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Abstract 
We consider the psychophysical experiments in which the test subject’s bi-
nary reaction is determined by the prescribed exposure duration to a stimulus 
and a random variable subjective threshold. For example, when a subject is 
exposed to a millimeter wave beam for a prescribed duration, the occurrence 
of flight action is binary (yes or no). In experiments, in addition to the binary 
outcome, the actuation time of flight action is also recorded if it occurs; the 
delay from the initiation time to the actuation time of flight action is the hu-
man reaction time, which is not measurable. In this study, we model the ran-
dom subjective threshold as a Weibull distribution and formulate an infe-
rence method for estimating the human reaction time, from data of pre-
scribed exposure durations, binary outcomes and actuation times of flight ac-
tion collected in a sequence of tests. Numerical simulations demonstrate that 
the inference of human reaction time based on the Weibull distribution con-
verges to the correct value even when the underlying true model deviates 
from the inference model. This robustness of the inference method makes it 
applicable to real experimental data where the underlying true model is un-
known. 
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1. Introduction 

We consider a subclass of psychophysical experiments [1] [2] satisfying the 
properties: 1) the power of a stimulus source is fixed; the total amount of stimu-
lus applied on the test subject is specified by the duration of exposure to the sti-
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mulus source; 2) the test subject’s outcome is binary: positive/null response; a 
positive response has an associated observable action while a null response has 
no action; 3) the subjective threshold on the exposure duration for producing a 
positive outcome is a random variable, fluctuating from one exposure test to 
another; and 4) if it occurs, a positive response is initiated at the time when the 
subjective threshold is reached; the time of observed actuation of positive re-
sponse is delayed from the time of its initiation; this time delay is the human 
reaction time. 

A possible situation for the type of psychophysical experiments described 
above is the occurrence of flight action when a test subject is exposed to a milli-
meter wave beam [3] [4] [5]. During the exposure, the electromagnetic energy is 
absorbed by the skin [6]. The absorbed energy goes into increasing the skin 
temperature. Thermal nociceptors in the skin are activated upon the local tem-
perature reaching the activation temperature [7]. The electrical signal produced 
by nociceptors is proportional to the total number of nociceptors activated [8] 
[9]. When the pain signal received by the brain is strong enough, the brain issues 
instructions for the muscles to carry out a flight action (evading the beam and/or 
turning off the beam power) [3] [4]. For a millimeter wave beam of fixed speci-
fications, both the number of nociceptors activated and the electrical signal 
produced by nociceptors increase with the exposure duration. As a result, there 
is a subjective threshold on the exposure duration for the pain signal to reach the 
threshold to initiate the flight action [5] [10]. This subjective threshold is a ran-
dom variable, reflecting the underlying biovariability. It fluctuates from one test 
subject to another, from one exposure test to another on the same subject [11]. 
The observed actuation time of flight action, if it occurs, is delayed from the time 
when the pain signal reaches the threshold for initiating the flight action: it takes 
time for the pain signal to propagate from the exposed skin to the brain, for the 
instruction signal to propagate from the brain to muscles, and for muscles to 
actuate the flight action [12] [13]. This time delay is the human reaction time. 
These time quantities are illustrated in Figure 1. 

In the method of limits (MoL) [14] [15], the beam is kept on until the ob-
served occurrence of flight action. In each MoL test, flight action occurs even-
tually and the time of observed flight action is recorded in the data set. The time 
of observed flight action is the sum of 1) the random subjective threshold on the  

 

 
Figure 1. Flight action is induced by an exposure duration exceeding the fluctuating sub-
jective threshold. The time of observed flight action is delayed from its initiation at the 
subjective threshold by the human reaction time. 
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exposure duration for inducing flight action; and 2) the human reaction time, 
both of which are unknown. If we know one of these two quantities, we can 
calculate the other from the data. When both of these two quantities are un-
known, the data set of observed flight action times from MoL tests does not 
allow us to extract the subjective threshold and the human reaction time si-
multaneously. 

In the method of constant stimuli (MoCS), the exposure duration is pre-
scribed before the start of beam power [14] [16]. The exposure may or may not 
lead to flight action, depending on whether the realized sample of subjective 
threshold in that test (a random sample) is lower or higher than the prescribed 
exposure duration. The binary outcome regarding the occurrence of flight action 
is recorded in the data set. In addition, if flight action occurs, the observed time 
of its actuation is recorded in the data set. We will see that this data set from 
MoCS tests allows us to extract both the median subjective threshold and the 
human reaction time. First, we notice that the data set of binary outcomes is in-
dependent of the human reaction time; an adaptive Bayesian method has been 
proposed to design the MoCS tests and to infer the median subjective threshold 
from the observed binary outcomes [17]. This has been done in our previous 
study of millimeter wave exposure tests [11]. In the current study, we focus on 
extracting the human reaction time based on the data of observed flight action 
times collected in a sequence of MoCS tests designed by the adaptive Bayesian 
method [17]. 

The rest of this paper is organized as follows. In Section 2, we introduce ma-
thematical notations and models for describing the process of exposure tests and 
the associated observations. In Section 3, we lay out the inference formulations 
and methods. In Section 4, we carry out Monte Carlo simulations to generate ar-
tificial data sets to test the performance of the inference method proposed. In 
particular, we test the situation where the underlying true model for data gener-
ation is different from the inference model. In Section 5, we discuss the main 
results and conclusions obtained. 

2. Models of Exposure Tests and Observations 
2.1. Method of Constant Stimuli (MoCS) 

We consider the situation where a test subject is exposed to a millimeter wave 
beam in experiments. During exposure, a fraction of the beam power is absorbed 
into the skin and it heats up the tissue underneath the skin surface. When the 
beam power is relatively high, the relevant thermal effect of beam exposure takes 
place within a short time period. Over that short time period, the effect of sur-
face radiation cooling and surface convection cooling is negligible; the effect of 
blood flow cooling is also negligible. Here the relevant thermal effect refers to 
heating the skin tissue to activate the thermal nociceptors. Under these assump-
tions, when exposed to a beam of constant (time-invariant) high power, within 
the relevant time frame, the skin temperature increases monotonically with time 
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[18] [19]. 
Thermal nociceptors are activated in the region where the local temperature is 

increased above the activation temperature, leading to a heat sensation. As the 
activated volume gets larger, the heat sensation becomes stronger. Eventually, 
when the heat sensation exceeds the test subject’s tolerance, the subject quickly 
moves away to avoid the beam and/or quickly turns off the beam power (we 
shall call this the flight action of the test subject). 

In the method of limits (MoL), the beam power is kept on and steady until 
flight action is materialized/observed, upon which the beam power is turned off 
either by the experimenter or by the test subject. The actual duration of exposure 
(from the start to the end of beam power) varies with the test subject’s personal 
tolerance on heat sensation, which fluctuates from one test subject to another, 
from one exposure test to another on the same subject. 

In the method of constant stimuli (MoCS), in each test, the exposure duration 
is predetermined before the start of beam power. After the exposure of pre-
scribed duration, flight action may or may not occur. In each individual test, the 
binary outcome regarding the occurrence of flight action is recorded. When it 
does occur, the time of observed flight action is also recorded, which contains 
the human reaction time. 

2.2. The Occurrence of Flight Action 

We view a millimeter wave exposure as a stimulus response process. The binary 
response is the occurrence of flight action. In the general situation, the stimulus 
is described by several variables: the power density of the beam used, the beam 
spot size, and the duration of exposure. When the power density and beam spot 
size are fixed, the stimulus is solely described by the exposure duration. Corres-
ponding to the personal tolerance on heat sensation, there is a subjective thre-
shold on exposure duration for inducing flight action. Similar to the case with 
the personal tolerance on heat sensation, the subjective threshold on exposure 
duration is a random variable, fluctuating from one test subject to another (lat-
eral biovariability), from one exposure test to another on the same test subject 
(longitudinal biovariability). In a test, if the prescribed exposure duration ex-
ceeds the realized sample value of subjective threshold in that particular test, 
flight action occurs. If it occurs, the time of observed flight action is delayed 
from the time of its initiation at the time of subjective threshold. At the time of 
subjective threshold, the exposure has activated enough thermal nociceptors and 
generated a sufficiently large electrical signal that will eventually result in flight 
action even if the beam power is turned off right at that time instance. The time 
delay from the initiation to the actuation of flight action is caused by that the 
pain signals travel from nociceptors via neuron fibers to brain; the brain gene-
rates instruction signals; the instruction signals travel from brain to muscles; and 
finally the muscles carry out the flight action. This time delay is referred to as the 
human reaction time. 
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To facilitate the discussion, we list mathematical notations for the quantities 
and random variables introduced above. 
• Et : prescribed exposure duration, a predetermined quantity in each test 
• ( )Ej jtη ≡ : prescribed exposure duration in test j. 
• ( )c ct t ω≡ : subjective threshold on exposure duration for inducing flight ac-

tion, a random variable. Here ω  represents the randomness due to biova-
riabilities. 

• ( )( )c cmedianm t ω≡ : median of the subjective threshold for flight action. 
• ( )( )c cstds t ω≡ : standard deviation of the subjective threshold for flight ac-

tion. 
• ( )c j

t : the realized sample value of random variable ( )ct ω  in test j. 
• ( )R Rt t ω≡ : human reaction time, a random variable independent of ( )ct ω . 
• ( )( )R Rmedianm t ω≡ : median of the human reaction time. In this study, we 

focus on the case of ( )Rt ω  = deterministic = Rm  (i.e., the human reaction 
time is an unknown but deterministic quantity). 

• ( )I I ω≡ : binary outcome regarding the occurrence of flight action, a binary 
random variable. 

• 1I = : occurrence; 0I = : no occurrence. 
• jI : the realized sample value of ( )I ω  in test j. 
• ( )F Ft t ω≡ : time of observed flight action, a conditional random variable. 

( )Ft ω  is defined only if ( ) 1I ω =  (i.e., if flight action occurs). 
• ( )Fj jt t≡ : the realized sample value of ( )Ft ω  in test j with 1jI = . 

The time quantities described above are illustrated in Figure 1. In the frame-
work of stimulus response, the binary outcome ( )I ω  is completely determined 
by the prescribed exposure duration Et  and the random subjective threshold 
( )ct ω . 

( ) ( )
( )

c E

c E

1 if
0 if

t t
I

t t
ω

ω
ω

 <=  >
                    (1) 

Mathematically, binary random variable ( )I ω  is derived from random va-
riable ( )ct ω  with the prescribed exposure duration Et  as a parameter. The 
stimulus response function describes the probability of flight action vs the pre-
scribed exposure duration. 

( ) ( )( ) ( )( )E c EPr 1 PrP t I t tω ω≡ = = <                (2) 

The probability of flight action, ( )EP t , is an increasing function of Et . When 

Et  is right at ( )( )c cmedianm t ω≡ , we have ( )
E c

E 50%
t m

P t
=

= : it is equally 
likely for E ct m=  to induce or not induce flight action. 

In Figure 2, we illustrate four representatives of possible realizations for an 
exposure test. They are not exhaustive. The binary outcome jI  is determined 
by the relation between ( )c j

t  and ( )E jt . Flight action occurs when the subjec-
tive threshold ( )c j

t  is below the prescribed exposure duration ( )E jt . Since ct  
is a random variable, ( ) ( )( )c E jj

t t<  is possible and uncertain for any given 
( )E jt  in the neighborhood of median subjective threshold cm . A lower value of  
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Figure 2. Four representative realizations of an exposure test. The binary outcome (I) is 
determined by the relation between the subjective threshold ( ct ) and the prescribed ex-
posure duration ( Et ). When flight action occurs, its actuation is at time F c Rt t t= + . 

 
prescribed Et  may induce flight action in some tests while a higher value of 
prescribed Et  may fail to induce flight action in some other tests. Of course, the 
probability of ( ) ( )( )c E jj

t t<  increases with the prescribed ( )E jt . In the case of 
( ) ( )( )c E jj
t t< , flight action occurs and is irreversibly initiated at the time of 

subjective threshold ( )c j
t ; the flight action is actuated/observed at time 

( ) ( )F cj j
t t> ; the time elapsed between the initiation and the actuation, 
( ) ( ) ( )R F cj j j
t t t= − , is the human reaction time. 

2.3. The Time of Actuation/Observation of Flight Action 

If flight action occurs, the time of its actuation/observation, ( )Ft ω , is the sum 
of ( )ct ω  and R Rt m=  (a deterministic quantity in the current study). The 
time of observed flight action ( )Ft ω  is defined only when ( ) 1I ω = . 

( ) ( ) ( )
( )

c R
F

if 1
undefined if 0
t m I

t
I

ω ω
ω

ω
 + ==  =

                 (3) 

Note that the probability of ( ) 1I ω =  depends on the prescribed exposure 
duration Et . Consequently, a description of conditional statistics of ( )Ft ω  is 
incomplete unless the value of Et  is provided. For conciseness, in notations for 
the conditional statistics of ( )Ft ω , we shall omit ( ) 1I ω =  since the condition 
( ) 1I ω =  is always implied when discussing ( )Ft ω . Instead we focus on speci-

fying Et . For example, we use the notation 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
F c R c c cF E R| | || , 1

shortnotation fullnotation

t t m t t tt t It t t t mη η ηη ωρ ρ ρ ρ+ < <= =≡ = = −




      (4) 

The conditional density ( ) ( )c c|t t tηρ <  is heavily influenced by the prescribed 
exposure duration Etη ≡ . Figure 3 compares ( ) ( )c c|t t tηρ <  for two values of η . It 
is clear that the conditional density varies with η . In particular, ( )c c|E t t η<  is  
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Figure 3. Schematic graphs of conditional density ( ) ( )c c|t t tηρ <  for 1 cmη <  (bottom) and 

for 2 cmη >  (top). It is clear that ( )c c|E t t η<  is an increasing function of η . 

 
an increasing function of η , which demonstrates that a description of Ft  is 
incomplete unless η  is specified. 

In test j, neither the subjective threshold for flight action ( )c j
t  nor the hu-

man reaction time Rm  is directly measurable. Instead, the observed binary 
outcome jI  along with the prescribed exposure duration ( )Ej jtη ≡  provides 
a binary description of ( )c j

t . 

( )
( )
( )

if 1
binary description of :

if 0
c j jj

c j
c j jj

t I
t

t I

η

η

 < =


> =
           (5) 

In the case of 1jI =  (flight action occurs), the time of observed flight action 
( )F jt  gives the sum of ( )c j

t  and Rm , both of which are unknown in our 
study. 

( )
( )c R

F

if 1

undefined if 0
jj

j j
j

t m I
t t

I

 + =≡ = 
=

                 (6) 

In this study, we aim at inferring the statistics of subjective threshold ct  and 
the human reaction time Rm , from data measured in the method of constant 
stimuli (MoCS). First, we infer ( )c cmedianm t≡  from the data set of prescribed 
exposure durations and the corresponding binary outcomes ( ){ },j jIη , col-
lected in a sequence of exposure tests. As described in our previous study [11], 
the exposure tests are designed sequentially and adaptively in a Bayesian frame-
work, based on the test results already collected. The inference of cm  is based 
on the maximum likelihood estimation (MLE) formulation using a Weibull in-
ference model. We will study the robustness of inferring median subjective 
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threshold cm  when the underlying true model governing the data generation is 
different from the assumed Weibull inference model. 

Once cm  is obtained, we infer Rm  and cs  from the data set of observed 
flight action times ( ){ }, , 1, 2, with 1j j jt j Iη = =

. The inference of ( )R c,m s  
is also based on the maximum likelihood estimation (MLE) formulation using a 
Weibull inference model. The primary objective is to infer the human reaction 
time Rm  whereas cs  is an unknown variable in the inference formulation. 
Again, we will study the robustness of inferring Rm  when the underlying true 
model governing the data generation is different from the assumed Weibull in-
ference model. 

3. Inference Formulations and Methods 
3.1. Data Measured in the Method of Constant Stimuli 

In the method of constant stimuli, in test j, the exposure duration ( )Ej jtη ≡  is 
prescribed; after the exposure, the observed binary outcome jI  regarding the 
occurrence of flight action is recorded. If 1jI =  (flight action occurs), the time 
of observed flight action ( )Fj jt t≡  is stored in data; if 0jI =  (flight action 
does not occur), data entry jt  is undefined (empty). The statistics of Ft  is 
meaningful only when conditional on 1I = . The data set, measured in the me-
thod of constant stimuli, has the form 

( ){ } ( ) ( )E FD , , , 1, 2, , , ,j j j j jj jI t j N t t tη η= = ≡ ≡
         (7) 

where N is the number of exposure tests. Again, the data entry jt  is defined 
only in those tests with 1jI = . Below we infer, from data set (7), the statistics of 
subjective threshold ct  for flight action and infer the deterministic value of the 
human reaction time Rm . It is worthwhile to point out that neither ( )c j

t  nor 

Rm  is directly measured in the data. In test j, the observed binary outcome jI  
provides a binary description of sample ( )c j

t  in that particular test, as de-
scribed in (5). In the case of 1jI = , the time of observed flight action ( )Fj jt t≡  
gives the sum of ( )c j

t  and Rm  in that particular test, as given in (6). 
We infer cm  and ( )R c,m s  in two steps as described in Figure 4. The infe-

rence of cm  uses only the data set of binary outcomes ( ){ }, , 1, 2, ,j jI j Nη = 
 

which is independent of the human reaction time Rm . The subsequent inference of  
 

 
Figure 4. Two inference steps for estimating cm  and ( )R c,m s . 
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( )R c,m s  utilizes the estimated cm  from step 1 and the data set of observed 

flight action times ( ){ }, , 1, 2, h 1, wit jj jt j N Iη = =
. 

3.2. Inference Model for tc 

In our inference formulation, we use the Weibull distribution to model ( )ct ω , 
the random subjective threshold for flight action. The PDF and CDF of the 
Weibull distribution are 

( ) ( )c ~ Weibull ,t kω λ  

( )
1

exp , 0
k k

W
k t tt tρ
λ λ λ

−     = − >    
     

               (8) 

( ) 1 exp , 0
k

W
tF t t
λ

  = − − >  
   

                 (9) 

where k is the shape parameter and λ  the scale parameter in the Weibull dis-
tribution. It is important to point out that the underlying true distribution of 
( )ct ω  is unknown. We simply use the Weibull distribution as the inference 

model in our formulation. In Monte Carlo simulations, we will study the per-
formance of this Weibull-based inference when the underlying true model of 
( )ct ω  deviates from the Weibull distribution. 
The mean, median, and standard deviation of ct  are 

( ) ( )c 1 1E t kλ= Γ +  

( ) ( )1c cmedian ln 2 km t λ≡ =                   (10) 

( ) ( ) ( )2
c cstd 1 2 1 1s t k kλ≡ = Γ + −Γ +              (11) 

where ( )zΓ  is the gamma function defined as 

( ) ( )1

0
e ds us u u

∞ − −Γ = ∫                      (12) 

The mapping from ( ),kλ  to ( )c c,m s  is invertible. 

( ) ( ) ( ) ( )
( )

2

21 2 2
c c

1 2 11 ,
ln 2 u

u u
k S u

S s m−

Γ + −Γ +
= ≡

 

( )
c

1ln 2 k

m
λ =                          (13) 

Numerical computation shows that ( )S u  defined in (13) is an increasing 
function of u and thus is invertible. The inverse mapping allows us to specify the 
Weibull distribution using the median and the standard deviation ( )c c,m s . 
This parameterization is necessary when we test the inference performance on 
artificial data sets generated from 6 distributions (including the Weibull distribu-
tion) as the underlying true model of ct . In numerical tests, data sets generated 
from all distributions are constrained by a given median and a given standard 
deviation. 
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The conditional density of ct  given ct η<  is 

( ) ( ) ( ) ( )
c c|

1 , for 0 onlyWt t
W

t t t h
Fηρ ρ

η< = < <            (14) 

The conditional density of F c Rt t m≡ +  given ct η<  is 

( ) ( ) ( ) ( )

( ) ( )

F c c c R| |

R R R
1 , for only

t t t t

W
W

t t m

t m m t m h
F

η ηρ ρ

ρ
η

< <= −

= − < < +
      (15) 

The conditional density (15) provides a proper mathematical framework for 
connecting 1) the observed flight action time ( )Fj jt t≡  in a test with flight ac-
tion 1jI = , 2) the prescribed exposure duration jη , and 3) the unknown de-
terministic human reaction time Rm . It serves as a key component for inferring 

Rm  from data ( ){ },j jtη . 

3.3. Inference of mc 

As illustrated in the top row of Figure 4, we use the method of maximum likelihood 
estimation (MLE) to infer cm  from a date set ( ){ }bin , , 1, 2, ,j jD I j Nη= = 

 
where jη  is the prescribed exposure duration and jI  the binary outcome in 
test j. Under the Weibull inference model, given jη , the probability of observing 
binary outcome jI  is given by 

( )( ) ( ) ( ) ( )1
Pr 1 jj II

j W j W jI I F Fω η η
−

 = = −              (16) 

where ( )WF t  is the CDF of the Weibull distribution given in (9). 
( )WF t  contains two parameters: ( ),kλ . In the inference of cm , we fix the 

shape parameter at 2.5k =  and focus on estimating the scale parameter λ . As 
we discussed in our previous study [11], fixing k at a wrong value, especially at a 
smaller value (corresponding to a wider Weibull distribution), will not affect the 
inference accuracy of the median cm . 

To formulate the MLE method, we include inference variable λ  explicitly in 
the notation of Weibull CDF: ( );WF t λ . Given data set binD  of binary observa-
tions from N exposure tests, the log-likelihood as a function of λ  is 

( ) ( ) ( ) ( ){ }bin
1

; ln ; 1 ln 1 ;
N

j W j j W j
j

D I F I Fλ η λ η λ
=

 = + − − ∑       (17) 

The maximum likelihood estimate for λ  is 

( )bin
ˆ arg max ; D

λ
λ λ= 

                    (18) 

Once λ̂  is obtained, cm  is calculated according to (10) 

( )1c
ˆ ln 2 , 2.5km kλ= =                    (19) 

3.4. Inference of (mR, sc) 

After cm  is estimated, we use the method of maximum likelihood estimation 
(MLE) to infer ( )R c,m s , the deterministic human reaction time and the stan-
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dard deviation of ct . The inference is based on a date set  

( ){ }time , , 1, 2, , 1withj j jID t j Nη= = =
 where jη  is the prescribed exposure 

duration and jt  the observed flight action time in those tests with 1jI = . The 
flowchart from the input of data set and cm  to the inference output of 
( )R c,m s  is illustrated in the bottom row of Figure 4. 

We construct the formulation for inferring ( )R c,m s . Since cm  is now 
known (inferred in subsection 3.3), we write the PDF and CDF of the Weibull 
distribution as parameterized in ( )c ,m k  with k as the unknown parameter, in-
stead of parameterized in ( ),kλ . 

( ) ( ) ( )
1

c c c

ln 2
; exp ln 2 , 0

k k

W

k t tt k t
m m m

ρ
−     

 = − >   
     

       (20) 

( ) ( )
c

; 1 exp ln 2 , 0
k

W
tF t k t

m

  
 = − − > 
   

             (21) 

When the prescribed exposure duration is η , the time of observed flight ac-
tion (in those tests with occurrence of flight action) has the conditional density 
given in (15). The conditional density depends on parameters ( )R ,m k , which 
are the inference variables in our formulation. For clarity, we include ( )R ,m k  
explicitly in the notation of conditional density. 

( ) ( )( ) ( ) ( )( ) ( ) ( )
( )
( )

F c R c c cR R R| | |

R
R R

; , ; , ;

;
, for only

;
0, otherwise

t t m t t t

W

W

t m k t m k t m k

t m k
m t m h

F k

η η ηρ ρ ρ

ρ
η

+ < <= = −

 −
< < += 




     (22) 

Given data set timeD  of observed flight action times from those tests with the 
occurrence of flight action ( 1jI = ), the log-likelihood as a function of ( )R ,m k  
is 

( )
( )
( ) ( ) ( )R

R 111R time

;
ln , max min

, ; ;

, otherwise

jjj

W j
j j jIII W j

t m k
t m t

m k D F k

ρ
η

η ===

 −
 − < <= 

−∞

∑


 (23) 

The maximum likelihood estimate for ( )R ,m k  is 

( ) ( )
( )

R
R R time,

ˆˆ , arg max , ;
m k

m k m k D=                  (24) 

Once k̂  is available, the standard deviation cs  is calculated according to (11) 

( )
( ) ( )2

c
c ˆ1

ˆ ˆ1 2 1 1
ln 2 k

m
s k k= Γ + −Γ +               (25) 

In (23), the correct domain of the log-likelihood in variable Rm  is 

( ) ( )R 11
max min

jj
j j jII

t m tη
==

− < <                   (26) 

which is affected by both the observed flight action time jt  and the prescribed 
exposure duration jη . The maximization of log-likelihood in (24) is subject to 
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constraint (26). Note that constraint (26) is not naturally implied in the analyti-
cal expression of ( )R ;W t m kρ −  given in (20). Therefore, in a correct numerical 
implementation of MLE, constraint (26) needs to be enforced explicitly. 

It is worthwhile to point out that for a data set of N exposure tests, the sum-
mation in (23) contains less than N terms since not all tests of MoCS lead to oc-
currence of flight action. The fraction of tests with occurrence of flight action 
( 1jI = ) varies with the distribution of prescribed exposure duration { }jη . In a 
sequence of tests designed using the adaptive Bayesian method [11] [17], η  is 
selected sequentially based on the current posterior to maximize the inference 
accuracy for cm  given the total number of tests allocated. The sequence { }jη  
produced by the Bayesian method is a random walk of η  toward and then 
around the true value of median subjective threshold cm . With this Bayesian 
experimental design, the rate of flight action occurrence is approximately 50% 
(i.e. about 50% of exposure tests lead to 1jI = ). 

4. Numerical Tests 
4.1. Generating Artificial Data Sets 

Recall that in our model described in section 2, the subjective threshold on ex-
posure duration for flight action ( ct ) is a random variable while the human reac-
tion time ( Rm ) is a deterministic quantity. In each individual test based on the 
method of constant stimuli (MoSC), given the prescribed exposure duration jη , 
the binary outcome regarding the occurrence of flight action ( jI ) and the time 
of observed flight action if it occurs ( jt ) are completely determined by the rea-
lized sample of ( )c j

t  in that particular test. 

( )
( )

1 if

0 if
c jj

j
c jj

t h
I

t h

 <= 
>

                     (27) 

( )c R if 1j jj
t t m I= + =                     (28) 

An artificial data set ( ){ }, ,j j jD I tη=  consisting of N exposure tests is gen-
erated by drawing N independent samples of random variable ct . 

In our numerical tests, we examine the performance of the inference method 
described in section 3 on artificial data sets generated from 6 distribution types 
for ct . 
• Weibull distribution 
• Log-normal distribution 
• Truncated normal distribution 
• Gamma distribution 
• Triangular distribution 
• Uniform distribution 

4.2. 6 Distribution Types for tc Used in Data Generation 
4.2.1. Weibull Distribution 
The Weibull distribution has been described in subsection 3.2. In particular, we 
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established that the mapping from ( ),kλ  to ( )c c,m s  is numerically invertible. 

4.2.2. Log-Normal Distribution 
The PDF and CDF of the log-normal distribution are 

( ) ( ) ( )( ) ( )2 2
c c~ Log-normal , , ln ~ ,t t Nω µ σ ω µ σ         (29) 

( )
c

1 ln , 0t
tt t

t
µρ φ

σ σ
− = > 

 
                 (30) 

( )
c

ln , 0t
tF t tµ
σ
− = Φ > 

 
                  (31) 

where µ  and 2σ  are respectively the mean and the variance of ( )( )cln t ω . 
Functions ( )sφ  and ( )sΦ  are the PDF and CDF of the standard normal dis-
tribution. 

( ) 2 21( e
2

ssφ −

π
=                       (32) 

( ) ( ) 1d erf 1
2 2

s ss v vφ
−∞

  
Φ = = +  

  
∫               (33) 

The standard normal CDF ( )sΦ  is expressed in terms of the error function 
( )erf s  defined as 

( ) 2

0

2erf e d
s us u−

π
≡ ∫

 
The mean, median, and standard deviation of ct  are 

( )
2

c exp
2

E t σµ
 

= + 
   

( ) ( )c cmedian expm t µ≡ =                    (34) 

( ) ( )
2

2
c cstd exp exp 1

2
s t σµ σ

 
≡ = + − 

 
             (35) 

The mapping from ( ),µ σ  to ( )c c,m s  is invertible. The inverse mapping is 
( )cln mµ =  

( ) ( )2
c cln 1 1 4 ln 2s mσ  = + + − 

   

4.2.3. Truncated Normal Distribution 
The PDF and CDF of the truncated normal distribution are 

( ) ( ) ( )2
c 0,~ ,t Nω µ σ∈ +∞                     (36) 

( ) ( ) ( )c 0,
1

t
tt I t

Z
µρ φ

σ σ +∞

− =  
 

                 (37) 

( ) ( ) ( ) ( )c 0,
1

t
tF t I t

Z
µ α

σ +∞

 −  = Φ −Φ    
              (38) 

where µ  and 2σ  are respectively the mean and the variance of the untrun-
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cated normal distribution. ( )sφ  and ( )sΦ  are the standard normal PDF and 
CDF given in (32) and (33). ( ) ( )0,I t+∞  is the indicator function of interval 
( )0,+∞  defined as 

( ) ( )
( )

0,

1 if 0,
0 otherwise

t
I t+∞

∈ +∞
≡ 


                  (39) 

Quantities Z and α  are defined in terms of µ  and σ  as 

( )1 ,Z µα α
σ
−

≡ −Φ ≡                     (40) 

The mean, median, and standard deviation of ct  are 

( ) ( )
c ,E t

Z
φ α

µ σ= +
 

( ) ( )1
c c

1
median

2
m t

α
µ σ − Φ + 

≡ = + Φ  
 

             (41) 

( ) ( ) ( ) 2

c cstd 1s t
Z Z

αφ α φ α
σ

 
≡ = + −  

 
              (42) 

where ( )1 p−Φ  is the inverse function of ( )sΦ , and from (33), it has the ex-
pression 

( ) ( )1 2 erfinv 2 1p p−Φ = −                   (43) 

The mapping from ( ),µ σ  to ( )c c,m s  is numerically invertible. 

4.2.4. Gamma Distribution 
The PDF and CDF of the gamma distribution are 

( ) ( )c ~ gamma ,t kω λ                      (44) 

( ) ( )c

11 exp , 0
k

t
t tt t

k
ρ

λ λ λ

− −   = >   Γ    
             (45) 

( ) ( )c

1 , , 0t
tF t k t

k
γ

λ
 = > Γ  

                 (46) 

where k is the shape parameter and λ  the scale parameter of the gamma dis-
tribution. ( ),k sγ  is the lower incomplete gamma function defined as 

( ) 1
0

, e d
s k uk s u uγ − −≡ ∫                      (47) 

The mean, median, and standard deviation of ct  are 

( )c ,E t kλ=  

( ) ( )
1

c c
1median ,

2
m t k

k
λγ −  

≡ =   Γ 
               (48) 

( )c cstd ,s t kλ≡ =                       (49) 

where ( )1 ,k zγ −  is the inverse function of ( ),k sγ  with respect to variable s. It 
satisfies 
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( )( ) ( )( )1 1, , , , ,k k z z k k s sγ γ γ γ− −= =               (50) 

The mapping from ( ),kλ  to ( )c c,m s  is numerically invertible. 

4.2.5. Triangular Distribution 
The PDF and CDF of the triangular distribution are 

( ) ( )c ~ triangular , ,t a b cω                    (51) 

( ) ( )
( )( ) [ ] ( )

( )
( )( ) ( ] ( )c , ,

2 2
t a c c b

x a b x
t I t I t

b a c a b a b c
ρ

− −
= +

− − − −
        (52) 

( ) ( )
( )( ) [ ] ( )

( )
( )( ) ( ] ( ) ( ) ( )c

2 2

,, ,1t ba c c b

x a b x
F t I t I t I t

b a c a b a b c +∞

 − −
 = + − +
 − − − − 

 (53) 

where a is the lower limit, ( ),b a∈ +∞  the upper limit, and ( ),c a b∈  the 
mode of the triangular distribution. We consider the case of ( ) 2c a b≤ +  (i.e., 
the distribution is symmetric or right-skewed). The mean, median, and standard 
deviation of ct  have the expressions below. 

( ) ( )c
1 ,
3

E t a b c= + +
 

( ) ( )( )
c cmedian

2
b a b c

m t b
− −

≡ = −               (54) 

( ) 2 2 2
c c

1std ,
3 2

s t a b c ab ac bc≡ = + + − − −            (55) 

The general triangular distribution has 3 parameters a c b≤ ≤ . In order to 
map ( )c c,m s  back to parameters, we reduce the number of parameters to 2. 
We select ( ),b c  as independent parameters and set parameter a as a function 
of ( ),b c  by enforcing a symmetric triangular distribution or a right-skewed 
distribution subject to constraint 0a ≥ . 

( ) ( ) ( )2 if 2 0
, =

0 otherwise
c b c b

a b c
− − ≥


  

In this subclass of triangular distributions parameterized by ( ),b c , the map-
ping from ( ),b c  to ( )c c,m s  is numerically invertible. 

4.2.6. Uniform Distribution 
The PDF and CDF of the uniform distribution are 

( ) ( )c ~ uniform ,t a bω                     (56) 

( ) [ ] ( )c ,
1

t a bt I t
b a

ρ =
−

                     (57) 

( ) [ ] ( ) ( ) ( )c ,,t ba b
t aF t I t I t
b a +∞

− = + − 
               (58) 

where a is the lower limit and ( ),b a∈ +∞  the upper limit of the uniform dis-
tribution. The mean, median, and standard deviation of ct  are 
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( ) ( )c
1 ,
2

E t a b= +
 

( ) ( )c c
1median
2

m t a b≡ = +                   (59) 

( ) ( )c c
1std

2 3
s t b a≡ = −                    (60) 

The mapping from ( ),a b  to ( )c c,m s  is invertible. The inverse mapping is 

c c3 ,a m s= −  

c c3b m s= +  
For c c 1 3s m > , however, the inverse mapping yields a uniform distribu-

tion with 0a < , which is invalid for describing ct  since the exposure duration 
and the subjective threshold on the exposure duration are always positive. 

4.2.7. Graphs of the 6 Distribution Types 
In our numerical simulations below, we test the inference method on data sets 
generated from the 6 distribution types described above. In each distribution 
type, we explore 4 cases of different relative distribution widths as measured by 

c cs m . Since the problem is invariant up to a constant scaling, in the data gen-
eration, we fix c 2m =  and examine the cases of c 0.25s = , 0.5, 1, and 1.5. In 
the case of c 1.5s = , we use only 5 distributions, excluding the uniform distribu-
tion since it gives an invalid distribution protruding to 0t < . The graphs of 
PDF 

ct
ρ  are shown in the 6 panels of Figure 5, one panel for each of the 6 dis-

tribution types. Each panel contains 4 graphs of 
ct

ρ , one for each value of cs , 
except the bottom right panel (the uniform distribution), which contains only 3 
graphs. 

4.3. Monte Carlo Simulations and Results 
4.3.1. Simulation Parameters and Procedures 
We generate artificial data sets from the 6 distribution types listed above. In data 
generation, the true non-dimensional values of cm , cs  and Rm  are set to 

( ) ( ) { } ( )e e e
c c R2, 1.5,1,0.5,0.25 , 1m s m= = =  

This set of non-dimensional values is consistent with the physical situation 
where the subjective threshold is c ~ 0.4 st , the human reaction time 

R ~ 0.2 sm  and the time scale for non-dimensionalization scale ~ 0.2 st . It is 
important to emphasize that these true values are used only in data generation 
and in evaluating the performance of inference method (by comparing the in-
ferred values to these true values). These true values are unknown in the infe-
rence process, which uses only the artificial data sets generated. 

As described in our previous study [11], a set of N exposure tests is designed 
sequentially using the adaptive Bayesian method. Specifically, the exposure dura-
tion for the next test jη  is calculated based on the current posterior of the un-
known cm  (which is viewed as a random variable in the Bayesian framework).  
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Figure 5. Six distribution types combined with four values of cs  yield 23 distributions for ct . c 1.5s =  is invalid for the uni-
form distribution. c 2m =  is fixed in all distributions. 
 

Once jη  is determined and the true distribution for ct  is selected (out of the 6 
distributions), we sample random variable ct  and generate the binary outcome 
and the observed flight action time ( ),j jI t  according to (27) and (28). 
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The inference of cm  and ( )R c,m s  is carried out in two steps (see the sche-
matic illustration in Figure 4). In the inference of cm , only the data set of bi-
nary outcomes ( ){ },j jIη  is used. The subsequent inference of ( )R c,m s  uti-
lizes the data set of observed flight action times ( ){ },j jIη  as well as the already 
estimated cm . Each Monte Carlo run consists of generating one data set of N 
tests and carrying out inference on the data set to produce one sample of each 
inferred parameter. Histograms, scatter plots and root-mean-square (RMS) er-
rors of the inferred values are calculated based on 1000M =  Monte Carlo re-
peats. 

4.3.2. Inference Results of mc 

cm  is inferred from data of binary observations ( ){ },j jIη . 

We first exhibit in two figures the histograms of inferred cm  using data sets 
generated from the 6 distributions with ( )e

c 1s = . Figure 6 shows the results on 
data from i) Weibull (top row), ii) log-normal (middle row) and iii) truncated 
normal distribution (bottom row); Figure 7 displays the results on data from iv) 
gamma (top row), v) triangular (middle row) and vi) uniform distribution (bot-
tom row). Each histogram is based on 1000M =  Monte Carlo repeats (i.e., 
based on 1000 samples of inferred cm , one sample from each Monte Carlo re-
peat). In all situations, the inference formulation is based on the Weibull distri-
bution as described in section 3. In Figure 6 and Figure 7, the left column is 

80N =  (number of exposure tests in the data set of each Monte Carlo repeat), 
the right column 320N = . A comparison of the two columns indicates that the 
inferred cm  converges to the true value as the sample size is increased. 

Next, we examine the RMS error of the inferred cm , defined below and cal-
culated in simulations based on 1000M =  Monte Carlo repeats. 

( ) ( )( )c

2e
c c

1

1 ˆerr
M

m i
i

m m
M =

≡ −∑                  (61) 

The RMS errors of inferred cm  vs N are plotted in the 6 panel of Figure 8. 
Each panel is labeled with the distribution used in data generation, and contains 
4 curves corresponding to the 4 values of ( )e

cs  used in data generation. For all 
data sets, the RMS error decreases as the sample size N is increased, and at a 
fixed N, the RMS error is higher on a data set generated using a larger value of 
( )e
cs . That is, when the uncertainty in subjective threshold ct  is larger in the 

underlying data, the inference error is higher. 
In Figure 9, we compare directly the RMS errors of inferred cm  vs N on da-

ta from the 6 distributions. The inference errors on data from the uniform dis-
tribution are somewhat larger than those from other 5 distributions. This is ex-
pected since the uniform distribution is the farthest from the inference model 
(see graphs of PDFs in Figure 5). Figure 8 and Figure 9 demonstrate that the 
inference of median subjective threshold cm  based on the Weibull distribution 
converges to the correct value even when the underlying true model of the data 
deviates from the inference model. 
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Figure 6. Histograms of inferred cm  on data from 1) Weibull (top row), 2) log-normal (middle row) and 3) truncated normal 
distribution (bottom row). Left column: 80N = ; right column: 320N = . Each histogram is based on 1000 Monte Carlo repeats. 
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Figure 7. Histograms of inferred cm  on data from 4) gamma (top row), 5) triangular (middle row) and vi) uniform distribution 
(bottom row). Left column: 80N = ; right column: 320N = . Each histogram is based on 1000 Monte Carlo repeats. 
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Figure 8. The RMS errors of inferred cm  vs N on data generated from the 6 distributions (one panel for each distribution) with 

the 4 values of ( )e
cs . 
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Figure 9. Comparison of RMS errors in inferred cm  vs N on data from the 6 distributions. Left: results on data with ( )e

c 1s = ; 

right: ( )e
c 0.5s = . 

4.3.3. Inference Results of (mR, sc) 
( )R c,m s  is inferred from data of observed flight action times  

( ){ }, with 1j j jt Iη = . We explore the scatter plots of inferred ( )R c,m s  using 
data sets generated from the 6 distributions with ( )e

c 1s = . Figure 10 presents the 
results on data from 3 of the 6 distributions: 1) Weibull (top row), 2) log-normal 
(middle row) and 6) truncated normal distribution (bottom row); Figure 11 
displays the results on data from the other 3 distributions: 4) gamma (top row), 
5) triangular (middle row) and 6) uniform distribution (bottom row). 

Each scatter plot is based on 1000M =  Monte Carlo repeats. In all situa-
tions, the inference formulation is based on the Weibull distribution as de-
scribed in section 3. In Figure 10 and Figure 11, the left column is 80N = , the 
right column 320N = . Note that N is the number of exposure tests in the data 
set of each Monte Carlo repeat. In the Bayesian experimental design intended for 
optimizing the inference of cm , about half of tests produce no flight action. 
Only those tests with the occurrence of flight action are relevant in the inference 
of ( )R c,m s . As a result, the effective sample size for inferring ( )R c,m s  is 
about N/2. A comparison of the two columns indicates that as the sample size is 
increased, the inferred Rm  (the human reaction time) converges to the true 
value while the inferred cs  (standard deviation of the subjective threshold) 
converges to an incorrect value. For example, for data from the log-normal dis-
tribution, the inferred cs  converges to a value lower than the true ( )e

c 1s = . 
To investigate the convergence of inferred Rm , we plot RMS errors of in-

ferred Rm  vs N in the 6 panels of Figure 12. Each panel is labeled with the dis-
tribution used in data generation, and contains 4 curves corresponding to the 4 
values of ( )e

cs  used in data generation. For all data sets, the RMS error of in-
ferred Rm  decreases as the sample size N is increased, and at a fixed N, the 
RMS error of inferred Rm  is higher on a data set generated using a larger value 
of ( )e

cs . That is, when the uncertainty in subjective threshold ct  is larger in the  

https://doi.org/10.4236/jamp.2022.1011220


H. Y. Wang et al. 
 

 

DOI: 10.4236/jamp.2022.1011220 3338 Journal of Applied Mathematics and Physics 
 

 

 
Figure 10. Scatter plots of inferred ( )R c,m s  on data from 1) Weibull (top row), 2) log-normal (middle row) and 3) truncated 

normal distribution (bottom row). Left column: 80N = ; right column: 320N = . Each scatter plot is based on 1000 Monte Car-
lo repeats. 

https://doi.org/10.4236/jamp.2022.1011220


H. Y. Wang et al. 
 

 

DOI: 10.4236/jamp.2022.1011220 3339 Journal of Applied Mathematics and Physics 
 

 

 
Figure 11. Scatter plots of inferred ( )R c,m s  on data from 4) gamma (top row), 5) triangular (middle row) and 6) uniform dis-

tribution (bottom row). Left column: 80N = ; right column: 320N = . Each scatter plot is based on 1000 Monte Carlo repeats. 
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Figure 12. The RMS errors of inferred Rm  vs N on data generated from the 6 distributions (one panel for each distribution) with 

the 4 values of ( )e
cs . 
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Figure 13. Comparison of RMS errors in inferred Rm  vs N on data from the 6 distributions. Left: results on data with ( )e

c 1s = ; 

right: ( )e
c 0.5s = . 

 
underlying data, the inference error of human reaction time Rm  is higher. 

In Figure 13, we compare directly the RMS errors of inferred Rm  vs N on 
data from the 6 distributions. The inference errors are comparable on data from 
all 6 distributions, with data from the uniform distribution yielding slightly 
larger inference errors. Figure 12 and Figure 13 demonstrate that the inference 
of human reaction time Rm  based on the Weibull distribution converges to the 
correct value even when the underlying true model of the data deviates from the 
inference model. 

5. Concluding Remarks 

In this study, we consider the psychophysical experiments in which a test subject 
is exposed to a stimulus source for a prescribed duration and the test subject’s 
response is binary. For example, the occurrence of flight action is binary when a 
subject is exposed to a millimeter wave beam for a prescribed duration. The bi-
nary outcome is determined by the prescribed exposure duration and a subjec-
tive threshold of the test subject on exposure duration. To include the biovaria-
bility, we view the subjective threshold as a random variable. In an exposure test, 
if the realized sample value of subjective threshold is lower than the prescribed 
duration, flight action is initiated at the time of subjective threshold, which is 
not measurable. The actuation of flight action is observed at a later time, which 
is recorded in experiments. The delay from the initiation time to the actuation 
time of flight action is the human reaction time, which is not measurable. Here, 
we view the human reaction time as an unknown deterministic quantity. The 
case of a random variable human reaction time will be investigated in a subse-
quent study. We consider the experiments based on the method of constant sti-
muli (MoCS) in which the exposure duration is prescribed before each test. This 
is different from the experiments based on the method of limits (MoL) in which 
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the beam stimulus is kept on until the observed actuation of flight action. In a 
test of MoL, flight action always occurs; in the observed actuation time of flight 
action, the subjective threshold and the human reaction are tangled together, 
making it difficult to infer either one. In contrast, in a test based on MoCS, flight 
action may or may not occur; the observed binary outcome is independent of 
human reaction time and it provides a binary description of the realized sample 
of subjective threshold in that test, making it possible to estimate the median 
subjective threshold from a sequence of properly designed tests. 

In our modeling framework, the human reaction time and the distribution of 
random subjective threshold are unknown. The primary objective of the current 
study is to estimate the human reaction time from data of prescribed exposure 
durations, binary outcomes and actuation times of flight action (if it occurs), 
measured in a sequence of tests. We model the random subjective threshold ct  
as a Weibull distribution. We estimate the human reaction time Rm  from data 
in two inference steps. In step one, we use only the data of binary outcomes, 
which excludes the effect of human reaction time. We fix the shape parameter of 
Weibull distribution at 2.5k =  and use the maximum likelihood estimation 
(MLE) to infer the median subjective threshold cm  from data of binary out-
comes. In method of constant stimuli, a critical part of experimental design is to 
specify the exposure duration in each test. In our previous study [11], we used an 
adaptive Bayesian method to select the exposure duration for the next test based 
on the current posterior of the unknown median cm . This experimental design 
produces the optimal inference on the median subjective threshold cm  and has 
been used in real exposure tests. In the current study, we adopt this experimental 
design. Once cm  is estimated, in step two of the inference, we estimate the 
human reaction time Rm  from data of observed actuation times of flight action. 
We parameterize the Weibull distribution by the known median cm  and the 
unknown standard deviation cs ; we use the maximum likelihood estimation 
(MLE) to infer the two unknowns: Rm  and cs , both of which affect the distri-
bution of observed actuation times of flight action. 

We run Monte Carlo simulations to test the performance of the proposed in-
ference method. Recall that the inference formulation is based on the Weibull 
distribution. To explore its robustness, we test the inference method on data 
generated from 6 different distribution types as the underlying true model of 
random subjective threshold. To assess the effect of randomness of the subjective 
threshold, we test the inference method on data generated with 4 values of rela-
tive distribution width of subjective threshold: { }c c 0.125,0.25,0.5,0.75s m =  
in each model. In each case, to study the convergence of the inference, we run 
the inference method on data with sample size ranging from 80N =  to 

2560N = . For each set of (model distribution, simulation parameters), we carry 
out 1000 Monte Carlo repeats to generate 1000 samples of each estimated para-
meter. The convergence is examined by plotting the RMS inference error vs 
sample size (N). Based on the results of extensive numerical tests, we draw sev-
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eral comments, observations and conclusions on the inference method. 
• The inference of median subjective threshold ( cm ) uses only the data of bi-

nary outcomes in the method of constant stimuli. The inferred cm  con-
verges to the correct value as the sample size increases, even when the un-
derlying true model of random subjective threshold deviates from the infe-
rence model (Weibull distribution). 

• The inference of human reaction time ( Rm ) utilizes the data of observed 
actuation times of flight action (if it occurs). The inferred Rm  converges to 
the correct value as the sample size increases, even when the underlying true 
model of random subjective threshold deviates from the inference model 
(Weibull distribution). 

• The standard deviation of subjective threshold ( cs ) is a by-product in the in-
ference of Rm . However, when the underlying true model of random subjec-
tive threshold deviates from the inference model, the inferred cs  converges 
to an incorrect value. 

• The robustness of inferring both the median subjective threshold cm  and 
the human reaction time Rm  makes the inference method applicable to real 
experimental data in which the underlying true model of the random subject 
threshold is unknown. In contrast, the inference of standard deviation of 
subjective threshold ( cs ) depends on knowing the underlying true model, 
which makes it impractical. 

• The inference errors of cm  and Rm  decrease as the standard deviation of 
subjective threshold cs  is reduced. That is, for a hypothetical system with a 
lower uncertainty in the subjective threshold, the inference errors would be 
smaller. 

The inference discussed above utilizes the data collected in a sequence of ex-
posure tests designed with the objective of optimizing the inference of only the 
median subjective threshold cm . We extend the usage of this same data set to 
infer the human reaction time Rm  in a two-step procedure. This approach is 
practical and operationally important since data sets of this type already exist 
from real experiments. Now suppose we revise the experimental design with the 
objective of optimizing the inference of both cm  and Rm . Will the resulting 
sequence of tests be significantly different from the current one in terms of the 
distribution of prescribed exposure durations? Will the new experimental design 
notably improve the inference accuracy of cm  and Rm  over the current one? 
Will the inference accuracy improve if we infer cm  and Rm  simultaneously 
instead of in a two-step procedure? These questions will be explored in a future 
study. 
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