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Abstract 
We investigate the Casimir effect in the context of a nontrivial topology by 
means of a generalized Matsubara formalism. This is performed in the con-
text of a scalar field in D Euclidean spatial dimensions with d compactified 
dimensions. The procedure gives us the advantage of considering simulta-
neously spatial constraints and thermal effects. In this sense, the Casimir pres-
sure in a heated system between two infinite planes is obtained and the results 
are compared with those found in the literature. 
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1. Introduction 

The Casimir effect is a quantum phenomenon originally described as the attrac-
tion of two conducting, neutral, macroscopic objects in vacuum, induced by changes 
in the zero-point energy of the electromagnetic field [1]. This is not an exclusive 
feature of electromagnetic fields. It has been shown that any relativistic field un-
der the influence of external conditions is able to exhibit an analogous kind of 
phenomenon [2]. This quantum vacuum effect is strongly dependent on the ma-
terial properties of the medium where the macroscopic objects interact, on the na-
ture of the quantum field, and on the boundary conditions under investigation. It 
has been related to many different physical systems ranging from cosmology, con-
densed matter, atomic and molecular physics to more recent developments in mi-
cro and nanoelectricmechanical devices as discussed in the reviews found in Refs. 
[3]-[11]. It is a well-known fact that thermal fluctuations also produce Casimir 
forces. The pioneering works were devoted to explaining its thermodynamical be-
havior [12] [13]. General theoretical works [14]-[21], and controversial results in 

How to cite this paper: Malbouisson, 
A.P.C. (2022) Casimir Effect via a Genera-
lized Matsubara Formalism. Journal of Ap-
plied Mathematics and Physics, 10, 3601- 
3615. 
https://doi.org/10.4236/jamp.2022.1012239 
 
Received: October 17, 2022 
Accepted: December 16, 2022 
Published: December 19, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.1012239
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.1012239
http://creativecommons.org/licenses/by/4.0/


A. P. C. Malbouisson 
 

 

DOI: 10.4236/jamp.2022.1012239 3602 Journal of Applied Mathematics and Physics 
 

realistic situations [22]-[29] were also explored. The first observation of the Casi-
mir force was made by Sparnaay in 1956 [30].  

On the other hand, the analysis of quantum field theory on toroidal spaces has 
been the focus of a large number of investigations in theoretical foundations and 
applications of the formalism: spontaneous symmetry breaking drive by both tem-
perature and spatial boundaries as in recent work [31] [32] [33], second-order 
phase transitions in superconducting films, wires and grains red [34] [35] [36], 
finite-size effects in the presence of magnetic fields, finite chemical potential in 
first-order phase transitions [37], and also the Casimir effect [38]-[43]. It is well- 
known that one way to obtain thermal effects in quantum field theories is to 
consider the Matsubara formalism, in which a fourth dimension (mathematical-
ly analogous to imaginary time) has a finite extension equal to the inverse of 
temperature β , with a periodic boundary condition. The application of this pro-
cedure also to spatial dimensions has been introduced by Birrell and Ford [44] in 
order to describe field theories in spaces with finite geometries and has been ge-
neralized to what came to be known as quantum field theories on toroidal to-
pologies ([31] [32] [33] [45] [46] [47] [48] [49]). This procedure can also be 
called a generalized Matsubara formalism. In general, this technique basically 
consists in considering quantum fields defined over spaces with topologies of the 
type ( )1 d D d−×  , with 1 d D≤ ≤ , where D represents the total number of Euc-
lidean dimensions and d the number of compactified ones through the imposi-
tion of periodic boundary conditions on the fields along them. One of these di-
mensions is compactified in a circumference of length β , whereas each of the 
spatial ones ( 1, , 1i d= − ) in a circumference of length iL  and can be inter-
preted as boundaries of the Euclidean space [46] [48]. In short, this corresponds 
to imposing periodic (antiperiodic) boundary conditions for fields in D Eucli-
dean dimensions with d compactified ones. 

In the present paper, we revisit the Casimir effect, as an application of the 
above-mentioned generalized Matsubara formalism. We investigate the pressure 
experienced by the boundary in a compactified space when a scalar field is heated. 
The starting point is the so-called “local formulation”, introduced in [14], in which 
the pressure is associated with the 33 component of the energy-momentum ten-
sor. Then, we follow the zeta-function regularization method originally employed 
by Elizalde and Romeo [47] for the computation of the Casimir energy. Howev-
er, here we employ a general formalism of field theories on toroidal spaces as in 
Ref. [48], which allows applying the method for several simultaneously compac-
tified dimensions. This is the case, for instance, of thermal field theories with a 
finite spatial extension, which needs the compactification of both the imagi-
nary-time dimension and a spatial one for a unified approach for heated Casimir 
cavities. 

We stress that in our computation with the toroidal formalism periodic boun-
dary conditions are implemented both in imaginary time (circumference of length 
β ) and the third spatial coordinate (circumference of length L), by construc-
tion. Moreover, as stated in [48], results for other boundary conditions may be 
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obtained from the periodic ones. For instance, the pressure for Dirichlet boun-
dary conditions (much studied in the literature) can be determined by putting 

2L a=  in the expression from the toroidal computation, where a is the distance 
separating the parallel plates in Ref. [14]. 

The paper is organized as follows. In section 2 the Casimir pressure is linked 
to the vacuum expectation value of the energy-momentum tensor for a scalar 
field in D dimensions of the Euclidean space. The point-splitting technique is 
used to write it in terms of the free scalar propagator in Fourier space. In section 
3 a corresponding expression for the pressure is obtained when one of the spatial 
dimensions is compactified with a finite extension. The computation of the Ca-
simir pressure follows a path similar to that of the Elizalde-Romeo method [47], 
leading to a well-known result from the literature. In section 4, we compute the 
Casimir pressure in the configuration of a compact spatial dimension now in the 
presence of a thermal bath, which can also be compared with results found in the 
literature obtained from other techniques. In section 5 we present our final com-
ments. Throughout this paper, we consider 1Bc k= = = . 

2. Energy-Momentum Tensor for Scalar Fields 

We start by writing the Euclidean Lagrangian of the free scalar field in a 
D-dimensional space, 

( )2 2 21 1 ,
2 2E mµφ φ= ∂ +                      (1) 

where m is the mass of the quanta of the scalar field φ . With the help of the 
point-splitting technique, the vacuum expectation value of the canonical ener-
gy-momentum tensor Tµν  can be written as [48], 

( ) ( ) ( )0 0 lim , 0 0 ,
x x

T x x T x xµν µν µν φ φ
′→

′ ′= =            (2) 

where T denotes the time-ordered product of field operators and ( ),x xµν ′  is 
a differential operator given by [48] 

( ) 21, ,
2

x x mµν µ ν µν σ σδ  ′ ′ ′= ∂ ∂ − ∂ ∂ +                 (3) 

where µ∂  and µ′∂  are derivatives acting on xµ  and x µ′ , respectively, and 

µνδ  represents the components of the metric tensor of the Euclidean space 
(Kronecker delta). Defining the Euclidean Green function of the scalar field as 
( ) ( ) ( ){ }0 0G x x i T x xφ φ′ ′− = , we obtain 

( ) ( )lim , .
x x

x x G x xµν µν′→
′ ′= −                     (4) 

Considering the Fourier integral of the Euclidean Green function in momen-
tum space, 

( )
( )

( )
2 2

d 1 e ,
2

D
ik x x

D

kG x x
k m

∞ ′⋅ −

−∞
′ =

+π
− ∫                (5) 

where k and x are D-dimensional vectors, we are able to rewrite the vacuum ex-
pectation value of the energy-momentum tensor in Equation (4) as 
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( ) 2 2

d 1 .
22

D

D

k kk
k m

µ ν
µν µνδ

∞

−∞

 
= − +π




∫                  (6) 

3. Casimir Pressure in a Compactified Space 

In this section, we investigate the Casimir pressure for the particular case of just 
one compactified spatial dimension ( 1d = ), along the lines of Ref. [47]. It is suf-
ficient to consider the 33 component of the energy-momentum tensor to obtain 
the Casimir pressure resulting from a topological constraint imposed by periodic 
boundary conditions on the field at the parallel plates (taken as infinite planes) 
separated by a fixed distance L in the 3x -direction. 

From Equation (6), it is straightforward to write the bulk expression 

( )
( )2 2 2

3
33 2 2 2

3

1 d ,
2 2

D

D

k k mk
k k m

∞ ⊥

−∞
⊥

 − +
 =

+ +  π
∫                 (7) 

where 2 2 2
3k k k⊥= + , and k⊥  refers to the ( 1D − )-dimensional vector ortho-

gonal to the 3-direction in Fourier space. 
Let us call 33

c  the response of vacuum fluctuations in the object that plays 
the role of a topological constraint. We perform this by means of the compacti-
fication of just one spatial dimension. In order to obtain the Casimir pressure 
that acts on the boundary of the compactified space, we shall use the generalized 
Matsubara procedure, which is the original contribution of the present manu-
script. Basically, in the general case, the technique consists in the replacement of 
integrals in momentum space by sums, namely, 

d 1
2 j

j

nj

k
L

+∞

=−∞

→
π ∑∫

 

where the index j assumes the values 1,2, , 1j D= − , the momentum coordi-
nate jk  exhibits discrete values, 

2
,

j

j
j n

j

n
k k

L
π

= =
 

and jL  refer to the finite extension of each of the j spatial dimensions (com-
pactification of 1D −  spatial coordinates). For practical purposes, let us com-
pactify just the 3x -component of the vector x. With these ideas in mind, the 
generalized Matsubara formalism enables us to substitute the bulk expression of 
Equation (7) by the following one: 

( )
( )2 2 21

33 1 2 2 2

d1 .
2 2

D
nc

D
n n

k k mk
L k k m

−+∞ ∞ ⊥⊥
−−∞

=−∞ ⊥

 − +
 =

+ +π 
∑ ∫               (8) 

Using the well-known results provided by dimensional regularization, 

( ) ( ) ( )
2

22 2
2

d 1 1 12 ,
2 4

DsD

D s D

Ds
k

s bk b

−
∞

−∞

 Γ −    =  Γ     π+π
∫           (9) 
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( ) ( ) ( )

12 2

22 2
2

1
d 1 12 ,

22 4

DsD

D s D

Ds
k k D

s bk b

− −
∞

−∞

 Γ − −    =  Γ     π+π
∫       (10) 

we obtain 

( )
( ) ( )

( )
( ) ( )

( )

2 2

33 12 2 2 2

1

1, 1 ,c
s

n
s

an c
f L s

an c an c
ν ν

ν
ν ν ν

+∞

−
=−∞

=

  − Γ  = − − Γ −  + +    
∑  (11) 

where 2a L−= , 2c m= π , ( )1 2s Dν = − − , and ( ),sf Lν  a function given by 

( )
( ) ( ) ( ) ( )2 1

1 1, .
2 4 2

s s
f L

L sν ν
ν

− −
=

Γπ π
              (12) 

Adding and subtracting the term ( )2c νΓ  to the numerator of the first term 
on the right-hand side of Equation (11), we obtain 

( ) ( )
( )

( )
( )

2
33 12 2 2 2

1

1 1, 2 1 2 1 ,c
s

n n
s

f L s c
an c an c

ν νν ν ν
+∞ +∞

−
=−∞ =−∞

=

  
  = − − − −  + +    

∑ ∑ (13) 

where we have used that ( ) ( ) ( )1 1ν ν νΓ = − Γ − . Recalling the general definition 
of the multidimensional Epstein-Hurwitz zeta function [47] [50] [51] [52], 

( ) ( )2

1

2 2 2
1 1 1

, ,
; , , ,

d

c
d d d d

n n
Z a a a n a n c

ν
ν

+∞ −

=−∞

= + + +∑


          (14) 

in the particular case of one-dimensional compactification ( 1d = ), it simplifies 
to 

( ) ( )2 2 2
1 ; .c

n
Z a an c

ν
ν

+∞ −

=−∞

= +∑                   (15) 

Substituting the previous expression into Equation (13), the pressure can then 
be rewritten as 

( ) ( ) ( ){ ( ) ( ) }2 22
33 1 1

1
, 2 1 1; 2 1 ; .c c c

s
s

f L s Z a c Z aν ν ν ν ν
=

 = − − − − −     (16) 

Following Ref. [33], these zeta functions can be evaluated on the whole com-
plex plane by means of an analytic continuation described in the following manner 
[47] [50] [51] [52]: 

( )

( )

2

1

1

2

2
1

2

1 1 2

22 22 2
1 1

, , 1 1 12

; , ,

2 1
22

2 2

2 2

j

d

c
d d

d

d
d

d

d
j j

d
j n j j

d

d d d
d

n n d d

Z a a

d
ca a

n n
K c

c a a

n nn nK c
c a a a a

ν

ν

ν

ν

ν

ν

ν
ν −

−
∞

−= =

−
∞

−=

  = Γ − Γ  

   
   + +
   
   

   
   + +

π

π
π

π
+ + +

   
   

π

∑ ∑

∑








 

     (17) 
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where ( )K zν  denotes modified Bessel functions of the second kind. For 1d = , 
the analytical continuation is reduced to 

( )
( )

2

1 1
2 2

1 12 1
1 2

2 1 1; 2 2 .
22

c

n

n nZ a K c
ca c a a

ν

ν ν
ν ν

ν

−∞

− −=


      = Γ − +      Γ

π π

     


π


∑  (18) 

After some algebraic manipulations, we notice the presence of terms which 
are independent of the variable L, and for this reason are considered unphysical. 
Neglecting these terms, we can show that 

( ) ( ) ( )
1

2 2 2

33 11 12 2

1 12 1 .
2

D D D

c
D D

n n

m D K mnL mL K mnL
L n n

−∞ ∞

−= =

 
      = − −           


π


∑ ∑  (19) 

The formula above corresponds to a general expression for the Casimir pres-
sure exerted by the vacuum fluctuations that induce a topological effect due to 
the presence of the compactified manifold of length L. The result presented in 
Equation (19) is the Casimir vacuum radiation pressure for a massive scalar field 
submitted to periodic boundary conditions in D dimensions and is in agreement 
with Refs. [7] [53] [54]. 

For a 4-dimensional Euclidean space, we obtain [54] 

( ) ( ) ( )
2

33 2 12 2 2
1 1

1 1, 3 .
2

c

n n

mL m K mnL mL K mnL
nL n

∞ ∞

= =

 = − +  π
∑ ∑      (20) 

From the following asymptotic formula of the Bessel function, 

( ) ( )12 ,K z zν ν
ν ν− −≈ Γ                     (21) 

evaluated for small values of its argument ( ~ 0z ) and ( ) 0e ν > , we obtain 
the small-mass limit Casimir pressure ( 1mL ) 

( )
2

33 4,0 ,
30

c L
L

= −
π

                       (22) 

where we have neglected terms of ( )2m . The vacuum fluctuation Casimir 
force per unit area is a finite negative expression which suggests that the radia-
tion pressure contracts the compactified space of circumference L. 

A no-less important comment we present to finalize this section is that the 
corresponding negative Casimir pressure between two infinitely parallel planes, 
when one imposes to the massless scalar field Dirichlet boundary conditions, 
that is, ( ) ( )3 30 0x x Lφ φ= = = = , is immediately recovered when the plane se-
paration distance a is equal to the half circumference length L of the space di-
mension under compactification. 

4. Thermal Effects 

In this section, thermal and boundary effects are treated simultaneously through 
the generalized Matsubara prescription. We then consider a D-dimensional space 
with a double compactification ( 2d = ) of the Euclidean space corresponding to 
a compactified spatial dimension with length L and a compactification of the 
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imaginary-time dimension with length β . In other words, we take the simulta-
neous compactification of both the 0x  and 3x  coordinates of the vector x. 
Following the same steps as in the previous sections, the stress tensor compo-
nent 33

c  given by Equation (7) now becomes 

( )
( )1 2

1 2 1 2

2 2 2 22

33 2 2 2 2 2
,

d1 .
2 2

D
n nc

D
n n n n

k k k mk
L k k k mβ

−+∞ ∞ ⊥⊥
−−∞

=−∞ ⊥

 − − +
 =

+ + + π 
∑ ∫          (23) 

Using dimensional regularization, Equations (9) and (10), the previous for-
mula is rewritten as 

( )
( )

( ) ( )

1 2

1 2

2 2 2
1 1 2 2

33 2 2 2,
1 1 2 2

12 2 2,
1 1 2 2

1

, ,

1
,

c
s

n n

n n
s

a n a n c
f L

a n a n c

s

a n a n c

ν

ν

ν
ν β

ν ν

+∞

=−∞

+∞

−
=−∞

=

   − − Γ  =    + +  
− Γ − −  + +   

∑

∑



          (24) 

where 2
1a L−= , 2

2a β −= , 2c m= π , ( )2 2s Dν = − − , and ( ), ,sf Lν β  is a 
function given by 

( )
( ) ( ) ( ) ( )2 1

1 1, , .
2 4 2

s s
f L

L sν ν
ν β

β − −
=

Γπ π
            (25) 

Adding and subtracting the term ( ) ( )2 2
2 2a n c ν+ Γ  in the numerator of the 

first term on the right-hand side of Equation (24), we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2

33 2 1 2

2
2 1 2 2 2 1 2

2 1

, , 1 2 1 1; ,

2 1 ; , 2 1; , ,

c c
s

c c

s

f L s Z a a

c Z a a a Z a a
a

ν β ν ν ν

ν ν ν
=

 = Γ − − − − 
 

∂ − − + − ∂ 



    (26) 

where we have used the definition of the two-dimensional Epstein-Hurwitz zeta 
function, ( )2

2 1 2; ,cZ a aν , obtained from Equation (17) for 2d = . From Equa-
tion (17), we get for 2d =  

( )

( ) ( ) ( )

2

1

2

1 2

2 1 2

1

1 1
12 1

11 2 1 1

1

2 2
1

1 2 2

1
2 2 2 2

2 1 2 1 2
1

, 1 1 2 1 2

; ,

2 1 1 2 2
2

2 2

2 2 .

c

n

n

n n

Z a a

n nK c
a a c a ac

n nK c
c a a

n n n nK c
c a a a a

ν

νν

ν

ν

ν

ν

ν

ν
ν

−
∞

−−
=

−
∞

−
=

−
∞

−
=

   = Γ − +        Γ     

   
+       

 

ππ
π

π

 

   
   + + +

    

π

π
π

 

∑

∑

∑

    (27) 

Substituting Equation (27) in Equation (26), splitting 33
c  into three terms, 

1 2 1 233
c c c c

n n n n= + +    , after removing removing nonphysical terms, we have 
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( )( )
1

1

1

2

1 1
2

11 2 1 1

1

2 1 1
1

1 1 1 1

4 , , 2 2 2

2 2 ,

c
n s

n

n
s

n nf L s K c
a a c a a

n nc K c
c a a

ν

ν

ν

ν

ν β ν
−

∞

−
=

−
∞

−
=

=

   
= − −       

   

   
−         

ππ



π

π
π

∑

∑



   (28) 

which corresponds to the contribution to the Casimir pressure due to vacuum 
fluctuations only. Using the definition (25), for 2

1a L−= , 2
2a β −= , 2c m= π , 

( )2 2s Dν = − − , Equation (19) shown in the previous section is recovered. 
Also, 

( ) ( )
2

2

2

2

2

2 2
2

11 2 2 2

1

2 2 2
1

1 2 2

2

2 2
2 2

12 2 2
1

4 , , 2 2 2

2 2

2 2 ,

c
n s

n

n

n
s

n nf L s K c
a a c a a

n nc K c
c a a

n na K c
a c a a

ν

ν

ν

ν

ν

ν

ν β ν
−

∞

−
=

−
∞

−
=

−
∞

−
=

=

    
= − −           

   
−       

   

   ∂ +       ∂ 

ππ
π

π
π

π
π

  

∑

∑

∑



  (29) 

yields 

( ) ( )
2

2

22

2
1 2 2

1, 2 ,
2

DD

c
n D

n

mm K m n
n

β β
β

∞

=

  
=   

 π 
∑            (30) 

which is the Casimir force formula due exclusively to the thermal fluctuations. 
The final form of Equation (30) was obtained by means of the useful recurrence 
formula for Bessel functions, 

( ) ( ) ( )1 1
2 .K z K z K z
zα α α
α

− +− = −                 (31) 

For 4D = , we find 

( ) ( )
2

2

22

2 22 2
1 2

1, .
2

c
n

n

mm K m n
n

β β
β

∞

=

   
=   π 
   

∑             (32) 

Using Equation (21), we obtain the small-mass limit purely thermal Casimir 
pressure ( 1mβ  ) 

( )
2

2

4,0 ,
90

c
n β

β
=

π
                       (33) 

which is in accordance with the well-known Stefan-Bolztmann thermal radiation 
pressure result. This is a finite positive force per unit area which is more intense 
than vacuum radiation Casimir pressure for low values of β  (high-temperature 
or classical limit). 

If we plot the ratio between the thermal radiation pressure for the massive 
scalar field (Equation (32)) and the massless one (Equation (33)), as a function 
of the dimensionless parameter mβ , the normalized thermal Casimir force per 
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unit area ( ) ( )
2 2

, ,0c c
n nmβ β   presents the typical monotonically decreasing 

shape for increasing values of the parameter mβ . 
Finally, the formula 

( ) ( )
1 2

1 2

1 2

1 2

2
2 2
1 2

, 1 1 21 2

1
2 2 2 2

21 2 1 2
2

, 11 2 1 2

2
2 2 2 2
1 2 1 2

1 2
, 11 2 2 1 2

8 , , 2 2

2 2

2 2

c
n n s

n n

n n

n n

n nf L s
c a aa a

n n n nK c c
a a c a a

n n n nK c a
a a a c a a

ν

ν

ν

ν

ν

ν β ν

−
∞

=

−
∞

−
=

−
∞

−
=

    = − − +    

   
   ×

π π

π
+ − +

   
   

   ∂    × + + +

π

π
   ∂  
π



∑

∑

∑



2 2
1 2

2
1 2

1

2 ,
s

n nK c
a aν −

=

   × +   
π

    (34) 

or 

( )

( ) ( )

( )

1 2
1 2

1 2

2
2

2 2 2 2, 1 1 2

2 2 2 2
1 2 2 2 2 2

1 22 2 2 2
1 2 2

1
2

2 2 2 2 2 2
1 1 22 2 2 2 1, 1 21 2

1, , 4
2

1

1 ,

D
D

c
n n

n n

D

D

D
n n

mL m
n L n

D n L n
K m n L n

n L n

m n L K m n L n
n L n

β
β

β
β

β

β
β

∞

=

+
∞

−=


    =      +  


 − +

× +  + 


  
 − +  +  



π ∑

∑



 (35) 

gives the corrections to the Casimir pressure in a compact space in the presence 
of a massive scalar field heated at temperature 1 β . In order to obtain the final 
form of the above expression, we have used the recurrence formula given by 
Equation (31). Considering 4D = , we get 

( )
( ) ( )

( )
( )

1 2
1 2

1 2

2 2 2 2 2
2 2 2 21 2

2 1 222 2 2 2, 1
1 2

2 2
2 2 2 21

1 1 23
, 1 2 2 2 2 2

1 2

3, ,

,

c
n n

n n

n n

n L nmL m K m n L n
n L n

n Lm K m n L n
n L n

β
β β

β

β
β

∞

=

∞

=

 −  = − × +    +π





+ + 
+ 

∑

∑



   (36) 

which is valid for arbitrary values of m, L and β . Using Equation (21), we can 
show that in the small-mass case it reduces to 

( )
( )1 2

1 2

2 2 2 2
1 2

2 32 2 2 2, 1
1 2

32, ,0 ,c
n n

n n

n L nL
n L n

β
β

β

∞

=

−
−
π

=
+

∑              (37) 

where we have disregarded terms of ( )2m . The corresponding expression for 
Dirichlet boundary conditions can be obtained by substituting 2L a= . 
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To clarify our results, we can show that the small-mass limit given by Equa-
tion (37) can be written as 

( ) ( ) ( )
1 2 4

1, ,0 3 ,c
n n L f s

L
β ξ ξ ξ= +                  (38) 

where Lξ β=  and 

( ) ( )
( ) ( )1 2

4

2 22 2, 1
1 2

21 ,
8 n n

f
n n

ξ
ξ

ξ

∞

=

= −
 + 

π ∑               (39) 

( ) ( ) ( )
( ) ( )1 2

3 2
2

2 32 2, 1
1 2

21 .
n n

n
s f

n n

ξ
ξ ξ

ξ

∞

=

′= − =
π  + 

∑             (40) 

The function ( )f ξ  obeys the inversion symmetry formula, 

( ) 4 1 .f fξ ξ
ξ
 

=  
 

                      (41) 

This is an intriguing expression, known as temperature inversion symmetry, 
that enables us to obtain the low and high-temperature limits after simple alge-
braic manipulations, (see Refs. [14] [18] [55]-[61] for more details). Following 
[14], the particular low-temperature limit ( 1β  ) can be more easily performed 
after we compute the sum over index 1n  in Equation (39), 

( ) ( )
( )2 2 2

4 3 2
2

2 4 3 2 2
1 1 12 2 2 2

coth1 1 1 .
2 2 sinhn n n

n
f

n n n n
ξξ ξ ξξ

ξ

∞ ∞ ∞

= = =

π
ππ π

= − −∑ ∑ ∑    (42) 

In the limit 1ξ  , the approximations 

( )2coth 1,n ξ ≈π                        (43) 

( ) 2
2

1sinh e ,
2

nn ξξ π≈π                     (44) 

are valid. Substituting Equations (43) and (44) into Equation (42), and perform-
ing the sum over index 2n , we find, for 1ξ  , 

( ) ( ) ( )
2

4 3 2 2 43
2 1 e e .

90 2
f ξ ξζ ξξ ξ ξ ξ π π− − = − − + +

π


 π π
        (45) 

Inserting the above formula into Equation (38), we can show that 

( )
1 2

2
2

4 3

4, ,0 1 e .
290

c L
n n

LL
L

ββ
ββ β

π− 
= − + + 

π

 

π
π

            (46) 

In this sense, in the low-temperature limit ( L β ), collecting all the contri-
butions, the final form of Casimir pressure in the massless case reads 

( )
2

2
33 4 3

4, ,0 e .
30

c LL
L L

ββ
β

− ππ
− +

π
=                 (47) 

If we neglect the exponential factor, the Casimir pressure due exclusively to 
the vacuum fluctuations is dominant in this regime. 

The high-temperature limit is also easily found by means of the inversion 

https://doi.org/10.4236/jamp.2022.1012239


A. P. C. Malbouisson 
 

 

DOI: 10.4236/jamp.2022.1012239 3611 Journal of Applied Mathematics and Physics 
 

symmetry relation given by Equation (41). Applying this formula in Equation 
(45), we get 

( ) ( ) ( )
2

2 2 43 12 1 e e .
90 2

f ξ ξζ
ξ ξ ξ

ξ
− π− ππ

π π
 

= − − + + 
 

         (48) 

Substituting Equation (48) into Equation (38), we find 

( ) ( )
1 2

2 2
2

4 3 3 2

3 1 4 6 4, ,0 e .
30

c L
n n

L LL
L L L

βζ
β

ββ β β
π− 

= − − + + 


π
π 

π
π

       (49) 

Finally, in the high-temperature limit ( L β ), computing all terms, the final 
form of Casimir pressure is written as follows: 

( ) ( )2 2
2

33 4 3 3 2

3 1 4 6 4, ,0 e .
90

c LL LL
L L

βζ
β

ββ β β β
π−π π

π
 

= −
π

− + + 
 

       (50) 

Notice that if we neglect the exponential factor, the Casimir pressure for large 
temperature is given by the classical thermal radiation pressure ( )2 490βπ  plus 
a negative linear correction factor proportional to 1β − . 

5. Final Remarks 

In the present work, we investigate some aspects of the Casimir effect in the con-
text of nontrivial topologies. In particular, we revisited the Casimir effect for a 
massive scalar field in a heated compact space by means of the generalized Matsu-
bara formalism. The usual attractive response of quantum and thermal fluctua-
tions is obtained and our results are in accordance with those found in the lite-
rature. One may notice that all thermal contributions to the Casimir pressure, 
given by 

2

c
n  and 

1 2

c
n n , vanish in the zero-temperature ( β →∞ ) limit, remain-

ing the pure dependence on the distance L between plates, which has a well-known 
4L−  dependence in the small-L limit for a four-dimensional space. Also, the bulk 

limit L →∞  reduces all expressions in 4D =  to the Stefan-Boltzmann law 
4β − . 

A rather peculiar aspect of the generalized Matsubara formalism is related to 
the renormalization of the expressions. Usually, in the Casimir context, the diver-
gent terms are taken care of by subtraction of the bulk integral, without compacti-
fications (see [48]). Here, there is no need to do so, as was also remarked by Eli-
zalde and Romeo [47]. It is sufficient to obtain correct physical expressions to 
renormalize by subtraction the divergent term of the expansion of the Eps-
tein-Hurwitz zeta functions 

2c
dZ , as it does not depend on the physical parame-

ters L or β . 
We also remark that the expression we obtain from the toroidal formalism, 

which conveys periodic boundary conditions in the compactified dimensions, 
leads to corresponding ones for the Dirichlet conditions, by substituting 2L a= . 
The 4D = , small-L limit of the Casimir pressure in the nonthermal case, given 
by Equation (19) becomes 2 4

33 480a= −π  in the Dirichlet case for a quan-
tum scalar field. For an electromagnetic field, we have then twice that value, 

2 4
33 240a= −π , due to its two degrees of freedom. These are compatible with 
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the original Casimir results. 
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