
Journal of Applied Mathematics and Physics, 2022, 10, 3356-3368 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2022.1011222  Nov. 29, 2022 3356 Journal of Applied Mathematics and Physics 
 

 
 
 

New Solitary Wave Solutions of the Fisher 
Equation 

Zidong Yang1, Hongyan Pan2* 

1Hefei No. 6 High School, Hefei, China 
2Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China 

 
 
 

Abstract 
In this paper, we use Riccati equation to find new solitary wave solutions of 
Fisher equation, which describes the process of interaction between diffusion 
and reaction. It is of great importance to comprehend the equation to solve 
the problems in chemical kinetics and population dynamics. We resolve the 
Ricatti equation through diverse function transformation and many types of 
exact solutions are obtained. Then it is used as an auxiliary equation to solve 
Fisher equation. In the process, we select different coefficients in the Racatti 
equation, as a result, abundant solitary wave solutions are obtained, some of 
which haven’t been found in other documents yet. Moreover, these solutions 
we got in this paper will be favorable for understanding the Fisher equation. 
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1. Introduction 

At present, the study of solitary waves and solitons is a hot topic in nonlinear 
physics, from chemical kinetics, population dynamics, plasma, optics, and biol-
ogy, etc [1]-[6]. Through physical mechanisms and facts from experiments, we 
learned that solitons exist. Under some reasonable conditions, we can establish 
mathematics models of most physics’ laws, and many of these nonlinear identi-
fication studies can give the credit to the nonlinear evolution equations even-
tually. Hence, finding the exact solutions, such as solitary-wave solutions, is very 
important for exploring the relevant nonlinear problems and understanding 
their characteristics, which can help scientists apply them into practical re-
searches and studies to solve the problems in chemical kinetics and population 
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dynamics. A large number of scientists have devoted themselves to the solutions 
in the latest centuries and as a result, many effective and forceful methods have 
been put forward in other documents to get the exact solutions of Fisher equa-
tion, for example, tanh-sech method and the extended tanh-coth method [7] [8], 
F-expansion method [9] [10], Jacobi elliptic function expansion method [11] 
[12], auxiliary equation method [13] [14] [15] [16], and so on. However, even 
some of them are powerful and effective, not all of them can be suitable for ex-
ploring the exact solutions of Fisher equation [16], which describes the interac-
tion process between diffusion and reaction. This equation is encountered in 
chemical kinetics and population dynamics, including problems such as the 
nonlinear evolution of the population in the one-dimensional conventional neu-
tron population in nuclear reactions. In Ref. [17], Fisher equation is treated with 
extended tanh method and many new solitary wave solutions were obtained. In 
this paper, we will use Riccati equation as an auxiliary equation to solve Fisher 
equation, so that many new results are obtained. The method used in this paper, 
on the one hand, can simplify the solving process of the nonlinear equation, on 
the other hand, obtains a new solitary wave solution of the Fisher equation. 

The framework of the paper is as follows: Section 2 introduces the construc-
tion of abundant exact solutions of Riccati equation; Section 3 establishes how to 
operate this method for producing new solitary wave solutions of Fisher equa-
tion; Section 4 is the conclusion. 

2. Abundant Exact Solutions of Riccati Equation 

The Riccati equation method is very simple but very effective. Hence, it is an ideal 
method to solve constant coefficient, variable coefficient and high-dimensional 
nonlinear evolution equations. In the paper, it first comes to our mind that we 
can use Racatti equation to solve the problems in the following form: 

( ) ( )2
1 1f p f qξ ξ′ = +                       (1) 

where p1 and q1 are constants and can be determined later. To find out new exact 
solutions of Equation (1), a new auxiliary function ( )g ξ  is introduced, which 
satisfies the following form 

( ) ( )2 2
2 2g p g qξ ξ′ = +                       (2) 

where p2 and q2 are constants. Equation (2) has the following hyperbolic func-
tion solution 

( ) ( )1 sinhg ξ ξ= , ( 2 21, 1p q= = )                 (3) 

( ) ( )2 coshg ξ ξ= , ( 2 21, 1p q= = − )                (4) 

( ) ( ) ( )2 2
3

1 1cosh sinh
2 2

g ξ ξ ξ= − = + , ( 2 24, 1p q= = − )        (5) 

Then we assume ( )f ξ  and ( )g ξ  have the following formal solution 

( ) ( )
( )
g

f
g r

ξ
ξ

ξ
′

=
+

                        (6) 
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where r is a constant. Substituting Equation (6) into Equation (1) and using Eq-
uation (2), we can obtain 

1 2 1

2 1
2

2 1 2 1

0,
2 ,

.

p p q
p r q r

q p q q r

 + =


=
− = +

                       (7) 

Solving this system, we can obtain 

1

1 2

0,
1,
,

r
p
q p

=
 = −
 =

 or 

2

2

1

2
1

,

1 ,
2

.
2

qr
p

p

pq


= ± −


 = −



=


                   (8) 

So, we have the following exact solutions of Equation (1) 

( ) ( )
( )1

cosh
sinh

f
ξ

ξ
ξ

= , ( 1 11, 1p q= − = )                (9) 

( ) ( )
( )2

sinh
cosh

f
ξ

ξ
ξ

= , ( 1 11, 1p q= − = )               (10) 

( ) ( ) ( )

( )
3

2

2sinh cosh
1cosh
2

f
ξ ξ

ξ
ξ

=
−

, ( 1 11, 4p q= − = )           (11) 

( ) ( )
( )4

sinh
cosh

f
ξ

ξ
ξ ε

=
+

, ( 2
1 1

1 1, , 1
2 2

p q ε= − = = )          (12) 

( ) ( )
( )5

cosh
sinh

f
ξ

ξ
ξ ε

=
+

, ( 2
1 1

1 1, , 1
2 2

p q ε= − = = − )          (13) 

Next, we use the following another formal solution to solve Equation (1) 

( ) ( ) ( )
( )2

g g
f

g r
ξ ξ

ξ
ξ
′

=
+

                      (14) 

where 0r ≠ . Substituting Equation (14) into Equation (1) and using Equation 
(2), we can obtain 

1 2 1

2 2 1 2 1
2

2 1

0,
2 2 ,

.

p p q
q p r p q q r

rq q r

 + =

− + = +
 =

                   (15) 

Solving this system, we can obtain 

2

2

1

1 2

,
2

2,
2 .

qr
p

p
q p

 =

 = −
 =

                         (16) 

So, we can have the following exact solutions 
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( ) ( ) ( ) ( ) ( )

( )

3

6 2
2

2sinh cosh sinh cosh

1 1cosh
2 8

f
ξ ξ ξ ξ

ξ
ξ 

  

−
=

− −

, ( 1 12, 8p q= − = )    (17) 

It is easy to know that ( ) ( )1h fξ ξ=  can also satisfy Equation (1) in the con-
dition of 1 1 1 1,p q q p′ ′= − = − . Equations (9) and (10) are a pair of solutions on this 
condition. Therefore, the following equations are also the solutions of Equation (1) 

( )
( )

( ) ( )

2

7

1cosh
2

2sinh cosh
f

ξ
ξ

ξ ξ

−
= , ( 1 14, 1p q= − = )           (18) 

( ) ( )
( )8

cosh
sinh

f
ξ ε

ξ
ξ
+

= , ( 2
1 1

1 1, , 1
2 2

p q ε= − = = )           (19) 

( ) ( )
( )9

sinh
cosh

f
ξ ε

ξ
ξ
+

= , ( 2
1 1

1 1, , 1
2 2

p q ε= − = = − )          (20) 

( )
( )

( ) ( ) ( ) ( )

2
2

10 3

1 1cosh
2 8

2sinh cosh sinh cosh
f

ξ
ξ

ξ ξ ξ ξ

 
 

− −

−
= , ( 1 18, 2p q= − = )   (21) 

Equations (6) and (10) are the new types of exact solutions of Equation (1), 
which are rarely found in the other documents. Then, we use the Equation (1) 
and its solutions (9)-(13), (17) and (18)-(21) to solve the Fisher equation, and 
the solving process can be greatly simplified. 

3. Application of the Method 

The following Fisher equation [16] [17] is considered 

( )1 0t xxu u u u− − − =                      (22) 

Then suppose Equation (22) has the traveling wave solution 

( ) ( ), ,u x t u x ctξ ξ µ= = +                    (23) 

where μ and c are travelling wave parameters. Substituting the traveling wave 
equations into Equation (22), the following equation can be obtained 

( )2 1 0cu u u uµ′ ′′− − − =                     (24) 

We assume that Equation (24) has the following formal solution 

( ) ( ) ( )0
1 1

i i
i ii i

nu a f b fξ ξ ξ−
= =

= +∑ ∑               (25) 

where ia  and ib  are constants to be determined and ( )if ξ  is the solutions 
of Equation (1) and n can be determined by the homogeneous balance method. 
In the Equation (24), it is easy to know n = 2, so that the solution can be ex-
pressed as 

( ) ( ) ( ) ( ) ( )2 1 2
0 1 2 1 2u a a f a f b f b fξ ξ ξ ξ ξ− −= + + + +         (26) 

We bring above equation into Equation (24) and use Equation (1), resulting in 
a series of equations a set of algebraic equations about a0, a1, a2, b1, b2, μ and c. 
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Then we collect all the terms with the same power of ( )f ξ , and set each coeffi-
cient to zero. Finally, we can obtain 

Case 1 

1 1
0 1 2 1 2

1 1

2

1 1 1 1

1 1, , , 0,
4 2 4

1 5,
24 12

p pa a a b b
q q

k c
p q p q

= = ± − = − = =

= − =
−



   (27) 

Case 2 

1 1
0 1 2 1 2

1 1

2

1 1 1 1

1 1, 0, , ,
4 2 4

1 5,
24 12

q qa a a b b
p p

k c
p q p q

= = = = ± − = −

= − = ±
−

   (28) 

Case 3 

1 1 1
0 1 2 1

1 1 1

21
2

1 1 1 1 1

3 1 1, , , ,
8 4 16 4

1 5, ,
16 96 24

p p qa a a b
q q p

qb k c
p p q p q

= = ± − = − = −

= − = − =
−





  (29) 

According to Case 1, we have the following solitary wave solutions of the 
Fisher equation 

( ) ( ) ( )2
1

1 1 1coth coth
4 2 4

u ξ ξ ξ= ± +                (30) 

where 21 5, , , 1
122 6

x ct cξ µ µ ε ε= + = = = . Figure 1(a) shows the  

three-dimensional diagrams of Equation (30), which represents the bright soli-
tary wave solution. Figure 1(b) shows that the amplitude and velocity of this so-
litary wave remain unchanged during propagation. 

( ) ( ) ( )2
2

1 1 1tanh tanh
4 2 4

u ξ ξ ξ= ± +                (31) 

where 21 5, , , 1
122 6

x ct cξ µ µ ε ε= + = = = . Figure 2 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (31), which  
 

 
Figure 1. (a) Three dimensional and (b) two dimensional plots represent the bright soli-
tary wave solution of Equation (30), when ± sign takes +, ∓ sign takes – and 1ε = . 
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Figure 2. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (31), when ± sign takes +, ∓ sign takes - and 1ε = . 

 

 
Figure 3. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (32), when ± sign takes +, ∓ sign takes - and 1ε = . 

 
represents the kink solitary wave solution. 

( ) ( ) ( )

( )

( ) ( )

( )

2

3
2 2

sinh cosh sinh cosh1 1 1
1 14 2 4cosh cosh
2 2

u
ξ ξ ξ ξ

ξ
ξ ξ

 
 

= ± +  
 − −
 

       (32) 

where 21 5, , , 1
244 6

x ct cξ µ µ ε ε= + = = = . Figure 3 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (32), which 
also represents the kink solitary wave solution. 

( ) ( )
( )

( )
( )

2

4

sinh sinh1 1 1
4 2 cosh 4 cosh

u
ξ ξ

ξ
ξ ε ξ ε

 
= ± +  

+ +  
           (33) 

where 2 21 5, , , 1, 1
66

x ct cξ µ µ λ ε λ= + = = = = . Figure 4 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (33), which 
also represents the kink solitary wave solution. 

( ) ( )
( )

( )
( )

2

5

cosh cosh1 1 1
4 2 sinh 4 sinh

u
ξ ξ

ξ
ξ ε ξ ε

 
= ± +  

+ +  
           (34) 
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where 2 21 5, , , 1, 1
66

x ct cξ µ µ λ ε λ= + = = = − = . The solution of Equation 

(34) represents the traveling wave solutions of Equation (24) in complex space. 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

3

6 2
2

2

3

2
2

2sinh cosh sinh cosh1 1
4 4 1 1cosh

2 8

2sinh cosh sinh cosh1
16 1 1cosh

2 8

u
ξ ξ ξ ξ

ξ
ξ

ξ ξ ξ ξ

ξ

−
= ±

− −



 
 


 − +  




− 
   

− 

       (35) 

where 21 5, , , 1
488 6

x ct cξ µ µ ε ε= + = = = . Figure 5 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (35), which 
represents the kink solitary wave solution. 

( )
( )

( ) ( )
( )

( ) ( )

2
2 2

7

1 1cosh cosh1 1 12 2
4 2 sinh cosh 4 sinh cosh

u
ξ ξ

ξ
ξ ξ ξ ξ

 − − 
= ± +  

 
 

       (36) 

 

 
Figure 4. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (33), when ± sign takes +, ∓ sign takes -, 1ε =  and 1λ = . 

 

 
Figure 5. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (35), when ± sign takes +, ∓ sign takes - and 1ε = . 
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where 21 5, , , 1
244 6

x ct cξ µ µ ε ε= + = = = . Figure 6 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (36), which 
represents the bright solitary wave solution. 

( ) ( )
( )

( )
( )

8

2

cosh1 1
4 2 sinh

cosh1          
4 sinh

u
ξ ε

ξ
ξ

ξ ε
ξ

+
= ±

 +
+  

  

                   (37) 

where 2 21 5, , , 1, 1
66

x ct cξ µ µ λ ε λ= + = = = = . Figure 7 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (37), which 
represents the bright solitary wave solution. 

( ) ( )
( )

( )
( )

2

9

sinh sinh1 1 1
4 2 cosh 4 cosh

u
ξ ε ξ ε

ξ
ξ ξ

 + +
= ± +  

  
           (38) 

where 2 21 5, , , 1, 1
66

x ct cξ µ µ λ ε λ= + = = = − = . The solution of Equation 

(38) represents the traveling wave solutions of Equation (24) in complex space. 
 

 
Figure 6. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (36), when ± sign takes +, ∓ sign takes - and 1ε = . 

 

 

Figure 7. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (37), when ± sign takes +, ∓ sign takes -, 1ε =  and 1λ = . 
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( )
( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2
2

10 3

22
2

3

1 1cosh
1 2 8
4 2sinh cosh sinh cosh

1 1cosh
2 8

2sinh cosh sinh cosh

u
ξ

ξ
ξ ξ ξ ξ

ξ

ξ ξ ξ ξ

 − −  = ±
−

  − −    +  
− 

  

        (39) 

where 21 5, , , 1
488 6

x ct cξ µ µ ε ε= + = = = . Figure 8 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (39), which 
represents the bright solitary wave solution. 

Because the solutions ( ) ( )1 10f fξ ξ−  of Equation (1) contain that corres-
ponding to ( ) ( )1h fξ ξ= , the solitary wave solutions of the Fisher equation in 
Case 2 are the same as in Case1. Corresponding to case 3, we express the solitary 
wave solution of Fisher equation as 

( ) ( ) ( ) ( ) ( )2 2
11

3 1 1 1 1coth coth tanh tanh
8 4 16 4 16

u ξ ξ ξ ξ ξ= ± + +     (40) 

where 21 5, , , 1
244 6

x ct cξ µ µ ε ε= + = = = . Figure 9 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (40), which 
represents the bright solitary wave solution. 

( ) ( ) ( )

( )

( ) ( )

( )

( )
( ) ( )

( )
( ) ( )

2

12
2 2

2
2 2

sinh cosh sinh cosh3 1 1
1 18 4 16cosh cosh
2 2

1 1cosh cosh1 12 2
4 sinh cosh 16 sinh cosh

u
ξ ξ ξ ξ

ξ
ξ ξ

ξ ξ

ξ ξ ξ ξ

 
 

= ± +  
 − −
 

 − − 
+  

 
 



       (41) 

where 21 5, , , 1
488 6

x ct cξ µ µ ε ε= + = = = . Figure 10 shows the  

 

 
Figure 8. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (39), when ± sign takes +, ∓ sign takes - and 1ε = . 

https://doi.org/10.4236/jamp.2022.1011222


Z. D. Yang, H. Y. Pan 
 

 

DOI: 10.4236/jamp.2022.1011222 3365 Journal of Applied Mathematics and Physics 
 

 
Figure 9. (a) Three dimensional and (b) two dimensional plots represent the kink solitary 
wave solution of Equation (40), when ± sign takes +, ∓ sign takes - and 1ε = . 

 

 
Figure 10. (a) Three dimensional and (b) two dimensional plots represent the kink soli-
tary wave solution of Equation (41), when ± sign takes +, ∓ sign takes - and 1ε = . 

 
three-dimensional and two- dimensional plots diagrams of Equation (41), which 
represents the bright solitary wave solution. 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2

13

2

cosh cosh3 1 1
8 4 sinh 16 sinh

sinh sinh1 1
4 cosh 16 cosh

u
ξ ε ξ ε

ξ
ξ ξ

ξ ξ
ξ ε ξ ε

 + +
= ± +  

  

 
+  

+ +  


          (42) 

where 2 21 5, , , 1, 1
122 6

x ct cξ µ µ λ ε λ= + = = = = . Figure 11 shows the  

three-dimensional and two- dimensional plots diagrams of Equation (42), which 
represents the bright solitary wave solution. 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2

14

2

cosh cosh3 1 1
8 4 sinh 16 sinh

sinh sinh1 1
4 cosh 16 cosh

u
ξ ξ

ξ
ξ ε ξ ε

ξ ε ξ ε
ξ ξ

 
= ± +  

+ +  

 + +
+  

  


           (43) 

where 21 5, , , 1
122 6

x ct cξ µ µ ε ε= + = = = − . The solution of Equation (43)  
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Figure 11. (a) Three dimensional and (b) two dimensional plots represent the kink soli-
tary wave solution of Equation (42), when ± sign takes +, ∓ sign takes -, 1ε =  and 

1λ = . 
 

 
Figure 12. (a) Three dimensional and (b) two dimensional plots represent the kink soli-
tary wave solution of Equation (41), when ± sign takes +, ∓ sign takes - and 1ε = . 

 
represents the traveling wave solutions of Equation (24) in complex space. 

( )
( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

2 2

15 3

22
2

3

3

2
2

3

2
2

1 1[cosh ]3 1 2 8
8 2 2sinh cosh sinh cosh

1 1cosh
1 2 8
4 2sinh cosh sinh cosh

2sinh cosh sinh cosh1
8 1 1cosh

2 8

2sinh cosh sinh cosh1
64 1 1cosh

2 8

u
ξ

ξ
ξ ξ ξ ξ

ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ

ξ ξ ξ ξ

ξ

− −
= ±

−

  − −    +
 −
 
 

 
  

−

 − −  


 −

+

− −




2



 
 
 



       (44) 

where 21 5, , , 1
9616 6

x ct cξ µ µ ε ε= + = = = − . Figure 12 shows the  
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three-dimensional and two- dimensional plots diagrams of Equation (44), which 
represents the bright solitary wave solution. 

4. Conclusion 

In this paper, we use Riccati equation to find new solitary wave solutions of 
Fisher equation. Riccati equation is solved by using of two types of function 
transformation Equation (6) and Equation (14), so that many new exact solu-
tions are obtained. With the formal solution of Equation (25), we have con-
structed abundant and new solitary wave solutions for the Fisher equation. The 
solitary wave solutions expressed by Equations (39), (41)-(44) are rarely found in 
other documents. The numerical images show that although the new expressions 
of many solutions are different, the solitary waves represented by them, includ-
ing amplitude, wave velocity and space-time width, are the same. This method 
can greatly simplify the calculation process, especially suitable for solving more 
complex nonlinear systems. 
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