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Abstract 
With the aim of building a more precise mathematical model of better pre-
dictability for the formation of the supernumerary rainbow and fogbow and 
seeking a clearer and more elaborate physical interpretation, this paper ex-
amines the relationship between different rainbow patterns and droplet sizes 
through both analytical derivation and numerical simulation and develops a 
much more detailed model beyond previous explanations. From Newton’s 
geometric model of optics to Young’s wave model, the paper first establishes 
a solid foundation for the understanding of the formation of the rainbow in 
nature and through human vision, and then goes on examining the interfe-
rences of light, finally applying the model in reality for a better understanding 
of complex rainbow phenomena, with additional analysis on an unexpected 
finding about the correspondence of maximum view angle and shortest light 
path through hypothetical explanation based on the principle of least time 
and simulation of an elliptical droplet. 
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1. Introduction 

Rainbows have long been appreciated as a marvel of nature too wondrous to be 
explained and understood by mankind. Yet, throughout history, there has always 
existed a small group of people unsatisfied with the idea that explained rainbow 
thinly by the advent of deity. From the science of human vision to the under-
standing of how light travels and behaves, the process of “unweaving the rain-
bow” has made its progress gradually. Sir Isaac Newton (Figure 1) provided us 
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with the first integrated theory of the rainbow [1]. The phrase “unweaving the 
rainbow” is coined by poet John Keats who defied Newton’s work of demystify-
ing the rainbow using science and therefore diminishing its wonder [2]. Never-
theless, the work of Newton offered that small group of people an explanation 
more than poetic. 

This paper aims to first provide its readers with a thorough exposition of the 
rainbow based on pre-Newton and Newton’s basic theory of geometric model of 
optics, elaborating on several key elements of how the rainbow is viewed in the 
way it is. Then the paper goes further beyond the geometric model to the wave-like 
description of optics, first developed by Thomas Young (Figure 2) [3], analyti-
cally and numerically deriving the superposition pattern of the rainbow and  

 

 
Figure 1. Isaac Newton. 

 

 

Figure 2. Thomas Young. 
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offering a satisfactory explanation of the less commonly seen but more myste-
rious optical phenomena: the supernumerary rainbow and the fogbow. Finally, 
examining an interesting coincidence that arises during the course of this work, 
the paper will offer an insight into the relation between the geometric model and 
the wave model primarily based on path integral developed by Richard Feynman 
[4]. 

2. Geometric Model 

This section of the paper provides the basic principles of the rainbow based on 
the geometric model of optics. Beginning with a brief overview based on ray 
tracing within a single droplet, the paper then goes deeper explaining the math 
behind the visual characteristics of the rainbow, and finally moves to explain the 
relationship between the optical pattern formed by a single droplet and the rain-
bow by a collection of droplets from the observer’s perspective. 

2.1. Single Droplet Model 

The formation of the rainbow has several requirements: First, the sun has to be 
at the back of the observer; second, there must be water droplets in front of the 
observer; third, there’s no obstruction to the light path. These ingredients must 
all be present because the rainbow is essentially formed by the light coming from 
the back of the observer passing through a collection of droplets ahead of the 
observer, then raying back to the observer’s eyes after dispersion (two times of 
refraction and one time of reflection) through droplets. 

Figure 3 [5] provides the basic settings of a single droplet model, labeling va-
riables that are used throughout the paper. 

Since the refractive index of water changes with the wavelengths of light, sun-
light (white light) undergoes so-called dispersion through the droplet. Disper-
sion is essential to the manifestation of a rainbow. For every single droplet, as 
parallel light rays of each wavelength hit the droplet (with the sun seen as an  

 

 
α : incident angle; β : refracted angle; r: droplet radius; h: height, relative position of the 
incident ray; x: sinα , which can also be understood as the ratio of height h to radius r; 
λ : wavelength; n: refractive index in water; θ : view angle, angle between the incident 
ray into the droplet and the exit ray out of it. 

Figure 3. Single droplet model. 
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infinitely distant point source), the view angle θ  is expressed as a function of x, 
the sin of incident angle α , in [EQ-view angle], as derived through basic geo-
metric skills and trigonometry, presented in Figure 3. As shown in Figure 4, the 
function first increases and then decreases. The maximum view angle 0θ  cor-
responds to 0x . 

[EQ-view angle] 

( ) 4arcsin 2arcsinxx x
n

θ = −                    (1) 

2.2. Maximum View Angle 

Since the view angle θ  changes at a low rate when x is close to the critical value 

0x , as shown in Figure 4, the exit rays from the droplet concentrate at the 
maximum view angle 0θ , as demonstrated in Figure 5. Therefore, it is typically 
mostly the exit light at the maximum view angle that is visible to the naked eye. 

Light rays of different wavelengths have different refractive index in water and 
thus will exit from the droplet at different values of the maximum view angle. 
Figure 5 only displays the rays of a specific wavelength ( 0.45 mλ = µ , with re-
fractive index 1.34055n = ) entering the droplet through the upper half, since 
these rays are the ones typically responsible for forming the rainbow to the ob-
server. The 3D spherical construction of the same droplet could easily be gener-
ated by rotating the 2D circle about the horizontal axis passing through the cen-
ter of the droplet. Thus, light rays of a single wavelength from a droplet form a 
cone in 3D space, with a concentration of light at the outermost layer of the cone, 
corresponding to the maximum view angle, as shown in Figure 6. Overlaying 
the cones of the exit rays of different wavelengths together produces a super cone, 
within which the superposition of light of all wavelengths forms a white color. 
Individual colors only appear at the outermost layers of each cone that makes up 
the super cone, due to the concentration of exit light at the maximum view an-
gle. 

 

 
Figure 4. View angle function graph (wavelength 0.45 mλ = µ , refractive index 

1.34055n = , radius 10 mr = µ ). 
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[Footnote: This paper relies on Mathematica for generating interactive demonstrations, 
of which we display some representative snapshots as figures in the paper. The code in-
corporates arrays matching the different wavelengths to their refractive index in water, 
using an RGB color scheme so that the generated graphs match exactly with the real sce-
nario. The interactive programs allow users to independently choose different initial pa-
rameters and generate the outcomes. The program can be accessed through Mathemati-
ca’s published pages, at the following URL  
https://www.wolframcloud.com/obj/ariel110911091109/Published/Unweaving the Rain-
bow by Ariel Wu.nb.] 

Figure 5. Maximum view angle. 
 

 
Figure 6. Single cone model. 

2.3. Observer’s Perspective 

From the above account, a single droplet can form a rainbow-like pattern by 
projecting its exit light on the wall. Yet, it is still not the same as the natural 
phenomenon of a rainbow, which is formed by light directly beaming into the 
observer’s eyes rather than a projection, and as such it requires a collection of 
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droplets rather than a single one. The reason why the real rainbow looks exactly 
like the rainbow-like pattern formed by a single droplet is that the sight angle 
θ ′  [angle between sunlight and the angle of sight] is essentially the same as 
view angle θ  due to simple geometry. Thus, the cone of sight from the observ-
er is no different than the cone of exit light from every single droplet, except the 
former receives light while the latter generates light. The cone of sight gives rise 
to the rainbow viewed by each observer individually. At each sight angle θ ′  
matching with a maximum view angle θ  for light of a certain wavelength, the 
observer sees the corresponding exit light coming from all the droplets aligned at 
the angle of sight (again, a cone). A row on the cone is shown in Figure 7 to 
demonstrate the idea. 

The following sections of the paper will not specifically distinguish between 
view angle θ  and sight angle θ ′  since they are essentially equivalent to each 
other. 

3. Wave Model 

The above analysis is still all based on the geometric model of optics. Though it 
satisfactorily explains the formation of a typical rainbow, for more complex 
phenomena such as supernumerary rainbow and fogbow, shown in Figure 8 and 
Figure 9, the geometrical model is not adequate [6]. Not until Thomas Young’s 
wave theory of light was introduced and validated, did these phenomena become 
understood as resulting from the superposition of light (electromagnetic) waves. 
Through analytical and numerical modeling, the superposition pattern is found 
to depend on the size of the droplet, giving a more quantitative and precise ac-
count of the more complex realizations of the rainbow. 

3.1. Light Path and Phase Change 

The use of wave theory requires the calculation of the phase change for each  
 

 
Figure 7. Observer model. 
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Figure 8. Supernumerary rainbow. 

 

 

Figure 9. Fogbow. 
 

 
Figure 10. Phase change graph. 

 
incident ray, shown in Figure 10 [7], which is later used for deriving the super-
position pattern of higher order maxima. Here, the path distance is defined as 
the index of refraction times the distance that light travels; the phase change is 
the path difference times 2 λπ . Notice that the path distance here is defined by 
comparing two light rays both entering and exiting the droplet along parallel di-
rections. 
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outd -path distance outside the droplet 

( )2 cosoutd r r α= −  

ind -path distance inside the droplet 

4 cosind r β=  

outφ -phase change outside the droplet 

( )2 2 2 cosout outd r rφ α
λ λ
π π

= = −
 

inφ -phase change inside the droplet 

2 2 4 cosin innd n rφ β
λ λ
π π

= =
 

( )xφ  -overall phase change 
[EQ-overall phase change] 

( ) ( )2 2 24 1 1 2rx x n xφ
λ

 = π − − + − 
 

              (2) 

[EQ-overall phase change] gives the overall phase change φ  of an incident 
light wave expressed in terms of x. As x increases, the overall phase change φ  
first decreases and then increases, as shown in Figure 11. Interestingly, the 
minimum of the overall phase change (same for the overall path distance) cor-
responds to the light path of the maximum view angle. This intriguing corres-
pondence will be explored further in section 4. 

3.2. Superposition (Analytical) 

In order to derive the superposition pattern, we want to identify the incident 
light waves that come out at the same view angle—the same angle viewed by the 
observer’s eye—and then check if the corresponding exit light waves interfere 
constructively or destructively. 

To reach the first goal, we have to calculate the two solutions for the same 
view angle using [EQ-view angle]. For the convenience of calculation, we ex-
pand the expression for the maximum view angle into a Taylor series up to the  

 

 
Figure 11. Overall phase change function graph (wavelength 0.45 mλ = µ , refractive in-
dex 1.34055n = , radius 10 mr = µ ). 
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3rd order as [EQ-view angle Taylor Series]. As explained in the first section, the 
closer to the maximum view angle, the more intense the exit light. Thus, we jus-
tify the approximation by assuming that only exit rays not too far from the 
maximum view angle contribute to the part of the supernumerary rainbow via 
superposition. 

[EQ-view angle] 

( ) 4arcsin 2arcsinxx x
n

θ = −                    (3) 

[EQ-view angle Taylor Series] 

( )

( )

( )
( )

( ) ( ) ( )( )

0
0 0

0 2 2 2

2

0

2

0 3
2 2

2
0 0 0

4arcsin 2arcsin

4 2 0
1

4
3

9 4
2

1

1
2

x
x x

n

x
n x x

nx

nx
n

x x x x x

θ

θ

θ

θ θ θ

= −

′ = − =
− −

−
=

−′′ = −
−

′′≈ + −
 

( )
( )

( )
2

20
0 03

2 2

9 44arcsin 2arcsin
4 1

x nx x x x
n

n
θ  


−

≈ − − −
−


 

         (4) 

Since the view angle function can be approximated as a quadratic function 
near its maximum, the two solutions of a certain view angle below the maximum 
are symmetric with respect to 0y x= . Thus, we find that the two incident light 
entering the droplet at 0x x+ ∆  and 0x x− ∆  have the same view angle, shown 
in [EQ-same view angle]. 

[EQ-same view angle] 

( ) ( )0 0x x x xθ θ+ ∆ = − ∆                      (5) 

For the second part of the calculation—determining whether the two light 
waves existing at the same view angle interfere constructively or destructive-
ly—we have to use the function describing the overall phase change. If the two 
light waves differ in phase by an integer multiple of 2π, they will interfere 
constructively. Again, using Taylor Series to its third order for the overall phase 
change function [EQ-overall phase change], we get [EQ-overall phase change 
Taylor Series]. 

[EQ-overall phase change] 

( ) ( )2 2 24 1 1 2rx x n xφ
λ

 = π − − + − 
   

[EQ-overall phase change Taylor Series] 
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( ) ( ) ( ) ( )3 2
0 0 0 0

1 12
3 2

rx x x x x x xφ φ θ θ
λ

  ′′ ′′≈ − π − + −  
  

        (6) 

We want to compute the difference in the overall phase change of the two 
light waves that exit at the same view angle. As we have already found out, the 
light entering at 0x x+ ∆  and 0x x− ∆  will exit at the same view angle. After 
plugging the same two values into the overall phase change function, we can 
calculate their difference and figure out the result under the condition that the 
difference is an integer multiple of 2π, shown in [EQ-phase change difference]. 

[EQ-phase change difference] 

( ) ( ) ( ) [ ]3
0 0 0

22 2 integer
3

rx x x x x xφ φ θ
λ

  ′′+ ∆ − − ∆ = − π ∆ = π  
  

     (7) 

Since we want to find out how the view angle is dependent on the size of 
droplet, we can substitute 3x∆  in [EQ-phase change difference] by deriving it 
from the view angle function [EQ-view angle Taylor Series] we already have 
and get the final expression of view angle in terms of the droplet size. 

[EQ-correlation between view angle and droplet size] 

( ) ( ) ( )( )

( )
( ) ( )( )

( )

[ ] ( )
( ) ( )( )

( )

2
0 0 0

3
2

3 03
0

0

3
2

0
0

0

1
2

2

22integer
3
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x x
x x x

x

x xr x
x

θ θ θ

θ θ

θ

θ θ
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λ θ

′′− ≈ −

 −
 − = ∆ ≈
 ′′ 
 

 −   ′′  ≈ −     ′′   
   

( ) ( ) ( )( ) [ ]
2

1 23
3 30 0

3 integer
4 2

r x x
r
λθ θ θ  ′′≈ −  

 
            (8) 

Thus, at a certain wavelength, the view angle for the constructive interference 
(corresponding to a maximum of the supernumerary) can directly be expressed 
as a function of the droplet radius. 

3.3. Superposition (Numerical) 

The numerical treatment of the same problem is more accurate than the Taylor 
Approximation. In addition, it is able to not just be restricted to conditions of 
constructive (or destructive) interference, but can rather generate a more complete 
superposition pattern based on the continuous phase change difference ΔΦ for each 
pair of incident rays in general. We take the same values of both the wavelength of 
the incident light and the corresponding refractive index as used previously (wave-
length 0.45 mλ = µ , refractive index 1.34055n = , radius 10 mr = µ ). 

First, to find the two light waves that exit the droplet at the same view angle, 
we generate a pair of solutions (in terms of x) for each input value of the view 
angle. Instead of approximating the function as symmetric around the maxi-
mum, we can generate the exact values of the two solutions 1x  and 2x , as shown 
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in Figure 12. 
The range of view angles is restricted from 0.6 radian to its maximum 0.714 

radian since light coming out at an even lower view angle would be too weak to 
be seen. Here, we insert 1x  and 2x  respectively into the expression for the over-
all phase change and then calculate the difference for the two light waves that 
come out at the same view angle. 

Again, if the phase change difference is an integer multiple of 2π, then the two 
light waves must add up as constructive interference maxima. Yet, instead of 
only matching the values to the condition of constructive interference, we con-
struct a function to examine the variation of phase difference, which also pro-
vides a complete view of the superposition pattern around the maximum view 
angle, as expressed in [EQ-superposition cos function]. 

[EQ-superposition cos function] 

( ) 1cos
2

f x φ= ∆
 

The function graph of 1cos
2

φ∆  is generated as the function of the view angle  

θ , shown in Figure 13. The peak represents the central maxima of constructive 
interference, the zero represents the minima of destructive interference, and  

 

 
Figure 12. Numerical solutions for incident lights. 

 

 
Figure 13. Superposition cos function graph. 
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the trough that could occur at a view angle lower than 0.6 radian represents the 
first order maxima. Each plot point can be traced back to a certain view angle 
input in the first step, thus describing a complete superposition pattern. 

4. Interesting Correspondence 

An interesting observation was made during the course of this analysis. As sug-
gested above, the light path that exits the droplet at the maximum view an-
gle—the light path most visible to the naked eye due to concentrated intensi-
ty—happens to be the one with the shortest path distance and thus the shortest 
travel time. 

4.1. The Phenomenon 

With the functions of the view angle and the light path compared in Figure 14, 
it appears that the two extrema are coincident (sane value of x), more apparently 
shown by the relationship that the two derivatives are the multiple of each other. 

Fermat’s Principle claims that light travels along the path that takes the short-
est time in geometric optics, which is a classical approximation of Feynman’s 
quantum mechanical path integral approach [8]. While the principle of least 
time is responsible for explaining why each individual light ray follows its path 
through the droplet, it still can’t explain why collectively light rays concentrate at 
the maximum view angle, which is the shortest light path among all possible. 

The path integral formulation gives a deeper explanation for the unique light 
path in the classical model. It states that each and every possible path contributes  

 

 
Figure 14. View angle function & path distance function. 
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to the overall result of light amplitude, and the largest contribution comes from 
the classical path. 

4.2. Hypothetical Explanation 

This paper offers a hypothetical explanation of the above phenomenon again 
using Feynman’s path integral approach [4]: all light incidents into the droplet 
constitute another path integral. The light paths that contribute the most to the 
overall light wave propagating through the droplet gather at the maximum view 
angle. Overall, the path integral method is used twice, the first one decides the 
light path of each light ray, and the second one decides the concentration of light 
paths among all possible. 

The paper examines the phenomenon in an elliptical droplet using the same 
approximation for light rays entering and exiting the droplet parallel (the condi-
tion for interference) [9]. The simulation indicates that there is still a maximum 
view angle where all light is concentrated, as shown in Figure 15; however, as 
the view angle increases and then decreases with the increase of entering height, 
the path distance increases only, which should be intuitive with the shape of ellipse. 
This indicates that the spherical-shaped droplet is unique in the phenomenon. 

5. Conclusions and Discussions 

This section of the paper offers the final conclusions from the above research 
and proposes some potential questions to it. 

5.1. Physical Interpretation 

This section offers a physical interpretation of the mathematical results derived  
 

 
Figure 15. Elliptical droplet. 
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above and explains the formation of the supernumerary rainbow, the fogbow, 
and the typical rainbow. Superposition of light waves is always present; however, 
whether it is visible to the human eye primarily depends on the droplet size. 

[EQ-correlation between view angle and droplet size] 

( ) ( ) ( )( ) [ ]

( )

( )
( )

2
1 23
3 30 0

2

0

0
0 0

2

0 3
2 2

3 integer
4 2

4with
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4arcsin 2arcsin

9 4
2

1

r x x
r

nx

x
x x

n
nx

n

λθ θ θ

θ

θ

 ′′≈ +  
 

−
=

= −

−′′ = −
−

 
Applying the final analytical result of the superposition pattern in [EQ-cor- 

relation between view angle and droplet size]—view angle expressed in terms 
of droplet radius—we first insert a specific wavelength and its corresponding re-
fractive index into the expression (again, wavelength 0.45 mλ = µ , refractive in-
dex 1.34055n = ), the pattern of which essentially represents that of the entire 
visible spectrum of continuous wavelengths. Here, we generate the following equ-
ations for first, second, and third order maxima respectively, shown as [EQ-1st, 
2nd, and 3rd maxima view angle for special values]. 

[EQ-1st, 2nd, and 3rd maxima view angle for special values] 

first order maxima: ( )
2
30.71546 0.65691r rθ

−
≈ −  

second order maxima: ( )
2
30.71546 1.04278r rθ

−
≈ −  

third order maxima: ( )
2
30.71546 1.36643r rθ

−
≈ −  

Since this is a model applied to the real world, we look at the droplet sizes that 
can be formed in reality [10]. The droplets can be classified into four types ac-
cording to their sizes, shown in Figure 16. 

With the range of droplet size known, we can generate function graphs for 
the first, second, and third order maxima view angle respectively according to  

 

 
Figure 16. Droplet size classification. 
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[EQ-1st, 2nd, and 3rd maxima view angle for special values]. Separating the 
range into 10 - 100 μm, 100 - 300 μm, and 300 - 1000 μm, we can see how the 
view angles of the first three orders of maxima are getting larger and larger, and 
therefore closer and closer to the maximum view angle (at central maxima). How-
ever, the rate of increase is getting much and much slower, that the first 100 μm 
of change in radius generates most of the change in view angle through the en-
tire range, shown in the change of function value in Figure 17. 

 

 
Figure 17. 1st, 2nd, and 3rd maxima view angle from 10 - 100 μm, 100 - 300 μm, 300 - 1000 μm. 
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We can also use the numerical treatment, which generates the complete pat-
tern of superposition with each different radius value input. Here, Figure 18 shows 
the complete superposition pattern of 10 mr = µ , 100 mr = µ , and 300 mr = µ  
at view angle from 0.600 to 0.714. While the 10 μm droplet radius case does not 
even reach its first order maxima within the view angle range, the 100 μm drop-
let radius case already reaches its fifth maxima and the 300 μm one even more. 

With the superposition patterns of different droplet sizes generated above, we 
can now try to understand how our model explains the physical characteristics 
of different phenomena. For the superposition pattern to be visible (assuming 
there is no obstruction to sight) by the naked eye, two conditions need to be met: 
1) the higher order interference pattern can not be too close to the central max-
ima to be distinguished; 2) the higher order interference pattern can not be too 
far from the central maxima or the light would be too weak. 

To meet the first condition, the view angle difference between the first order 
maxima and the central maxima has to exceed the view angle difference of the 
rainbow’s two fringes (that is to say, the angle of the first order red has to exceed 
that of the primary violet, with red light of wavelength 0.65 mλ = µ  and refrac-
tive index 1.33257n = , and violet light of wavelength 0.40 mλ = µ  and refrac-
tive index 1.34451n = ). Inputting the parameters, the view angle difference of 
red light and violet light has a view angle difference of approximately 0.03 radian. 

 

 
Figure 18. Superposition pattern at view angle 0.600 - 0.714 radian (maximum view an-
gle), for 10 mr = µ , 100 mr = µ , and 300 mr = µ . 
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This means that the light has to have a view angle smaller than 0.684 radian in 
our case, which, as shown in Figure 17 directly, is only possible when the radius 
of the droplet is smaller than 100 μm. Thus, any rainbow generated by droplets 
with a radius larger than 100 μm will have its first and second order of maxima 
all overlapped with the central maxima and thus can not be seen directly—which 
is how a typical rainbow is generated. If the droplet radius almost meets the 
condition and does not generate the first maxima completely overlapped with 
the central maxima, a partial overlap of light at the fringe can be seen, as shown 
in Figure 8 that a purple-pink color is generated by the overlapping of violet 
light of the central maxima and the red light of the first order maxima. 

Then, to meet the second condition, the first maxima can not be too far away 
from the maximum view angle, or the light would be too weak. As stated above, 
generally, the closer to the maximum view angle, the stronger the light intensity. 
Sometimes, when the light intensity is enough and there’s no obstruction, a visi-
ble but vague supernumerary rainbow can be generated with a fogbow, as shown 
in Figure 9. The white color of the fogbow is also due to the small size of the 
droplet. With a very small droplet, the pattern of central maxima is very wide 
extending to the far first order minimum, analogous to the results from the sin-
gle slit experiment. This is shown in Figure 18: the data points are severely more 
concentrated at first, which traces back to a larger difference with the maximum 
view angle at the first place. As the sunlight disperses into the light of different 
wavelengths, the two very wide central maxima can overlap too much to be dis-
tinguishable; while if the central maxima are narrow in the case of a droplet of a 
larger radius, the light of different lengths is still distinguishable from each oth-
er. In detail, whether the two over can still be distinguished is based on Rayleigh 
Criterion [11]. A schematic diagram is shown in Figure 19. 

5.2. Remained Questions and Future Plan 

Several topics are in the plan for further exploration. While the paper offers a 
generalized simulation upon elliptical droplets, the result of the simulation is 
expected to be highly dependent on the parameters (axis length, the rotational 
angle of the ellipse) of the droplet. And since in reality non-elliptical droplets 
usually do not show a unified and stabilized pattern collectively, they often do 

 

 
Figure 19. Contrast between the overlapping of wide and narrow central maxima. 
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not generate a significant visible pattern to the observer. 
Also, the paper has not yet included the density and the change of density of 

droplets as a function of altitude, which also affects light intensity in reality. As 
the research goes on, more and more factors should be included in the model in 
order to simulate reality more precisely. 

Another topic worth more discussion is the correlation between the path dis-
tance of light and the concentration of light. While the paper offers a possible 
explanation based on path integral, a theoretically valid solution should be fur-
ther explored in future research. 
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