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Abstract 
This article provides the numerical modeling of the dislocations in the Cos-
serat elastic plates based on the Cosserat Plates Theory developed by the au-
thors. The dislocation is modeled by a sequence of domains that converge to 
the point of the dislocation and by a residual force distributed around that 
point. The plate deformation caused by the dislocation is calculated using the 
Finite Element Method. We also discuss the effect of the dislocation on the 
cavities present in the Cosserat plates. 
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1. Introduction 

In the Classical Elasticity, the movement of the particles within the elastic body 
is described by the displacement vector. Since there are no particle rotations 
considered, each particle has only three degrees of freedom. The surface loads 
are described by the force vector, which implies the symmetry of the corres-
ponding stress tensor. 

It has been noted that such materials as foams, composites, concrete and hu-
man bones represent materials with microstructure and cannot always be de-
scribed by the Classical Elasticity [1] [2] [3] [4] [5] [6]. 

The theory that takes into account the size effect of the particles and their ro-
tations is Cosserat Elasticity. It employs three additional degrees of freedom for 
material particles, which represent their microrotations. The description of the 
surface loads is done by the force and moment vectors. The stress tensor is 
asymmetric and an additional couple stress tensor is incorporated. A total of six 
elastic constants are needed for the correct description of the Cosserat solid. 

The Theory of Cosserat Elasticity starts with a pioneering work published by 
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Eugene and Francois Cosserat at the beginning of the 20th century [7]. Since the 
1960s, the number of publications on Cosserat Elasticity started to grow and has 
not stopped since. The complete theory of three-dimensional asymmetric elas-
ticity gave rise to a variety of Cosserat plate theories. Naghdi obtained the linear 
theory of Cosserat plate [8] and Eringen proposed a complete theory of plates in 
the framework of Cosserat Elasticity [9]. Steinberg proposed to use the Reissner 
plate theory as a basis for the theory of Cosserat plates in [10]. The finite element 
modeling for this theory is provided in [11]. 

The first version of the Cosserat Plate Theory, presented by the authors in 
[12], includes some additional assumptions leading to the introduction of the 
splitting parameter. This parametric theory produces the equilibrium equations, 
constitutive relations, and the optimal value of the minimization of the elastic 
energy of the Cosserat plate. The paper [12] also provides the analytical solu-
tions of the presented plate theory and the three-dimensional Cosserat elasticity 
for simply supported rectangular plates. The comparison of these solutions 
showed that the precision of the developed Cosserat plate theory is similar to the 
precision of the classical plate theory developed by Reissner [13] [14]. 

The numerical modeling of the bending of simply supported rectangular 
plates is given in [15]. Here the Cosserat plate field equations and the exact for-
mula for the optimal value of the splitting parameter were developed. The solu-
tion of the Cosserat plate was shown to converge to the Reissner plate as the 
Cosserat elasticity parameters tend to zero. The Cosserat plate theory showed the 
agreement with the size effect, confirming that the plates of smaller thickness are 
more rigid than is expected from the Reissner model. 

The extension of the static model of Cosserat elastic plates to the dynamic 
problems is presented in [16]. The computations predict a new kind of natural 
frequencies associated with the material microstructure and were shown to be 
compatible with the size effect principle reported in [15] for the Cosserat plate 
bending. 

The numerical study of Cosserat elastic plate deformation based on the para-
metric theory of Cosserat plates using the Finite Element Method is presented in 
[17]. The paper discusses the existence and uniqueness of the weak solution, 
convergence of the proposed FEM and its numerical validation by estimating the 
order of convergence. The Finite Element analysis of clamped Cosserat plates of 
different shapes under different loads is also provided. The numerical analysis of 
plates with circular holes shows that the stress concentration factor around the 
hole is less than the classical value, and smaller holes exhibit less stress concen-
tration as would be expected on the basis of the classical elasticity. 

The Dynamics of Cosserat Plates of different shapes and orientations of mi-
cro-elements are given in the chapter [18]. The numerical computations of the 
plate free vibrations showed the existence of the additional frequencies that de-
pend on the orientation of microelements. The comparison of the eigenvalue 
frequencies with the three-dimensional Cosserat Elastodynamics shows a high 
agreement with the exact values. 
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The complete Cosserat Plate Theory has been recently published in the book 
[19]. The text presents the classification of the Cosserat plates, the foundation 
and the validation of the Cosserat Plate Theory, the exact solutions for statics 
and dynamics, and the Finite Element computations. We also discuss such 
unique properties of the Cosserat plates as plate stiffness, stress concentration, 
plate resonances and dynamic anisotropy. 

Linearly elastic bodies with defects in the form of dislocations are studied in 
[20], where a two-dimensional problem is considered on the basis of the 
three-dimensional Classical Elasticity ignoring the microstructure of the materi-
al. The gauge theory of dislocations and disclinations is developed in [21]. The 
convection flow of unsteady Maxwell fluid in the course of a porous plate is in-
vestigated in [22]. Dislocations and their effects are studied at the level of quan-
tum mechanics in [23]. 

The current article provides the modeling of the dislocations in Cosserat 
plates, i.e. two-dimensional structural elements made of materials with micro-
structure. Our approach is based on the continuum mechanics where quantum 
effects are not considered. In this article the dislocations are studied in the 
framework of Cosserat Elasticity in contrast to [20] that is based on Classical 
Elasticity, ignoring the influence of microstructure and rotational effects of the 
microelements. The numerical results of the deformation caused by the disloca-
tion are based on the Finite Element algorithm developed in [17]. The Finite 
Element provides the accurate approximations of the kinematic variables, 
stresses, couples, strains and torsions for Cosserat plates of arbitrary shapes (in-
cluding the plates with holes). The possible effect of the dislocation on a hole 
incorporated into the Cosserat plate is discussed as well. 

2. Cosserat Plate Theory 

We study the deformation of the Cosserat body without body forces and body 
moments. The corresponding Cosserat equilibrium equations are given as in 
[15]: 

, 0,ji jσ =                            (1) 

, 0,ijk jk ji jε σ µ+ =                        (2) 

where the jiσ  is the stress tensor, jiµ  is the couple stress tensor, ijkε  and is 
the Levi-Civita tensor. 

The constitutive formulas for the Cosserat material are given in the following 
form [19]: 

( ) ( ) ,ji ji ij kk ijσ µ α γ µ α γ λγ δ= + + − +                (3) 

( ) ( ) ,ji ji ij kk ijµ γ ε χ γ ε χ βχ δ= + + − +                (4) 

where µ , λ  are the Lamé parameters and α , β , γ , ε  are the Cosserat 
elasticity parameters. 

The strain-displacement and torsion-microrotation relations are given as in 
[19]: 
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, ,ji i j ijk kuγ ε φ= +                         (5) 

, ,ji i jχ φ=                            (6) 

where iu  and iφ  represent the displacement vector and the rotation vector 
respectfully. 

We consider the Cosserat plate P of thickness h and 3 0x =  representing its 
middle plane. The top and bottom surfaces of the plate are contained in the 
planes 3 2x h=  and 3 2x h= −  respectively. In the Cosserat Plate Theory we 
assume that the variation of the components of the stressses jiσ , couple stresses 

jiµ , displacements iu  and rotations iφ  are represented by the polynomials of 
the variable 3x  in such way that it is consistent with the equilibrium Equations 
(1)-(2), constitutive formulas (3)-(4) and the strain-displacement relation (5) 
and torsion-microrotation relation (6). Here we will provide the summary of the 
Cosserat Plate assumptions given in [19]: 

( )1 2,m x xαβ αβσ ζ=  
( )( )2

3 1 2, 1q x xβ βσ ζ= −
 

( )( ) ( )2
3 1 2 1 2ˆ, 1 ,q x x q x xα α ασ ζ∗= − +

 

( ) ( ) ( )
3

33 1 2 1 2 0 1 2
3 1 ˆ, , ,
4 3 2

p x x p x x x xζσ ζ ζ σ∗ 
= − + + 

   
( )( ) ( )2

1 2 1 2ˆ, 1 ,r x x r x xαβ αβ αβµ ζ∗= − +
 

( )3 1 2,s x xα αµ ζ=  
3 0βµ =  
33 0µ =  
( )1 2,u x xα αψ ζ=  

( )( ) ( )2
3 1 2 1 2ˆ, 1 ,u w x x w x xζ∗= − +

 
( )( ) ( )2

1 2 1 2ˆ, 1 ,x x x xα α αφ ω ζ ω∗= − +
 

( )3 3 1 2,x xφ ω ζ=  
where 

( ) ( )1 2 1 2, , ,p x x p x xη∗ =                      (7) 

( ) ( ) ( )1 2 1 2ˆ , 1 , ,p x x p x xη= −                    (8) 

and η  is called the splitting parameter. 
The substitution of the stress assumptions into the three-dimensional Cosse-

rat equilibrium Equations (1)-(2) results in the following equilibrium system of 
equations for Cosserat Plate [19]: 

, 0,M Qαβ α β− =                         (9) 

, 0,Q pα α
∗ ∗+ =                         (10) 

,
ˆ ˆ 0,Q pα α + =                         (11) 

https://doi.org/10.4236/jamp.2022.1011223


R. Kvasov, L. Steinberg 
 

 

DOI: 10.4236/jamp.2022.1011223 3373 Journal of Applied Mathematics and Physics 
 

( ), 3 0,R Q Qαβ α βγ γ γε∗ ∗+ − =                    (12) 

, 3
ˆˆ 0,R Qαβ α βγ γε+ =                       (13) 

, 3 0.S Mα α βγ βγε+ =                       (14) 

Here 

11 22,M M —bending moments, 

12 21,M M —twisting moments, 
Qα —shear forces, 

ˆ,Q Qα α
∗ —transverse shear forces, 

11 22 11 22
ˆ ˆ, , ,R R R R∗ ∗ —Cosserat bending moments, 

12 21 12 21
ˆ ˆ, , ,R R R R∗ ∗ —Cosserat twisting moments, 

Sα —Cosserat couple moments, 
are related to the Cosserat plate assumptions as follows: 

2

,
6
hM mαβ αβ=

 
2 ,
3
hQ qα α=

 
2 ,
3
hQ qα α

∗ ∗=
 

2ˆ ˆ ,
3
hQ qα α=

 
2 ,
3
hR rαβ αβ

∗ ∗=
 

2ˆ ˆ ,
3
hR rαβ αβ=

 
2

.
6
hS sα α=

 
The constitutive formulas for the Cosserat Plate are given as in [19]: 

( ) ( )
( )

( )

23 3

, ,

ˆ6 5( ) ,
3 2 6 2 60 2

p p hh hMαα α α β β

λµ λ µ λµ
λ µ λ µ λ µ

∗ ++
= Ψ + Ψ +

+ + +
     (15) 

( ) ( ) ( )
3 3 3

, , 31 ,
12 12 6

h h hM β
βα α β β α

µ α α µ α− +
= Ψ + Ψ + − Ω       (16) 

( ) ( ) ( )

( ) ( )

, ,

5 5 5ˆ
6 6 6

5 5 ˆ1 1 ,
3 3

h h h
Q W W

h h

α α α α

β β
β β

α µ µ α µ α

α α

∗

∗

+ − −
= Ψ + +

+ − Ω + − Ω
        (17) 

( ) ( )
( )

( )

( ) ( ) ( )
( )

2

, ,

5 5 5ˆ
6 6 6

55 ˆ1 1 ,
3 3

h h h
Q W W

hh

α α α α

α α
β β

µ α µ α µ α
µ α

α µ αα
µ α

∗ ∗

∗

− − +
= Ψ + +

+

−
+ − Ω + − Ω

+

        (18) 
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( ) ( ) ( ),
8 8ˆ ˆ ˆ1 ,

3 3
h hQ W α

α α β
αµ αµ
µ α µ α

= + − Ω
+ +

             (19) 

( )
( ) ( ), ,

10 5 ,
3 2 3 2
h hRαα α α β β

γ β γ βγ
β γ β γ

∗ ∗ ∗+
= Ω + Ω

+ +
            (20) 

( ) ( )
, ,

5 5
,

6 6
h h

Rβα β α α β

γ ε γ ε∗ ∗ ∗− +
= Ω + Ω               (21) 

( )
( ) ( ), ,

8 4ˆ ˆ ˆ ,
3 2 3 2

h hRαα α α β β

γ γ β γβ
β γ β γ
+

= Ω + Ω
+ +

             (22) 

( ) ( )
, ,

2 2ˆ ˆ ˆ ,
3 3

h h
Rβα β α α β

γ ε γ ε− +
= Ω + Ω              (23) 

( )
3

3, .
3

hSα α
γε
γ ε

= Ω
+

                      (24) 

Here 

1Ψ —rotation of the middle plane around x1 axis, 

2Ψ —rotation of the middle plane around x2 axis, 
ˆW W∗ + —vertical deflection of the middle plate, 

1 1
ˆ∗Ω +Ω —microrotations in the middle plane around x1 axis, 

2 2
ˆ∗Ω +Ω —microrotations in the middle plane around x2 axis, 

3Ω —rate of change of the microrotation 3φ  along x3 
are related to the Cosserat plate assumptions as follows: 

( )1 2
2 , ,x x
hα αψΨ =

 

( )1 2
4 , ,
5

W w x x∗ ∗=
 

( )1 2
ˆ ˆ , ,W w x x=  

( )1 2
4 , ,
5

x xα αω
∗ ∗Ω =

 

( )1 2
ˆ ˆ , ,x xα αωΩ =  

( )3 3 1 2
2 , ,x x
h
ωΩ =

 
The Cosserat plate field equations are obtained by substituting the constitutive 

formulas (15)-(24) into the bending system of Equations (9)-(14). If the solution 
vector v of the kinematic variables is defined as 

T

1 2 3 1 2 1 2
ˆ ˆ, , , , , , , , ,v W W ∗ = Ψ Ψ Ω Ω Ω Ω Ω               (25) 

then the Cosserat plate bending field equations can be written in the following 
form 

( ).Lv f η=                          (26) 

The operator L here is given as 
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11 12 13 14 16 18 19

12 22 23 24 25 27 29

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

52 53 54 55 56 57

61 63 64 65 66 68

74 77 78

84 87 88

91 92 99

0 0
0 0

0
0

0 0 0
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

L L L L L L L
L L L L L L L
L L L L L L L L
L L L L L L L L

L L L L L L
L L L L L L

L L L
L L L

L L L

 
 











 













 
and the right-hand side ( )f η  vector is 

( )

( )
( )

( )
( )

3
,1 ,1

3
,2 ,2

ˆ6 5

120 2

ˆ6 5

120 2

ˆ6 5
6 ,

0
0
0
0
0

h p p

h p p

p p
f

p

λ

λ µ

λ

λ µ

η

∗

∗

∗

∗

 +
 −

+ 
 

+ 
− 

+ 
 + −
 =
 −
 
 
 
 
 
 
 
    

The operators ijL  are defined as follows: 
2 2 2

11 1 2 3 12 42 2
1 21 2

, ,L c c c L c
x xx x

∂ ∂ ∂
= + − =

∂∂ ∂  

13 5 14 5
1 1

, ,L c L c
x x
∂ ∂

= =
∂ ∂  

16 6 18 6, ,L c L c= =  
2

19 7 21 4
2 1 2

, ,L c L c
x x x
∂ ∂

= =
∂ ∂  

2 2

22 2 1 3 23 52 2
21 2

, ,L c c c L c
xx x

∂ ∂ ∂
= + − =

∂∂ ∂  

24 5 25 6
2

, ,L c L c
x
∂

= = −
∂  

27 6 29 7
1

, ,L c L c
x
∂

= − = −
∂  

31 5 32 5
1 1

, ,L c L c
x x
∂ ∂

= = −
∂ ∂  

2 2 2 2

33 3 3 34 3 32 2 2 2
1 2 1 2

, ,L c c L c c
x x x x
∂ ∂ ∂ ∂

= + = +
∂ ∂ ∂ ∂  
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35 6 36 6
2 1

, ,L c L c
x x
∂ ∂

= − =
∂ ∂  

37 6 38 6
2 1

, ,L c L c
x x
∂ ∂

= − =
∂ ∂  

41 5 42 5
1 1

, ,L c L c
x x
∂ ∂

= = −
∂ ∂  

2 2 2 2

43 3 3 44 8 82 2 2 2
1 2 1 2

, ,L c c L c c
x x x x
∂ ∂ ∂ ∂

= + = +
∂ ∂ ∂ ∂  

45 6 46 6
2 1

, ,L c L c
x x
∂ ∂

= − =
∂ ∂  

47 9 48 9
2 1

, ,L c L c
x x
∂ ∂

= − =
∂ ∂  

52 6 53 6
2

, ,L c L c
x
∂

= − =
∂  

2 2

54 9 55 10 11 62 2
2 1 2

, 2 ,L c L c c c
x x x
∂ ∂ ∂

= = + −
∂ ∂ ∂  

2

56 12 57 13
1 2

, ,L c L c
x x
∂

= = −
∂  

61 6 63 6
2

, ,L c L c
x
∂

= = −
∂  

2

64 9 65 12
2 1 2

, ,L c L c
x x x
∂ ∂

= − =
∂ ∂  

2 2

66 10 11 6 67 132 2
1 2

2 , ,L c c c L c
x x
∂ ∂

= + − = −
∂ ∂  

2 2

74 14 77 10 11 142 2
2 1 2

, ,L c L c c c
x x x
∂ ∂ ∂

= = + −
∂ ∂ ∂  

2

78 12 84 14
1 2 2

, ,L c L c
x x x
∂ ∂

= =
∂ ∂  

2 2 2

78 12 88 11 10 142 2
1 2 1 2

, ,L c L c c c
x x x x
∂ ∂ ∂

= = + −
∂ ∂ ∂  

91 7 92 7
2 1

, ,L c L c
x x
∂ ∂

= − =
∂ ∂  

2 2

99 15 15 72 2
1 2

2 ,L c c c
x x
∂ ∂

= + −
∂ ∂  

where ic  are the constants given as 

( )
( )

( )4 4

1 2, ,
6 2 24

h h
c c

µ λ µ α µ
λ µ

+ +
= =

+  

( ) ( ) ( )( )
( )

4

3 4

3 2 25
, ,

6 24 2
hh

c c
µ λ µ α λ µα µ

λ µ
+ − ++

= =
+  
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( )
5 6

5 5, ,
6 3

h hc c
α µ α−

= =
 

( )
( )

24

7 8

5
, ,

12 6
hhc c
α µα
α µ
−

= =
+  

( )
( )

( )
( )9 10

5 10
, ,

3 3 2
h h

c c
α α µ γ β γ
α µ β γ

− +
= =

+ +  

( ) ( ) ( )( )
( )11 12

5 2 35
, ,

6 6 2
hh

c c
γ γ ε β γ εγ ε

β γ
− + −+

= =
+  

( ) ( )
2

13 14
10 10, ,

3 3
h hc cα αµ

α µ α µ
= =

+ +  

( )
4

15 .
6

hc γε
γ ε

=
+  

The system of equations (26) is an elliptic parametric system of nine partial 
differential equations. The exact solutions of this system for rectangular plates 
are given in [15] and the numerical solutions for the plates of arbitrary shapes 
are given in [17]. 

3. Numerical Results 

The appearance of defects, cracks, dislocations or other inhomogeneities can af-
fect the performance of the material. It creates a stress field around the disloca-
tion and might affect the body as a whole and also act on its cavities and displace 
them. Therefore, correctly assessing the effect of the dislocation is essential for 
use of the material in applications. 

For the numerical modeling we will consider a Cosserat plate with a disloca-
tion (inclusion, defect, inhomogeneity) and follow [20]. 

Let ib  be the Burger's vector, denoting an additional displacement of the lat-
tice points. The distortion tensor is 

,ik k iw u=  
and 

dik i kL
w x b= −∫  

or equivalently 

, d
L

ilm mk j i kS
e w f b= −∫  

The two-dimensional delta-function ( )δ ξ  satisfies 

( ) ( )d d 1
L

i iS
fδ ξ τ τ δ ξ⋅ = ⋅ =∫ ∫f

 

Therefore 

( ), dilm mk j i i ke w f bτ δ ξ= −  
Let ( ),a b  be the position of the dislocation. We will simulate the effect of 
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the two-dimensional delta function ( )δ ξ  by assuming the boundary condition 
on some circular neighborhood represented by the function ( )1 2,g x x : 

( ) 2
1 2

1

1, arctan
2

x bg x x
x a

 −
=  − π

                 (27) 

The function ( )1 2,g x x  gives a constant for any line integral along the circle 
( )rL  of radius r centered at the dislocation: 

( ) , d 1r i iL
g x =∫  

Let us define 

dj ij iS
J k n A= ∫  

where ijk  is the material stress tensor. 
The values of jJ  can be found from [20]: 

( )2
1 0

cos dJ φφσ φ φ φ
π

= ∫  

( )2
2 0

sin dJ φφσ φ φ φ
π

= ∫  
where 

( ) ( ) ( )( )11 22 2 , ,C C L L
rrr rφφ φφσ φ σ σ σ φ σ φ= + + −

 

( )φφσ φ  is the hoop stress, 11
Cσ , 22

Cσ  are the stresses in Cartesian coordinates 
at the center of the hole, ( ),L rφφσ φ , ( ),L

rr rσ φ  are the stresses in polar coordi-
nates along the boundary of the hole (functions of φ ). 

The stresses in the Cartesian coordinates 11
Cσ  and 22

Cσ  at the center of the 
hole can be found from the solution set of kinematic variables v defined as (25) 
and the constitutive formulas (15)-(24). 

The stresses in polar coordinates ( ),L rφφσ φ , ( ),L
rr rσ φ  can be found from the 

stress tensor ijσ  in Cartesian coordinates by the following transformation: 

( ) ( ) ( ) ( ) ( )2 2
11 22 12 21cos sin sin cosφφσ σ φ σ φ σ σ φ φ= + + +  

( ) ( ) ( ) ( ) ( )2 2
22 11 12 21cos sin sin cosrrσ σ φ σ φ σ σ φ φ= + − +  

Once we find 1J  and 2J , the direction of the force acting on the cavity in-
duced by the dislocation can be calculated as follows: 

1 1

2 2

dx J
dx J

=
 

We will model the dislocation using the two-dimensional Dirac delta function 
( )δ ξ  being non-zero at the point of dislocation. The numerical simulation of 

the Dirac delta function is proposed to be done by the function (27). By shrink-
ing the hole around the dislocation and applying the boundary conditions, we 
will simulate the dislocation as a limiting case of these domains. In the presence 
of an additional cavity this will result in a residual force, which can be calculated 
from the vector of solutions for kinematic variables v. 

We will calculate the vector of solutions for kinematic variables v by solving 
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the elliptic system of partial differential Equation (26) applying the Finite Ele-
ment Method developed in [17]. 

In our computations we consider the plates made of polyurethane foam. The 
polyurethane foam is known to behave as Cosserat material with the values of 
the technical elastic parameters presented in [24]: 

299.5 MPa,E =  
0.44,ν =  

0.62 mm,tl =  
0.327 mm,bl =  
2 0.04.N =  

Taking into account that the ratio β γ  is equal to 1 for bending [24], these 
values of the technical constants correspond to the following values of the Lamé 
parameters and the Cosserat Elasticity parameters: 

762.616 MPa,λ =  
103.993 MPa,µ =  

4.333 MPa,α =  
39.975 MPa,β =  
39.975 MPa,γ =  
4.505 MPa.ε =  

We consider a plate 10 × 10 with its points represented on the coordinate 
plane by the Descartes product of the segments: [ ] [ ]7,3 5,5− × − . Let 0.3h =  be 
the thickness of the plate and the dislocation located at the point ( )3,2− . 

Let 1 2G G G= ∪  be the external boundary of the plate: 

( ) { } [ ]{ }1 1 2 1 2, : 0, , 0,G x x x a x a= ∈ ∈
 

( ) { } [ ]{ }2 1 2 2 1, : 0, , 0,G x x x a x a= ∈ ∈
 

and the following hard simply supported boundary conditions [19]: 

1 2: 0, 0, 0,G W W ∗= = Ψ =  
0 0

1 1 1 3
ˆ: 0, 0, 0,G Ω = Ω = Ω =  

0 0
1 2 2

1

ˆ
: 0, 0, 0;G

n n n
∂Ψ ∂Ω ∂Ω

= = =
∂ ∂ ∂  

2 1: 0, 0, 0,G W W ∗= = Ψ =  
0 0

2 2 2 3
ˆ: 0, 0, 0,G Ω = Ω = Ω =  

0 0
2 1 1

2

ˆ
: 0, 0, 0.G

n n n
∂Ψ ∂Ω ∂Ω

= = =
∂ ∂ ∂  

The presence of the dislocation in the plate creates a stress field. This stress 
field can be calculated by following the procedure: 
• Step 1: solve the parametric system of nine partial differential equations (26) 
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using the Finite Element Method developed in [17] and obtain the vector of 
kinematic variables (25). 

• Step 2: substitute the values of the kinematic variables (25) into the constitu-
tive formulas for the Cosserat Plate (15)-(24) and obtain the values of the 
two-dimensional components of stress and couple stress. 

The results of the stress field 11σ  around the dislocation in the Cosserat plate 
made of polyurethane foam are given in the Figure 1 & Figure 2. 

 

 
Figure 1. Distribution of the large values of 11σ  stress component (the top 10% of the 
magnitude) around the dislocation in the Cosserat plate made of polyurethane foam. 

 

 
Figure 2. Distribution of the 11σ  stress component around the dislocation in the Cos-
serat plate made of polyurethane foam. 
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Let us now add a cavity to the Cosserat plate and place it in the origin ( )0,0  
(see Figure 3). The stress fields in the Cosserat plate induce the force that acts 
on the cavity. The direction of the force can be obtained by the comparison of 
the values 1J  and 2J . The direction of the force acting on the hole is given in 
the Figure 4. If instead of the hole there was a crack, the direction of the residual  

 

 
Figure 3. Perforated Cosserat plate of size 10 × 10 with the dislocation located at the 
point ( )3, 2− − . 

 

 
Figure 4. Direction of the force acting on the cavity in the Cosserat plate made of polyu-
rethane foam ( 1 2 2.47J J = ). 
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force would show the trajectory of the propagation of the crack. 

4. Conclusion 

In this article, we presented the numerical modeling of the dislocations in the 
Cosserat plates based on the Cosserat Plates Theory. We modeled the dislocation 
by a sequence of domains that converge to the point of the dislocation and by a 
residual force distributed around that point. The Finite Element computations 
show that the presence of dislocations in a Cosserat plate will result in a stress 
field that will act on the cavities. We calculated the direction of the residual force 
acting on the cavity, which in the case of a crack, will show the trajectory of its 
propagation. In our future work, we plan to consider the modeling of dislocation 
in the framework of Cosserat Thermoelasticity. 
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Notations 

ix    Cartesian coordinates 
B   Cosserat body 
P   Cosserat plate 
H   plate thickness 

,µ λ   Lamé parameters 
, , ,α β γ ε   Cosserat elasticity parameters 

jiσ  or σ   stress tensor 

jiµ  or µ   couple stress tensor 

jiγ  or γ   strain tensor 

jiχ  or χ   torsion tensor 

iu  or u   displacement vector 

iφ  or φ   microrotation vector 

ib  or b   Burger’s vector 

ijw  or w   distortion tensor 

ijk  or g   material stress tensor 

ijkε    Levi-Civita tensor 
V   Cosserat plate displacement set 
η    splitting parameter 
P   pressure 
Mαβ   bending and twisting moments 
Qα    shear forces 

ˆ,Q Qα α
∗   transverse shear forces 

ˆ,R Rα α
∗   Cosserat bending and twisting moments 

Sα    Cosserat couple moments 

αΨ    rotations of the middle plane around xα  axis 
,W W ∗   vertical deflections of the middle plate 

ˆ,α α
∗Ω Ω   microrotations in the middle plate around xα  axis 

3Ω    rate of change of the microrotation 
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