1 2 2,2 2,2

.
S S S S S

Adv S S S S S
S S

φ φ φ ϕ
π φ π φ φ φ π ϕ

φ φ φ φ

 ′ ′ ′  
   ′ ′ ′ ′ ′= =   
   ′ ′ ′ ′  

     

Set  

( )
*
1

1 2 *
2,2 2

S
S S

S
ϕ

ψ
φ

′   
=   ′  

 

and  

( )( )2 1 2, .Adv Adv Hom A M Dφ φ′= ∈   

Then we have  

2

2,2

.Adv
ϕ

ϕ
π φ π ϕ π

ψ
φ

 
  ′= =   
  ′ 

     

Conversely, since  

,
ϕ

π π φ
ψ

 
= 
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.Adv Adv
ϕ

π π φ
ψ

 
= 

 
     

Then  

2 2 .
ϕ

π θ π θ φ
ψ

 
= 

 
     

Thus  

[ ] [ ] [ ]2 2 0.
ϕ

ϕ ψ θ θ φ
ψ

  
+ = = =  

  
   

Proposition 3.17. Suppose that ( ),CP A Dϕ ∈  such that [ ] ( )1 ,BCP A Dϕ −∈ . 
Then π ϕ  is a homomorphism. 

Proof. Suppose that ( )1
1 ,BCP A Dϕ −∈  and [ ]2ϕ  is the inverse of [ ]1ϕ . Set  

1 * *
2 1 1 1 2 2 2

2

.s s s s
ϕ

ψ θ ϕ ϕ
ϕ

 
= = + 

 
  

By Theorem 3.14, there exist ( )( )2,Hom A M Dφ ∈  and ( )1 ,Hom A Dφ ∈  
such that  

1

.
ψ

π π φ
φ

 
= 

 
   

Hence π ψ  is a homomorphism, and thus  

( ) ( ) ( ) ( )( )( ) ( )
( ) ( ) ( ) ( )( )( ) ( )

*
1 1 1 1 1

*
2 2 2 2 2 0.

S ab a b S

S ab a b S

π π ϕ π ϕ ϕ π

π π ϕ π ϕ ϕ π

−

+ − =





 

Set ( ) ( ) ( )( )1 1 1x ab a bπ ϕ π ϕ ϕ= −  and ( ) ( ) ( )( )2 2 2y ab a bπ ϕ π ϕ ϕ= − . 
Then 

( ) ( ) ( ) ( )* *
1 1 2 2 0,S x S S y Sπ π π π+ =  

that is, 

( ) ( )( )
( )
( )

*
1

1 2 *
2

, 0.
Sx

S S
y S

π
π π

π

    =    
 

Put ( ) ( )( )1 2,v S Sπ π′ = . Then ( )*
2v v I M D′ ′ = ∈ . Hence  

0.
x

y
 

= 
 

 

This implies that 0x y= = , and furthermore ( ) ( ) ( )( )1 1 1ab a bπ ϕ π ϕ ϕ= . It 
follows that 1π ϕ  is a homomorphism.  

Lemma 3.18. ([7], 3.2.9) Suppose that A is a separable C*-algebra and B is a 
stable C*-algebra. Let ( )( ),Hom A Bφ ∈  . Then the following three statements 
are equivalent: 

1) [ ]φ  is invertible in ( ),Ext A B . 
2) There exists ( )( ),CP A M Bψ ∈  such that φ π ψ=  . 
3) There exists ( )( )( )2,Hom A M M Bϕ ∈  such that  
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0 1 0 1 0
.

0 0 0 0 0 0
φ

π ϕ
      

=       
      

 

It is well known that ( )( )2M M B  and ( )M B  are innerly isomorphic if B is 
a stable C*-algebra. Then we have the following result. 

Theorem 3.19. Let A and B be C*-algebras with B stable. Then  

( )( ) ( )1 1, , .BCP A M B Ext A B− −≅  

Proof. Note that the condition that A is separable is not necessary in the proof 
of (1) ⇒  (2) in Lemma 3.18 ([7], 3.2.9). Suppose that ( )( ),Hom A Bφ ∈   
such that [ ]φ  is invertible in ( ),Ext A B . Then there exists ( )( ),CP A M Bϕ ∈  
such that φ π ϕ=  . We define a map  

( ) ( )( )1: , ,BExt A B CP A M B−Φ →  

by [ ] [ ]φ ϕ , where π ϕ φ= . 
1) Prove that Φ  is well-defined. 
Suppose that ( )( )1 2, ,Hom A M B Bφ φ ∈  such that [ ] [ ] ( )1

1 2, ,Ext A Bφ φ −∈ . 
Then there exist ( )( )1 2, ,BCP A M Bϕ ϕ ∈  such that 1 1φ π ϕ=   and 2 2φ π ϕ=  . 
If [ ] [ ]1 2φ φ= , there exist ( )( )1 2, ,Hom A M Bϕ ϕ′ ′ ∈  and ( )( )2u M M B∈  such 
that  

( )1 2

1 2

.B BAd u
φ φ

θ π θ
π ϕ π ϕ

   
=   ′ ′   

 

  

 

 

Hence,  

1 2

1 2

.B BAdu
ϕ ϕ

π θ π θ
ϕ ϕ

      
=      ′ ′      

    

Since Bθ  is an inner isomorphism,  

[ ] [ ]1 2
1 20 0

1 20 0

and .B BAdu
ϕ ϕ

ϕ θ ϕ θ
ϕ ϕ

      
= =      ′ ′      

    

Then [ ] [ ]1 2ϕ ϕ= , and hence Φ  is well-defined. 
2) Prove that Φ  is a homomorphism. 
Note that  

[ ]( ) [ ]( ) [ ] [ ] [ ] [ ]1 2 1 2 1 20 0
.φ φ ϕ ϕ ϕ ϕ Φ +Φ = + = +   

Since  

1 1 1

2 2 2

,B B B

ϕ π ϕ φ
π θ θ θ

ϕ π ϕ φ
     

= =     
     



 

   



 

we have  

[ ] [ ]( ) [ ]( ) [ ]( )1 2 1 2 .φ φ φ φΦ + = Φ +Φ  

It follows that Φ  is a homomorphism. 
3) Prove that ( )( ) ( )( )1 1, ,BExt A B CP A M B− −Φ ⊆ . 
Suppose that [ ]1φ  is an invertible element with the inverse [ ]2φ . Then we 

have  
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[ ]( ) [ ]( ) [ ] [ ]( ) ( )1 2 1 2 0 .φ φ φ φΦ +Φ = Φ + = Φ  

Therefore, [ ]( )1φΦ  is invertible. 
4) Prove that ( ) ( )( )1 1: , ,BExt A B CP A M B− −Φ →  is injective. 
Suppose that [ ]( ) [ ]1 1φ ϕΦ =  and [ ]( ) [ ]2 2φ ϕΦ = , where 1 1φ π ϕ=   and 

2 2φ π ϕ=  . 
If [ ] [ ]1 2ϕ ϕ=  in ( )( )1 ,BCP A M B− , then there exist ( )( )1 2, ,CP A M Bϕ ϕ′ ′ ∈  

such that [ ] [ ]1 10 0
ϕ ϕ′= , [ ] [ ]2 20 0

ϕ ϕ′=  and 1 2π ϕ π ϕ′ ′=  . Therefore there exist 
( )( )1 2 1 2, , , ,Hom A M Bσ σ τ τ ∈  and unitary elements ( )( )1 2 2,u u M M B∈  such 

that  

1 1 2 2
1 2

1 2 1 2

, .Adu Adu
ϕ ϕ ϕ ϕ

σ σ τ τ
′ ′       

= =       
       

   

Put  

1 2

2 2

1 0 0
, , 0 0 1 .

0 1 0
X Y E

ϕ ϕ
σ τ

 
′ ′     = = =          

 

 

Then we have  

1 * *
11 1 1

1
22

2

00
,

010 1
Xuu Xu u

ϕ
σ

ττ
τ

 
       = =            

 

 

2 * *
22 2 2

1
22

2

00
,

010 1
Yuu Yu u

ϕ
τ

τσ
σ

 
       = =            

 

 

and  

( )
( )

( )
( )

( )
( ) ( ) ( ) ( )

( )

*
1 1

2

*
11

2

*
11

2

*
1 1

2

0
01 1

0
1 0 1

0
1 0 1

0
.

01 1

Xu u

uu X

uu Y
E E

Yu u
E E

π
τ

ππ π
π π τ π

ππ π
π π

π π σ π

π
σ

    
         

    =        
      =          

    
=            









 

Thus,  

1 2* *
1 22 1

1 1

2 2

.
1 11 1

u uu uE E
ϕ ϕ

π σ π τ
τ σ

      
            =                               

 

Set  
*

1 2
3 .

1 1
u u

u E
  

=   
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One can check that 3u  is a unitary in ( )( )3M M B . Then we have  

( )
1 2

1 3 1

2 2

.Ad u
φ φ

π σ π π τ
π τ π σ

   
   =   
   
   

  

 

 

It follows that  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 1 1 2 2 1 2 2 .φ φ π σ π τ φ π τ π σ φ= + + = + + =     

Therefore, Φ  is injective. 
5) Prove that ( ) ( )( )1 1: , ,BExt A B CP A M B− −Φ →  is surjective. 
Suppose that [ ] ( )( )1

1 ,BCP A M Bϕ −∈ . Then by Theorem 3.16 there exist [ ]2ϕ  
and an inner isomorphism ( )( )( )2,Hom A M M Bφ ∈  with Advφ =  and 

( )1 2,v S S= , such that [ ] [ ] [ ]1 2 Advϕ ϕ φ+ =  . Since 1 1π ϕ φ=  and 2 2π ϕ φ= , 
by Theorem 3.17, 1φ  and 2φ  are homomorphisms and  

[ ] [ ] [ ] [ ]1 2 0 .Advφ φ π φ+ = =   

Thus [ ] ( )1
1 ,Ext A Bφ −∈  and [ ]( ) [ ]1φ ϕΦ = . This implies that Φ  is surjec-

tive.  
Similar to Lemma 3.18, we have the following result. 
Corollary 3.20. Let A and B be C*-algebras with B stable and let  

( )( ),Hom A Bφ ∈  . Consider the following three statements: 
1) [ ]φ  is invertible in ( ),Ext A B . 
2) There exists ( )( ),CP A M Bψ ∈  such that =φ π ψ . 
3) There exist ( )( )( )2,Hom A M M Bϕ ∈  and ( )( ),Hom A M Bφ′∈  such that  

.
φ

π ϕ
φ

 
= ′ 

  

Then (1) ⇔  (3) ⇒  (2). 
Proposition 3.21. Let A and C be C*-algebras and ( ), ,h Hom A Cφ ∈ . Then 
1) The map ( ) ( )* 2 2: , ,h CP C D CP A D→  defined by [ ] [ ]0 0

hϕ ϕ   is a 
semigroup homomorphism. 

2) The map ( ) ( )* : , ,B BCP C D CP A Dφ →  defined by [ ] [ ]ϕ ϕ φ   is a un-
ital semigroup homomorphism. Furthermore, it is a group homomorphism 
from ( )1 ,BCP C D−  into ( )1 ,BCP A D− . 

Theorem 3.22. Let   be the category of C*-algebras and   the category 
of abelian semigroups. Define ( ), :BCP D⋅ →   by ( ),BA CP A D  and 

*φ φ  for any A∈  and ( ),Hom A Cφ ∈ . Then ( ),BCP D⋅  is a contrava-
riant functor from   to  . 

Proof. 1) For a C*-algebra A and [ ] ( ),BCP A Dϕ ∈ , we have  
[ ]( ) [ ] [ ]*I Iϕ ϕ ϕ= = . Then *I  is the unit of ( ),BCP A D . 

2) Let ( )1 ,Hom A Eϕ ∈  and ( )2 ,Hom E Cϕ ∈ . Set ( ),BF CP D= ⋅ . Then  

( )[ ] [ ] ( )[ ] ( ) ( )[ ]2 1 2 1 1 2 1 2 .F F F Fϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= = =      

Thus ( ),BCP D⋅  is a contravariant functor.  
Corollary 3.23. Let   be the category of abelian groups. Then ( ),BCP D⋅  
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induces a contravariant functor ( )1 ,BCP D− ⋅  from   into   by  
( )1 ,BA CP A D−

 , and from ( ),Hom A C  into ( ) ( )( )1 1, , ,B BHom CP C D CP A D− −  
by *φ φ . 

For a short exact sequence of C*-algebras 1 20 0C E Aϕ ϕ→ → → → , the 
functor ( ),BCP D⋅  from   to   is not exact, and it is even not split-exact. 
The following is a counterexample. 

Example 3.24. Suppose that H is an infinite dimensional separable Hilbert 
space. Let ( )A C K H= = , E A C= ⊕ , ( )D B H=  and 0B = . Then  

( ) ( )2, ,BCP A D CP A D= . Let 1 :f C E→  be the inclusion map and let  

2 :f E A→  be the quotient map. Then the exact sequence  
1 20 0f fC E A→ → → →  

is split. 
Take a nonzero element ( ), DCP A Iη ∈  . We define a map : E Dϕ →  by 

CC Iϕ =  and 
Aϕ η= . Then ( ),CP E Dϕ ∈  and [ ]1 0fϕ = . If  

[ ] [ ]2 0 0
fψ ϕ=  for some ( )2 ,CP A Dψ ∈ , then there exist ( )1 2, ,Hom E Dφ φ ∈  

and a unitary ( )( )2u U M D∈  such that  

2 *

1 2

.
f

u u
ψ ϕ

φ φ
   

=   
   



 

Put  

1 2

3 4

.
u u

u
u u
 

=  
 

 

Since ( )( )2 0f Eψ = , ( ) ( )* *
1 1 2 2 2 0u E u u E uϕ φ+ = . Note that  

( ) ( )* *
1 1 2 2 2,u e u u e uϕ φ  are positive if e is positive in E. It follows that  

( ) ( )* *
1 1 2 2 2 0.u e u u e uϕ φ= =  

Therefore ( ) *
1 1 0u K H u = . Furthermore, *

1 1 0u u =  since there is a sequence 
in ( )K H  which is convergent to I in the strong operator topology on ( )B H . 
Then 1 0u = . Hence 4 0u =  and ( )2 3,u u U D∈ . Therefore,  

*
* 2 2 2

*
2 3 3

.
u u

u u
u u

ϕ φ
φ ϕ

  
=   

   
 

Since *
3 3 1u uϕ φ=  is a homomorphism, ϕ  is also a homomorphism. Howev-

er, 
Aϕ  is not a homomorphism by the definition of ϕ . Otherwise, if 

Aϕ  is a 
homomorphism from ( )K H  to  , then it follows that 0Aϕ =  since a com-
pletely positive map preserves self-adjoint elements. This is in contradiction to 
the fact that 0Aϕ ≠ . 

Theorem 3.25. Suppose that  
1 20 0f fC E A→ → → →  

is a split short exact sequence, then  

( ) ( ) ( ) ( ) ( )2 1* *1 1 10 , , , 0f f
B B BCP A D CP E D CP C D− − −→ → → →  

is also a split short exact sequence. 
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Proof. Since ( ) ( ) [ ]( ) [ ]1 2 2 1* * 0A Af f f fϕ ϕ= =   , we have  
( ) ( )2 1* *Im f Ker f⊂ . 

Assume that E A C= ⊕ . For any [ ] ( )( )1 *Ker fϕ ∈ , let A Aϕ ϕ=  and 

C Cϕ ϕ= . Then A Cϕ ϕ ϕ= ⊕ . Note that [ ]ϕ  is invertible and  

[ ] [ ] ( ) [ ]( )1 1 * .C f fϕ ϕ ϕ= =  

Hence, [ ] ( )1 ,C BCP C Dϕ −∈ . Similarly, [ ]Aϕ  is also invertible. 
Suppose that the inverses of [ ]Aϕ  and [ ]Cϕ  are [ ]Aϕ′  and [ ]Cϕ′  respec-

tively. Let [ ] [ ]A Cϕ ϕ ϕ′ ′ ′= ⊕ . Now we show that [ ] [ ]ϕ ϕ′+  is the unit. Suppose 
that [ ] [ ] [ ]0 0 0A A Aϕ ϕ ϕ′′ ′= +  and [ ] [ ] [ ]0 0 0C C Cϕ ϕ ϕ′′ ′= +  such that A Aπ ϕ π φ′′ =   
and C Cπ ϕ π φ′′ =  , where Aφ  and Cφ  are homomorphisms. Then  

[ ] [ ] [ ]0 0 0
.A Cϕ ϕ ϕ ϕ′ ′′ ′′+ = ⊕  

Since ( )A Cπ ϕ ϕ′′ ′′⊕  is a homomorphism, [ ] [ ]ϕ ϕ′+  is the unit of ( )1 ,BCP E D− . 
Since [ ] ( )( )1 *Ker fϕ ∈ , [ ]1 0fϕ = . Then C Cπ ϕ π φ=   and hence [ ]Cϕ′  is 
the inverse of [ ]Cϕ . Therefore, [ ] [ ]0Aϕ ϕ′ ′= ⊕  is the inverse of [ ]ϕ . Since 
( ) [ ]( ) [ ]2 * Af ϕ ϕ′ ′= , [ ] ( )( )2 *Im fϕ ∈ . Thus,  

( )( ) ( )( )2 1* * .Im f Ker f=  

Suppose that ( ) [ ]( )2 * 0Af ϕ = . Then [ ]0 0Aϕ ⊕ = , and there exist  
( ),CP E Dψ ∈  and ( ),Hom E Dφ ∈  such that [ ] [ ]0 0

0Aψ ϕ= +  and  
π ψ π φ=  . Hence, 

A Aπ ψ π φ=  . Note that ( ),A Hom A Dφ ∈  and  
[ ]00 AAφ ϕ  =  . It follows that [ ] 0Aϕ =  and ( )2 *f  is an injective homomor-

phism. 
Suppose that [ ] ( )1 ,C BCP C Dϕ −∈ . Then we have  

( ) [ ]( ) ( ) [ ]1 1* 0 0 .C C Cf fϕ ϕ ϕ ⊕ = ⊕ =   

Therefore, ( )1 *f  is surjective. 
Define  

( ) ( ) [ ] [ ]1 1
* : , , , 0 .B B C Cf CP C D CP E D ϕ ϕ− −→ ⊕  

Then ( )1 **f f I= . Finally,  

( ) ( ) ( ) ( ) ( )2 1* *1 1 10 , , , 0f f
B B BCP A D CP E D CP C D− − −→ → → →  

is a split short exact sequence.  
Remark 3.26. For any C*-algebra B, we can define ( )2 ,CP A B , ( )1 ,ICP A B− , 

etc., to be ( )( )2 ,CP A M B⊗ , ( )( )1 ,ICP A M B− ⊗ , respectively. Since for 
any stable C*-algebra its multiplier algebra is properly infinite, these invariants 
are well-defined. 
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