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Abstract 
In this paper, we propose a fully decoupled and linear scheme for the magne-
tohydrodynamic (MHD) equation with the backward differential formulation 
(BDF) and finite element method (FEM). To solve the system, we adopt a tech-
nique based on the “zero-energy-contribution” contribution, which separates 
the magnetic and fluid fields from the coupled system. Additionally, making 
use of the pressure projection methods, the pressure variable appears expli-
citly in the velocity field equation, and would be computed in the form of a 
Poisson equation. Therefore, the total system is divided into several smaller 
sub-systems that could be simulated at a significantly low cost. We prove the 
unconditional energy stability, unique solvability and optimal error estimates 
for the proposed scheme, and present numerical results to verify the accuracy, 
efficiency and stability of the scheme. 
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1. Introduction 

The MHD system, consisting of the Navier-Stokes equation and Maxwell’s equa-
tion [1] [2], is widely applied into plasma and liquid metal processing, and its 
numerical simulation is also of great importance [3] [4]. The incompressible 
MHD system reads as  

1 ( ) ( ) 0,t
−∂ + ∇× ∇× − ∇× × =H H u Hµ σ µ            (1.1) 

( ) 0,t p∂ + ⋅∇ − ∆ +∇ + × ∇× =u u u u H Hν µ            (1.2) 
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0,∇⋅ =u                        (1.3) 

over (0, ]TΩ× , where Ω  is a bounded and convex polyhedral domain in 3  
(polygonal domain in 2 ). In the above system, unknowns ,H u  and p denote 
the magnetic filed, the velocity field, and the pressure, respectively. Coefficient 
σ  denotes the magnetic Reynolds number, ν  is the viscosity of the fluid and 

2 1M −=µ νσ , where M is the Hartman number. All the constants here are posi-
tive. The initial data and boundary conditions are as follows  

=0 0 =0 0| , | , in ,t t= = ΩH H u u               (1.4) 

0, 0, on (0, ].T× = = ∂Ω×H n u             (1.5) 

We assume that the initial data satisfies  

0 0 0.∇⋅ = ∇ ⋅ =H u                    (1.6) 

Taking divergence of (1.1) leads to 0∇⋅ =H  for all 0t > . 
There are already many works dedicated to theoretical analysis of the MHD 

equations [5] [6] [7]. For the numerical schemes of MHD system, since the weak 
solution of the system lies in 1( )H Ω  space, much research work is devoted to 
the application of 1( )H Ω  conforming elements. Li et al. used 1( )H Ω  conform-
ing elements in the constrained transport type framework and reconstructed a 
completely non-divergence magnetic field. Gunzburger et al. studied the ap-
proximation method of finite element and described three iterative methods for 
solving finite element model. By using 1( )H Ω  conforming element, the optim-
al error estimates for stationary MHD systems are analyzed [8]. He et al. ex-
tended this result to the time-dependent MHD model [9]. More research work 
on 1( )H Ω  conforming elements can be seen in [10] [11] [12] [13]. 

There are increasing interests devoted to the design of temporally discrete 
schemes for the MHD system recently. By combining the projection method of 
Navier-Stokes equations with some subtle implicit and explicit techniques on 
nonlinear coupling terms, Zhang et al. developed a linear and fully decouple 
first-order time advance scheme for solving MHD equations, and established un-
conditional energy stability and strict error estimates for the scheme [14] theo-
retically. Yang et al. proposed a second-order fully decoupled unconditional ener-
gy stabilization finite element algorithm for the incompressible MHD equation 
[15]. Li et al. proposed a stable mixed finite element method for solving three- 
dimensional incompressible MHD equations, and gave an iterative format for 
discrete problems with its adaptability. This method can guarantee long time 
stable simulation and allow large time step simulation [16]. Wang et al. designed 
a second-order accurate, fully discrete numerical scheme based on the decoupled 
Crank-Nicolson method and 1( )H Ω -conforming finite element for the MHD 
system, and proved the unconditional energy stability, unique solvability and 
optimal error estimates [17]. 

A lot of work has been done to improve computational efficiency by dealing 
with nonlinear and coupled terms. In general, as long as the system of the PDE 
system is energy-stable, one would like to maintain stability in the design of nu-
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merical schemes. Therefore, a common approach is to linearize the nonlinear 
terms using implicit-explicit technique, that is, using a combination of interpo-
lation and extrapolation. It can lead to a linear system with variable coefficients, 
which thus avoids the introduction of additional methods such as Newton’s iter-
ative methods in solving the nonlinear discrete system. As a result, the computa-
tional efficiency is indeed improved without affecting the unconditional energy 
stability and accuracy. Furthermore, in the MHD equations, ( )⋅∇u u ,  

( )× ∇×H H  and ( )−∇× ×u H  would vanish by taking inner products with 
some appropriate terms in the energy stability analysis, which is so called the 
“zero-energy-contribution” property. Based on this, Yang [18] proposed a fully 
decoupled, second-order temporally accuracy scheme for a binary fluidsurfac-
tant phase-field model, and proved the energy stability of the numerical scheme. 
Chen et al. proposed two completely discrete time propulsion schemes, which 
are linear, decoupled, unconditionally energy stable and second-order. The ener-
gy stability of discrete problems was proved [19]. The above method can gener-
ate more smaller subsystems than existing methods, so the application of it also 
allows us to employ finer grids, which means it is possible to obtain more accu-
rate results. In particular, the incompressible MHD equation has been solved by 
this method in [20]. More work on the “zero-energy contribution” property can 
be seen in [21] [22] [23] [24] [25] and so on. It is noted that these works only 
demonstrate the accuracy through numerical examples without rigorous theo-
retical analysis, while we manage to fill in this gap this time. 

In our work, we design a fully decoupled scheme with the FEM and a second- 
order BDF, and give a rigorous proof of unconditional energy stability, unique 
solvability and optimal rates of convergence. We adopt 1( )H Ω  conforming 
elements to solve MHD system (1.1)-(1.3). The pressure projection method 
combined with the second-order BDF is utilized in temporal discretizations, and 
the nonlinear terms are treated as the explicit way based on the “zero-energy- 
contribution” terms, which ensures the discrete system to be linear and fully de-
coupled. We prove the unconditional energy stability, and then the correspond-
ing homogeneous equations only admit zero solutions, which leads to the unique 
solvability immediately. In practical computation, instead of solving the whole 
system together, we implement the discrete scheme step by step. Therefore, we 
could utilize the conjugate gradient method to calculate the magnetic and veloc-
ity fields, which is significantly efficient, and the pressure field is obtained by 
solving a Poisson-type equation. Compared with the original system, the sizes of 
each matrix in actual calculation are much smaller. All these features make this 
method possess higher efficiency and finer mesh than the traditional pressure 
projection method. In addition, we provide the rigorous proof analysis for the 
numerical scheme with errors 1 2( )rO h + +τ  in 2(0, ; ( ))T L∞ Ω -norm, where h 
and τ  are the spatial and temporal sizes respectively, and r is the degree of the 
polynomial functions. 

The organizational structure of this paper is as follows. In Section 2, we in-
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troduce variational formulation of the MHD system, and propose a fully de-
coupled discrete scheme based on the second-order BDF-FEM. In Section 3, we 
provide the theoretic results of the energy stability, unique solvability and op-
timal error estimates for the numerical scheme. Finally, in Section 4 some nu-
merical examples are illustrated to verify the accuracy, efficiency and stability. 

2. Variational Formulation and Numerical Scheme 
2.1. Variational Formulation 

We adopt the conventional Sobolev space , ( )k pW Ω  of functions defined on Ω  
for 0k ≥  and 1 p≤ ≤ ∞ , and denote 0,( ) ( )p pL WΩ = Ω  and  

,2( ) ( )k kH WΩ = Ω . Then we take the notations 1,
0 ( )pW Ω  representing the space 

of functions in 1, ( )pW Ω  with zero traces on the boundary ∂Ω , and naturally 
1 1,2
0 0( ) : ( )H WΩ = Ω . The corresponding vector spaces are given by  

, ,

1, 1, 1 1,2
0 0 0 0

1 1

( ) [ ( )] , ( ) [ ( )] ,
( ) [ ( )] , ( ) ( ),

( ) { ( ) : | 0},

p p d k p k p d

p p d

L W
W

∂Ω

Ω = Ω Ω = Ω
Ω = Ω Ω = Ω

Ω = ∈ Ω × =

L W
W H W
H v H v n

 

where d is the dimension of space. As usual ( , )⋅ ⋅  denotes the inner product of 
2 ( )L Ω . 
Consequently, we obtain that the exact solutions of (1.1)-(1.3) satisfy  

1( , ) ( , ) ( , ) 0,t
−∂ + ∇× ∇× − × ∇× =H w H w u H wµ σ µ        (2.1) 

( , ) ( , , ) ( , ) ( , ) ( ( ), ) 0,t b p∂ + + ∇ ∇ − ∇ ⋅ + × ∇× =u v u u v u v v H H vν µ    (2.2) 

( , ) 0,q∇⋅ =u                        (2.3) 

for any test functions 1 1 2
0 0( , , ) ( ( ), ( ), ( ))q L∈ Ω Ω Ωw v H H . The trilinear operator 

( , , )b ⋅ ⋅ ⋅  is defined as  

1
0

1( , , ) : ( , ) (( ) , )
2

1 [( , ) ( , )], , , ( ),
2

b = ⋅∇ + ∇ ⋅

= ⋅∇ − ⋅∇ ∀ ∈ Ω

u v w u v w u v w

u v w u w v u v w H
      (2.4) 

and then it is natural that  
1
0( , , ) 0, , ( ).b = ∀ ∈ Ωu v v u v H                 (2.5) 

In order to treat the nonlinear term explicitly and ensure the energy stability, 
we introduce the function of “zero energy contribution”, which is defined as  

0( , ) ( ( ), ) ( , , ) 0, and 1.tQ b Q= − × ∇× + × ∇× + ≡ =u H H H H u u u uµ µ  (2.6) 

and then rewrite the Equations (2.1)-(2.3) as follows  
1( , ) ( , ) ( , ) 0,t Q−∂ + ∇× ∇× − × ∇× =H w H w u H wµ σ µ       (2.7) 

( , ) ( , , ) ( , ) ( , ) ( ( ), ) 0,t Qb p Q∂ + + ∇ ∇ − ∇ ⋅ + × ∇× =u v u u v u v v H H vν µ  (2.8) 

( , ) 0,q∇⋅ =u                         (2.9) 

for any test functions 1 1 2
0 0( , , ) ( ( ), ( ), ( ))q L∈ Ω Ω Ωw v H H . The variational Formu-

lation (2.7)-(2.9) will be studied in this paper later. 
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2.2. Numerical Discretization 

In this subsection, we propose a fully discrete decoupled finite element method 
for solving the system (1.1)-(1.3). Let hℑ  denote a quasi-uniform partition of 
Ω  into tetrahedrons jK  in 3  (or triangles in 2 ), 1,2, ,j M= 

, with 
mesh size { }1max diamj M jh K≤ ≤= . To approximate u  and p in the system 
(1.1)-(1.3), we introduce the Taylor-Hood finite element space h hM×X , de-
fined by  

1
0

2
1

{ ( ) : | ( )},

{ ( ) : | ( ), d 0},
j

j

h h h K r j

h h h K r j h

K

M q L q P K q x− Ω

= ∈ Ω ∈

= ∈ Ω ∈ =∫

l lX H P
 

for any integer 2r ≥ , where ( )r jP K  is the space of polynomials with degree r 
on jK  for all j hK ∈ℑ  and ( ) : [ ( )]d

r j r jK P K=P . To approximate the magnetic 
field H , we introduce the finite element space hS  defined by  

1{ ( ) : | ( )}.
jh h h K r jK= ∈ Ω ∈w wS H P  

Let 0{ }N
n nt n == τ  be a uniform partition of the time interval [0, ]T , and  

/T N=τ  denotes the temporal step size. Furthermore, nv  represents the value 
of ( , )nv x t , and we adopt the abbreviation  

1 1: 2 .n n nv v v+ −= −  

Additionally, we adopt the following notations:  

1 1

1

3 12
2 2 ,

n n n
h h h

n
t h

v v v
D v

+ −

+
− +

=
τ

 

where v could be an arbitrary function except that 1ˆ n
h
+u , 1n

h
+R u  and 1ˆne +

u , for 
which we denote by  





1 1
1

1 1
1

1 1
1

ˆ3 4ˆ ,
2

3 4
,

2
ˆ3 4ˆ .

2

n n n
n h h h

t h

n n n
n h h h

t h

n n n
n

t

D

D

e e e
D e

+ −
+

+ −
+

+ −
+

− +
=

− +
=

− +
= u u u

u

u u u
u

R u R u R u
R u

τ

τ

τ

 

Thus, we propose a fully decoupled discrete scheme with FEM and BDF for 
the incompressible MHD Equations (1.1)-(1.3) that, find 1n

hQ +  and  
1 1 1 1ˆ( , , , ) ( , , , )n n n n

h h h h h h h hp M+ + + + ∈H u u S X X  such that  
1 1 1 1 1

1 1 1

( , ) ( , ) ( , )

( , ) 0,

n n n
t h h h h h h

n n n
h h h h

D

Q

+ − + − +

+ + +

+ ∇× ∇× + ∇ ⋅ ∇ ⋅

− × ∇× =

H w H w H w

u H w



µ σ σ

µ
    (2.10) 

1 1 1 1 1

1 1 1

ˆ ˆ( , ) ( , , ) ( , ) ( , )

( ( ), ) 0,

n n n n n n
t h h h h h h h h h h

n n n
h h h h

D Q b p

Q

+ + + + +

+ + +

+ + ∇ ∇ − ∇ ⋅

+ × ∇× =

u v u u v u v v

H H v

 

 

ν

µ
    (2.11) 

1 1
1ˆ 2( , ) ( , ) 0,

3

n n
n nh h

h h h hp p
+ +

+−
− − ∇ ⋅ =

u u
s s

τ
           (2.12) 

1( , ) 0,n
h hq+∇ ⋅ =u                       (2.13) 
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1 1 1 1 1 1 1

1 1 1

ˆ( , ) ( ( ), )
ˆ( , , ),

n n n n n n n
t h h h h h h h

n n n
h h h

D Q

b

+ + + + + + +

+ + +

= − × ∇× + × ∇×

+

u H H H H u

u u u

  



 

µ µ
  (2.14) 

for any ( , , , ) ( , , , )h h h h h h h hq M∈w v s S X X  and 1,2, , 1n N= − . 
Remark 2.1. We have added a stabilization term 1 1( , )n

h h
− +∇ ⋅ ∇ ⋅H wσ  to (2.10), 

which is consistent with (2.7) in view of 0∇⋅ =H . It facilitates to prove the op-
timal error estimates for magnetic fields.  

Remark 2.2. The pressure field appears explicitly in the velocity Equation (2.11), 
and then it could be computed by solving the simple linear Equation (2.12). This 
is so called the pressure projection method, i.e., the “decoupled” technique, and 
it divides the whole numerical system into two smaller ones. In details, the incom-
pressible restriction would be removed in the computation and therefore more 
numerical techniques could be potentially be utilized.  

Remark 2.3. The scheme is a multi-step method, so the starting values at time 
steps 0t  and 1t  should be given. In this work we make use of the backward 
Euler method which will not affect the accuracy and energy stability.  

2.3. The Detailed Implementation of the Scheme 

Through 1n
hQ + , we denote 1n

h
+H  and 1ˆ n

h
+u  by  

1 1 1 1 1 1 1 1
1 2 1 2ˆ ˆ ˆand ,n n n n n n n n

h h h h h h h hQ Q+ + + + + + + += + = +H H H u u u          (2.15) 

with which, (2.10) and (2.11) could be rewritten as  
1 1 1

1 1 1 11 2
1 2

1 1 1 1 1 1 1
1 2

1

3 ( , ) ( ( ), )
2

( ( ), ) ( , )

4
( , ),

2

n n n
n n nh h h

h h h h h

n n n n n n
h h h h h h h h

n n
h h

h

Q
Q

Q Q

+ + +
− + + +

− + + + + + +

−

+
+ ∇× + ∇×

+ ∇ ⋅ + ∇ ⋅ − × ∇×

−
=

H H
w H H w

H H w u H w

H H
w





µ σ
τ

σ µ

µ
τ

   (2.16) 

1 1 1
1 1 1 1 1 11 2

1 2

1
1 1 1

ˆ ˆ3 ˆ ˆ( , ) ( , , ) ( ( ), )
2

4
( , ) ( ( ), ) ( , ).

2

n n n
n n n n n nh h h

h h h h h h h h h

n n
n n n n h h

h h h h h h h

Q
Q b Q

P Q

+ + +
+ + + + + +

−
+ + +

+
+ + ∇ + ∇

−
− ∇ ⋅ + × ∇× =

u u
v u u v u u v

u u
v H H v v

 

 

ν
τ

µ
τ

 (2.17) 

Step 1: We write the above formula as  
1

1 1 1 11
1 1

1 1

3 ( , ) ( , ) ( , )
2

4
( , ),

2

n
n nh

h h h h h

n n
h h

h

+
− + − +

+ −

+ ∇× ∇× + ∇ ⋅ ∇ ⋅

−
=

H
w H w H w

H H
w

µ σ σ
τ

µ
τ

    (2.18) 

1
1 1 1 12

2 2

1 1

3 ( , ) ( , ) ( , )
2

( , ),

n
n nh

h h h h h

n n
h h h

+
− + − +

+ +

+ ∇× ∇× + ∇ ⋅ ∇ ⋅

= × ∇×

H
w H w H w

u H w



µ σ σ
τ

µ
    (2.19) 

and  
1 1

11
1

ˆ 43 ˆ( , ) ( , ) ( , ) ( , ),
2 2

n n n
n nh h h

h h h h h hp
+ −

+ −
+ ∇ ∇ = ∇ ⋅ +

u u u
v u v v vν

τ τ
      (2.20) 

1
1 1 1 1 12

2

ˆ3 ˆ( , ) ( , ) ( , , ) ( ( ), ).
2

n
n n n n nh

h h h h h h h h hb
+

+ + + + ++ ∇ ∇ = − − × ∇×
u

v u v u u v H H v 

 ν µ
τ

 (2.21) 
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Thus in step 1, by solving (2.18)-(2.21) we get the values of 1
1
n
h
+H , 1

2
n
h
+H , 1

1ˆ
n
h
+u  

and 1
2ˆ n

h
+u . 

Step 2: Substituting (2.15) into (2.14) leads to  
1 1

1 1 1 1 1
1 2

1 1 1 1 1
1 2

1 1 1 1 1
1 2

1
1 2

3 4 ˆ ˆ( ( ), )
2

ˆ ˆ( , , )

( , ( ))

: ,

n n n
n n n n nh h h
h h h h h

n n n n n
h h h h h
n n n n n
h h h h h

n
h

Q Q Q
Q

b Q

Q

T Q T

+ −
+ + + + +

+ + + + +

+ + + + +

+

− +
= × ∇× +

+ +

− × ∇× +

= +

H H u u

u u u u

u H H H

 

 





µ
τ

µ
 

which yields  

1
1

1

2

12
2 ,

3
2

n n
h h

n
h

Q Q T
Q

T

−

+
− +

=
−

τ

τ
                   (2.22) 

where we denote  
1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1 1 1 1 1 1

2 2 2 2

ˆ ˆ( ( ), ) ( , , ) ( , ),
ˆ ˆ( ( ), ) ( , , ) ( , ).

n n n n n n n n n
h h h h h h h h h
n n n n n n n n n
h h h h h h h h h

T b

T b

+ + + + + + + + +

+ + + + + + + + +

= × ∇× + − × ∇×

= × ∇× + − × ∇×

H H u u u u u H H

H H u u u u u H H

  

  

  

  

µ µ

µ µ
 

By adopting 1
2
n

h h
+=w H  in (2.19) and 1

2ˆ n
h h

+=v u  in (2.21), we have  

2 2 2 2

2

1 2 1 2 1 1 2 1 2
2 2 2 2 2

1 2
2

3 ˆ( ) ( )
2

ˆ 0,

n n n n
h h h hL L L L

n
h L

T + + − + +

+

− = + + ∇× + ∇ ⋅

+ ∇ ≥

H u H H

u

µ σ
τ
ν

       

 

 

which means 2
3 0
2

T− >τ , so that (2.22) is always solvable for 1n
hQ + . 

Step 3: For now, through (2.15) we can obtain 1n
h
+H  and 1ˆ n

h
+u . Then 1n

h
+u  and 

1n
hp +  follow immediately by solving (2.12) and (2.13). 
Remark 2.4. In the practical implementation, in Step 1 we obtain an elliptic 

equation with constant coefficients, which corresponds to a symmetric positive 
stiffness matrix in the linear algebraic system, so that we could employ the con-
jugate gradient method to solve it extremely efficiently. It is also the reason why 
we adopt the “decoupled” technique, as stated in Remark 2.2. Step 2 is just a di-
rect algebraic calculation, and Step 3 is to solve a Poission-type equation, which 
is relatively fast to compute. Hence the computation of this scheme is lower than 
the traditional decoupled scheme, and meanwhile the adoption of smaller sub- 
systems allows us to employ the finer grids. We will illustrate the efficiency and 
accuracy later.  

3. Theoretical Results  

For compactness, the proof in this section is referred to [26]. 

3.1. Discrete Energy Stability 

In this subsection, the discrete energy stability of the scheme (2.10)-(2.14) will be 
proven. We define the discrete gradient operator :h h hM∇ → X  as  
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( , ) ( , ), ,h h h h h h h h hq q q M∇ = − ∇ ⋅ ∀ ∈ ∈v v v X            (3.1) 

and give the following energy stability theorem.  
Theorem 3.1. The numerical solution ( , , )n n n

h h hpH u  to the fully discrete 
scheme (2.10)-(2.14) is uniquely solvable and satisfies the following energy esti-
mate  

1 0, 2,3, , 1,n n
h h n N+ − ≤ = … −ε ε  

where the discrete energy function n
hε  is defined as  

2 2 2 2

2

2 1 2 2 1 2

2
1 2 1 2 2

1 ( 2 2
4

( ) (2 ) ) .
3

n n n n n n n
h h h h h h hL L L L

n n n n
h h h h h L

Q Q Q p

− −

+ +

= + − + + −

+ + − + ∇

H H H u u uε µ µ

τ

       

 

 

3.2. Optimal Error Estimates 

We make the following regularity assumption that the continuous system (1.1)-(1.3) 
admits unique solutions satisfying  

2 1 1 2

2 1 1 1

2 1

(0, ; ) (0, ; ) (0, ; ) (0, ; )

(0, ; ) (0, ; ) (0, ; ) (0, ; )

(0, ; ) (0, ; )
,

r r

r r

r

ttt tt tL T L L T H L T H L T H

ttt tt tL T L L T H L T H L T H

tt tL T L L T H
p p M

∞ ∞ ∞ + ∞ +

∞ ∞ ∞ + ∞ +

∞ ∞ +

+ + +

+ + + +

+ + ≤

H H H H

u u u u

       

       

   

   (3.2) 

where t tv v= ∂ , and the optimal error estimates are stated in the following theo-
rem.  

Theorem 3.2 Suppose that the exact solution ( , , )pH u  to the original Equa-
tions (1.1)-(1.3) satisfies the regularity assumption (3.2), and the numerical scheme 
(2.10)-(2.13) admits the unique solution ( , , ), 2n n n

h h hp n N≤ ≤H u . Then for some 
positive constants 0τ  and 0h , when 0<τ τ , 0h h< , we have  

2 2
2 1

02
max ( ) ( ),n n n n r

h hL Ln N
C h +

≤ ≤
− + − ≤ +H H u u τ            (3.3) 

where 0C  is a positive constant independent of τ  and h.  

4. Numerical Examples 

In this section, we carried out numerical experiments using the software Free-
FEM++.  

4.1. Accuracy Test 

For sake of brevity, we consider the incompressible MHD equations  
1 ( ) ( ) ,t
−∂ + ∇× ∇× − ∇× × =H H u H Jµ σ µ             (4.1) 

( ) ,t p∂ + ⋅∇ − ∆ +∇ + × ∇× =u u u u H H fν µ             (4.2) 

0, 0,∇⋅ = ∇ ⋅ =H u                       (4.3) 

in a two-dimensional domain [0, 2 ] [0,2 ]×π π , with the initial and boundary con-
ditions (1.4)-(1.5), where the source terms J  and f  are chosen corresponding-
ly to the exact solutions  
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2
8

2

6

5 2 2

sin sin(2 ) ,
sin(2 )sin
sin cos ,
sin cos

sin sin .

x yt
x y

y xt
x y

p t x y

 
=  − 

− =  
 

=

u

H                  (4.4) 

All the coefficients in (4.1)-(4.3) are chosen to be 1, and we take the final time 
1T = . Note that the above exact solutions u  and H  satisfy the divergence-free 

conditions. 
We first solve the MHD system (4.1)-(4.3) by the scheme (2.10)-(2.13) with a 

quadratic finite element approximation for H  and u , and a linear finite ele-
ment approximation for p. To emphasize the convergence rate in time, a suffi-
ciently small spatial mesh size 1/120h =  is chosen such that the spatial discre-
tization error can be relatively negligible. The time step is /T N=τ  with  

40,80,160N = . We show the numerical results at time 1T =  in Table 1, which 
indicate that the proposed scheme is convergent with second-order temporally 
accuracy.  

Then we solve the problem (4.1)-(4.3) by the scheme (2.10)-(2.13) with a suf-
ficiently small temporal step 1/ 5000=τ , to observe the spatial convergence 
rates. Take spatial size as 1/10,1/ 20,1/ 40,1/ 80h = . Again, a quadratic finite 
element approximation for H  and u  is adopted, combined with a linear fi-
nite element approximation for p. Numerical results at 1T =  are presented in 
Table 2.  

It is clear to see the third-order accuracy, which is consistent with the theoret-
ical analysis in Theorem 3.2. 

4.2. Efficiency Test 

As a comparison, we present another numerical scheme for the MHD based on 
the traditional “decoupled” technique, i.e., finding  

1 1 1 1ˆ( , , , ) ( , , , )n n n n
h h h h h h h hp M+ + + + ∈H u u S X X  such that it holds that  

 
Table 1. Temporal accuracy. 

τ  ( )e H  order ( )e u  order time 

1/40 2.09 × 10−2  2.47 × 10−2  481 s 

1/80 5.47 × 10−3 1.93 6.56 × 10−3 1.91 915 s 

1/160 1.40 × 10−3 1.97 1.69 × 10−3 1.96 1794 s 

 
Table 2. Spatial accuracy. 

h ( )e H  order ( )e u  order time 

1/10 1.58 × 10−2  6.93 × 10−2  330 s 

1/20 2.12 × 10−3 2.90 9.09 × 10−3 2.93 1264 s 

1/40 2.69 × 10−4 2.97 1.18 × 10−3 2.94 5208 s 

1/80 3.39 × 10−5 2.99 1.50 × 10−4 2.98 22960 s 
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u H w
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H H v
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µ σ σ

µ

ν

µ

τ
1( , ) 0,n

h hq+∇ ⋅ =u

 

for any ( , , , ) ( , , , )h h h h h h h hq M∈w v s S X X  and 1,2, , 1n N= … − . Using the same 
parameters and initial boundary conditions as those in Subsection 4.1, we can 
obtain the following results. 

As seen in the above Table 3 and Table 4, the errors generated by the scheme 
provided in this subsection are almost same as those in Subsection 4.1, but it ob-
viously takes longer time than before. 

4.3. Energy Stability 

Finally, we carry out the numerical experiment to verify the discrete energy sta-
bility. Choose the initial data as  

2

1 0 2

1 0

0

sin sin(2 )
,

sin(2 )sin

sin cos
,

sin cos
sin(2 )sin(2 ),

x y
x y

y x
x y

p x y

 
= =  

− 
− 

= =  
 

=

u u

H H                 (4.5) 

We fix 0.1=τ  and 1/ 200h = , and define the discrete energy function defined 
in Theorem 3.1. Meanwhile, we still adopt the quadratic elements for ( , )H u  and 
linear elements for p. Up to the final time 10T = , we show the energy decaying 
curve as follows (Figure 1). 
 
Table 3. Temporal accuracy. 

τ  ( )e H  order ( )e u  order time 

1/40 1.86 × 10−2  2.28 × 10−2  899 s 

1/80 4.80 × 10−3 1.95 5.99 × 10−3 1.93 1724 s 

1/160 1.22 × 10−3 1.98 1.54 × 10−3 1.96 3396 s 

 
Table 4. Spatial accuracy. 

h ( )e H  order ( )e u  order time 

1/10 1.57 × 10−2  6.18 × 10−2  583 s 

1/20 2.12 × 10−3 2.89 8.92 × 10−3 2.93 2398 s 

1/40 2.69 × 10−4 2.97 1.18 × 10−3 2.94 10,426 s 

1/80 3.39 × 10−5 2.99 1.50 × 10−4 2.98 44,821 s 
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Figure 1. Discrete energy evolution of the incompressible MHD system. 

5. Conclusion 

In this work, we have designed a fully decoupled second-order BDF scheme to-
gether with FEM for the incompressible MHD system (1.1)-(1.3), and then have 
carried out the rigorous proof of unconditional energy stability, unique solvabil-
ity and optimal error estimates. The fully decoupled method adopted in this work 
is an efficient approach to deal with the incompressible constraint and nonlinear 
terms, and thus the technique could be applied to the other incompressible flow 
system, for example, the multi-phase MHD system. Although the method based 
on “zero-energy-contribution” property applied to the incompressible MHD eq-
uation has been presented in [20] already, we have managed to obtain the op-
timal convergence rates, which until now could not be found in the existing 
works. 
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