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Abstract 
The chess game provides a very rich experience in neighborhood types. The 
chess pieces have vertical, horizontal, diagonal, up/down or combined move-
ments on one or many squares of the chess. These movements can associate 
with neighborhoods. Our work aims to set a behavioral approximation be-
tween calculations carried out by means of traditional computation tools such 
as ordinary differential equations (ODEs) and the evolution of the value of 
the cells caused by the chess game moves. Our proposal is based on a grid. 
The cells’ value changes as time pass depending on both their neighborhood 
and an update rule. This framework succeeds in applying real data matching 
in the cases of the ODEs used in compartmental models of disease expansion, 
such as the well-known Susceptible-Infected Recovered (SIR) model and its 
derivatives, as well as in the case of population dynamics in competition for 
resources, depicted by the Lotke-Volterra model. 
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1. Introduction 

Though forms of the board game, now known as chess, have existed since the 
sixth century, it took nearly a thousand years for the pieces used in the game to 
reach their modern form. While the rules governing these pieces may be rela-
tively straightforward, the relationships between them are complex [1]. In this 
work, we are interested in the movement of the different pieces: pawn, knight, 
bishop, rook, queen and king.  

Table 1 summarizes the rules of chess. As we see, the main moves are vertical 
(forward/backward), horizontal (forward/backward), diagonal (forward/backward),  

How to cite this paper: Signes-Pont, M.T., 
Boters-Pitarch, J., Cortés-Plana, J.J. and Mo-
ra-Mora, H. (2022) Approximating Ordi-
nary Differential Equations by Means of the 
Chess Game Moves. Journal of Applied Ma-
thematics and Physics, 10, 3240-3263. 
https://doi.org/10.4236/jamp.2022.1010215 
 
Received: August 28, 2022 
Accepted: October 25, 2022 
Published: October 28, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.1010215
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.1010215
http://creativecommons.org/licenses/by/4.0/


M. T. Signes-Pont et al. 
 

 

DOI: 10.4236/jamp.2022.1010215 3241 Journal of Applied Mathematics and Physics 
 

Table 1. The rules of chess. 

   
The King 

may move one square in any 
direction, so long as no piece 
is blocking his path 

The Queen 
may move any number of 
square, straight or diagonally 
in any direction 

The Rook 
may move in a straight line, 
any number of squares, ho-
rizontally or vertically 

   
The Bishop 

may move any number of 
squares diagonally 

The Knight 
can jump to any square in L 
shape. This is the only piece 
that can jump over a piece in 
its way. 

The Pawn 
on its first move may move 
either one or two squares 
straightforward. After its first 
move it may only advance 
one square at a time. 

 
all of them with one or more than one square length, and finally Knight (L) 
moves in a combination of vertical/horizontal moves, with 1 and 2 or 2 and 1 
squares length, respectively. 

In terms of cellular automata [2], the von Neumann neighborhood (or 4-neigh- 
borhood) is classically defined on a two-dimensional square grid and is composed 
of a central cell and its four adjacent cells that are at a Manhattan distance of 1. 
It is named after John von Neumann, who used it to define both the von Neumann 
cellular automaton and the universal constructor within it. This recalls the rook 
basal move (R) of the chess game when the step length is equal to one square. 
The second most used neighborhood is the Moore neighborhood. It is named 
after Edward F. Moore, a pioneer of cellular automata theory. In cellular auto-
mata, the Moore neighborhood is defined on a two-dimensional square grid and 
is composed of a central cell and the eight cells that surround it (8-neighbours) 
that are at a Chebyshev distance of 1. It is similar to the notion of 8-connected 
pixels in computer graphics. The well-known Conway’s Game of Life, for exam-
ple, uses the Moore neighborhood. This could be compared to the king move of 
the chess game (K). In this paper, we also define the Diagonal neighborhood, 
based on the bishop basal move (B) with a step length equal to one, and the L 
neighborhood, shaped on the knight moves. Figure 1 shows four neighborhoods 
(R, K, B and L) that can be implemented by the basal moves of the chess game. 
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Figure 1. Basal moves of the chess game implementing R, K, B and L neighborhoods. 
 
The central cell is set to 1 and then, the 1 value extends to the neighbor cells that 
are initially set to 0. 

In this paper, we are interested in exploring the capabilities of the movements 
of the chess pieces to define a new way to perform operations that provide a be-
havioral approximation to the calculations carried out by means of traditional 
computation tools such as ordinary differential equations (ODEs). Our proposal 
is based on a grid. The cells value changes as time pass depending on both a 
neighborhood and an update rule. This framework succeeds in applying real da-
ta matching in the cases of the ODEs used in compartmental models of disease 
expansion, such as the well-known Susceptible-Infected Recovered (SIR) model 
and its derivatives, as well as for population dynamics in competition for re-
sources, such as the Lotke-Volterra model.  

Following the Introduction, Section 2 presents the rules for operating in the 
grid. Section3 provides examples of running spread patterns with their graphical 
representation. Section 4 completes the model by adding the delays in the appli-
cation of the rules. Section 5 is dedicated to reporting on the state of the art of 
the ODE and discusses recent advances in improvements. Three examples are 
presented related to SIR, SIS and Lotka-Volterra models. Section 6 summarizes 
and presents concluding remarks and future lines of investigation. 

2. Building Update Rules  

Each cell of the grid has an initial value which is 0 or 1. An update rule is needed 
when having to define the values of the cells at any time. In this work, the calcu-
lation step is defined as a generation, which is a generic time that recalls the 
evolution of living beings. The generation may be worth one minute, one hour, 
or one year, depending on the dynamics of the application considered. Criteria 
for the changes in values must also be provided. The changes in the cells can be 
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triggered by the change of a cell, which “infects” its neighbor cells. These neigh-
bor cells follow the same “infection” pattern and spread the changes throughout 
all grid later. Nevertheless, some changes may be spontaneous. 

We can define 24 = 16 different update rules. The formal definition is as follows: 
Let “a” be a cell in the grid, and f(a) its value (f(a) = 0 or f(a) = 1), 
Let V(a) be the set of the neighbors of a cell, 
Let Um be an update rule ( [ ]0,15m∈ ). 

( ) ( ) ( ) ( ), ,mb b V a U a b f a f b∀ ∈ = ∗  

This operator means that f(a) updates the value of the cell b, f(b). 
The initial value f(a) is given or spontaneously updated. 

 

 
 

The 16 different update rules Um come straightforward from the following 
consideration: 

( ) ( ) ( ),  m iU a b f a f b m= ∗ = , with [ ]1,3i∈  

The sequence m = m3 m2 m1 m0 defines the possible values for f(a) * f(b) when 
f(a) and f(b) take values in [0, 1].  

As an example, U7 corresponds to m3 = 1, m2 = 1, m1 = 1, m0 = 0, that is to say:  

3 1 1 1m = ∗ = ; 

2 1 0 1m = ∗ = ; 

1 0 1 1m = ∗ = ; 

and 0 0 0 0m = ∗ = . 

3. Running a Spread Pattern 

The running conditions of a spread pattern are: 
● The square grid has a finite size, n × n. 
● The spread S is characterized by (m, V), where 40, 2m  ∈    and  

[ ]R,K,B,LV ∈ . 
● The spread can go forward and/or backward. 
● The initial values of the cells in the grid are known. 

3.1. Graphical Representation of S (14, R) 

We consider 10 × 10 and 100 × 100 grids. The spread defines two different 
classes of cells, namely Susceptible (value = 0) and Infected (value = 1). At gen-
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eration = 0, the central cell a has a value f(a) = 1 (infected) and all other cells in 
the lattice are set to 0 (susceptible). The scheme of this spread is given by the 
rule U14: 

m3 = 1, this means 1 × 1 = 1; 

m2 = 1, this means 1 × 0 = 1; 

m1 = 1, this means 0 × 1 = 1; 

m0 = 0, this means 0 × 0 = 0. 

R neighborhood has been chosen. Figure 2 shows the spread pattern of S(14, 
R) at any time.  

We can make some remarks: 
The same behavior could have been observed with a forward/backward spread 

because U14 avoids backward execution to have any effect on the spread. The 
spread follows a diamond shape evolution, see Figure 1. The number of changes 
N is carried out by the recursive Equation (1): 

1 4g gN N g−= +                          (1) 

g stands for the generation number and N0 = 1                  
As Nmax = n × n (grid size), the number Ng converges to a horizontal asymp-

tote equal to Nmax. The grid size has no effect on the spread except for the delay 
in achieving Nmax.  

3.2. Graphical Representation of S(14, K) 

We consider a 10 × 10 and 100 × 100 grids.  
At generation = 0, the central cell a has a value f(a) = 1 and all other cells in 

the grid are set to 0.  
We consider first a forward spread for K neighborhood. 
The scheme of this spread is given by the rule U14 (see section 3.1). 
Figure 3 shows the spread pattern of S(14, K) at any time. 
We can make some remarks: 
The same behavior could have been observed with a forward/backward spread 

because U14 avoids backward execution to have any effect on the spread. The  
 

 
Figure 2. Spread pattern of S(14, R) at any time in grids 10 × 10 and 100 × 100. 
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Figure 3. Spread pattern of S(14, K) at any time in grids 10 × 10 and 100 × 100. 
 
spread follows a square shape evolution, see Figure 1. The number of changes 
Ng is carried out by the recursive Equation (2): 

1 8g gN N g−= +                            (2) 

g is the generation number and N0 = 1  
As Nmax = n × n (grid size), the number Ng converges to a horizontal asymp-

tote.  
The grid size has no effect on the spread, except for the delay to achieve Nmax. 

3.3. Graphical Representation of S(14, L) 

The running conditions are the same as in 3.1 and 3.2. 
Figure 4 shows the spread pattern of S (14, L) at any time. 
The spread follows a regular square alternate shape evolution. The number of 

changes N is carried out by the recursive Equation (3): 
2 1

1 2 g
g gN N +

−= +                           (3) 

g is the generation number and N0 = 1.  
As Nmax = n × n (grid size), the number Ng converges to a horizontal asymp-

tote.  
The representation of S(14, B) has been omitted because it is the same as for 

S(14, R). The comparison between the three neighborhoods shows the evolution 
in R neighborhood is smooth and slow compared with K and L neighborhoods. 
This is particularly clear when we observe the time (generation) to achieve the 
maximum values for infected cells, see Figure 5.  

4. Introducing Delays 

In Section 3, we have considered the most basal spread model when the update 
rule applies at each generation. We also assumed that the update rule acts only 
once on the cell values. However, the grid model allows to have more than one 
update in a cell and to have delays between them. We can then consider a sus-
ceptible cell (f(a) = 0) that has been infected (f(a) = 1) and then is recovered (f(a) 
= 0) with a delay ΔT greater than one generation. We plot the spreads S(14, R), 
S(14, K) and S(14, L) with ΔT = 1, 2 or 3 generations. See Figure 6.  
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Figure 4. Spread pattern of S(14, L) at any time in grids 10 × 10 and 100 × 100. 
 

 
Figure 5. Graphical representation of the spreads S(14, R), S(14, K) and S(14, L) in a 10 × 
10 grid. 
 

We observe the peak of the infected population increases dramatically with 
the increase of the delay ΔT. The rate of the decay of the susceptible population 
as well as the rate of the recovering process also increases when the delay ΔT in-
creases. These variations are more drastic for K and L neighborhoods than for R 
neighborhoods. 

As follows, we consider a more complete pattern with two delays: ΔT stands 
for the delay between infection and healing and ΔT' is the delay between healing 
and the next infection. In this case, the spread has been implemented by the up-
date rule U13.  
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Figure 6. Plots of the spreads S(14, R), S(14, K) and S(14, L) with ΔT = 1, 2 or 3 genera-
tions. 

 
U13(1, 0) = 1 and U13(1, 1) = 1, this means the value 1 sets the neighbor cell to 1 
U13(0, 1) = 0 and U13(0, 0) = 1, this means value 0 triggers a change of the 

neighbor cell value. We now see Figure 7. 
Figure 7 shows the evolution of the number of susceptible and infected cells 

depending on the relationship between the duration of the disease ΔT and the 
delay between the healing and the next infection ΔT'. Three cases can be ob-
served: 

ΔT > ΔT': The evolution is faster and the intersection between S and I occurs 
earlier.  

The equilibrium value of I is greater than that of S 
ΔT = ΔT': S and I converge towards the same equilibrium value which is N/2. 
ΔT < ΔT': there is no intersection between S and I and the equilibrium value 

of S is greater than that of I. 

5. Ordinary Differential Equations (ODE) 

In mathematics, an ODE is a differential equation containing one or more func-
tions of one independent variable and the derivatives of those functions [3]. The 
term ordinary is used in contrast with the term partial in partial differential equ-
ation (PDE) which may be with respect to more than one independent variable  
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Figure 7. Plots of the spreads S(13, R), S(13, K) and S(13, L) with different combinations 
values of ΔT and ΔT'. 
 
[4]. ODEs arise in many contexts of mathematics to describe dynamically chang-
ing phenomena, evolution, and variation in social and natural sciences, such as 
physics and astronomy (celestial mechanics), meteorology (weather modeling), 
chemistry (reaction rates), biology (infectious diseases, genetic variation), ecol-
ogy and population modeling (population competition), economics (stock 
trends, interest rates and the market equilibrium price changes) [5]. Recently we 
can find several attempts which aim to improve the ODE resolution in order to 
better fit real-life data, especially in the field of computational biology. In [6], the 
authors introduce a complementary mathematical modeling strategy for situa-
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tions where classical ODE modeling is cumbersome or even infeasible, as in the 
case of cellular signaling pathways, because of the presence of the transient dy-
namics. The approach is based on the curve fitting of a tailored retarded tran-
sient function. This approach allows an alternative modeling approach of indi-
vidual time courses for large systems with few observables and offers a data-driven 
strategy for predicting the approximate dynamic responses by an explicit func-
tion that, in addition, facilitates subsequent analytical calculations. In [7], the 
authors improve the numerical simulation involved in the resolution of ODE 
when unknown parameters need to be inferred, as it occurs in the case of com-
plex mechanisms in systems biology. They analyze the impact of hyperparame-
ters on the ODE solver in terms of accuracy and computation time by studying 
142 published model cases and provide guidelines to determine which choices of 
algorithms and hyperparameters are generally favorable. This helps researchers 
in systems biology to choose appropriate numerical methods when dealing with 
ODE models. Reference [8] investigates the use of a single hidden layer Multi-
layer Perceptron to solve first and second order linear constant coefficient ODEs 
with initial conditions. A trial solution of the differential equation is written as a 
sum of two parts. The first part satisfies the initial or boundary conditions and 
contains no adjustable parameters. The second part involves a feed-forward sin-
gle layer perceptron to be trained to satisfy the differential equation. This me-
thod obtains satisfactory results in terms of convergence and accuracy when 
compared with analytic solutions and well-known numerical methods. In [9], the 
authors study a SEIQR (Susceptible-Exposed-Infectious-Quarantined-Recovered) 
in cases where the loss of immunity of previously infected and cured people may 
reasonably be ignored. Under that simplification, the SEIQR model decouples in 
two delay differential equations, so that only the S and I population equations 
need to be tackled. The authors seek useful different approximate solutions for 
ODEs, depending on the size of the outbreak, the rate of the self-recovery and 
the efficiency of quarantining. So, despite the underlying delay differential equa-
tion system being technically infinite dimensional, the authors demonstrate that 
a six-state Galerkin-based reduced order model for the system is sufficient to 
capture a wide range of solutions, i.e., the dynamics are effectively low-dimensional. 
In [10], the authors present a new modified Susceptible-Infected-Recovered (SIR) 
model which incorporates appropriate delay parameters leading to a more pre-
cise prediction of COVID-19 real-time data. The delay periods correspond to the 
duration of the incubational and recovery periods and produce a sensible and 
more accurate representation of the real-time data, as it appears in COVID-19. 
The efficacy of the newly developed SIR model is proven by comparing its pre-
dictions to real data obtained from four counties namely Germany, Italy, Ku-
wait, and Oman. Reference [11] studies the impact of environmental noise such 
as age, gender, constitution, mood or climate, on the spread of infectious diseas-
es in the prevention and control of infectious diseases. Under the conditions of 
an arbitrary initial value, the authors prove that the system exists a unique posi-
tive solution and give sufficient conditions caused by random environmental 
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factors leading to the extinction of infectious diseases. Moreover, they verify the 
conditions for the persistence of infectious diseases in the mean sense. Finally, 
they provide the biology interpretation and some strategies to control infectious 
diseases. 

5.1. The SIR Model 

The Susceptible-Infected-Recovered (SIR) model by Kermack and McKendricks 
is one of the simplest compartmental models, and many models are derivatives 
of this basic form [12]. The model stands for a population that is confined in 
three compartments: S for Susceptible, I for Infected and R for Recovered. When 
a susceptible and an infectious individual come into “infectious contact”, the 
susceptible individual contracts the disease and transitions to the infectious 
compartment. Then, the individuals who have been infected recover from the 
disease and enter the removed compartment or die. It is assumed that the num-
ber of deaths is negligible with respect to the total population. This model pro-
vides immunity, so recovered people are no more able to neither infect nor 
transmit the disease. This model is depicted by a system of ODE shown in Equa-
tion (4). Parameters β and γ stand for the rate of susceptible people that become 
infected and the rate of infected people who recover, respectively. This model is 
suitable to depict viral diseases in which once infected the individual acquires li-
felong immunity, such as measles, rubella, varicella, mumps or smallpox [13] [14]. 

d
d
d
d
d
d

S IS
t N
I IS I
t N
R I
t

β

β γ

γ

= −

= −

=

                          (4) 

Figure 8 shows the simulation of the SIR model for different values of para-
meters β and γ. 

We observe the number of Infected reaches a peak value at the crossing point 
between R and S. The value of the peak depends on the values of the parameters. 
When γ decreases, the peak is higher. When β increases the peak is higher and 
occurs before. Three different behaviors can be observed depending on the val-
ues of βr and γ. We can prove empirically that: 

* βr ≈ 4γ/3, the number of Susceptible decreases and the number of Recovered 
increases and they converge to the same equilibrium value equal to N/2. The 
number of Infected is very low. 

* βr < 4γ/3, the number of Susceptible decreases but it is always higher than 
the number of Recovered which decreases so, R and S have different equilibrium 
values. The gap between these values increases when γ increases.  

* βr > 4γ/3, the number of Susceptible decreases and becomes lower than the 
number of Recovered which increases. This means there is a crossing between 
the curves S and R before they reach the equilibrium value. The gap between the  

https://doi.org/10.4236/jamp.2022.1010215


M. T. Signes-Pont et al. 
 

 

DOI: 10.4236/jamp.2022.1010215 3253 Journal of Applied Mathematics and Physics 
 

 
Figure 8. Simulation of the SIR models for different values of parameters β and γ.      
 

 
Figure 9. Plots of different behavioral areas depending on γ and βr (SIR model). 

 
equilibrium values increases when γ decreases. The parameters β and γ have op-
posite effects: when β increases, the crossing point between S and R occurs be-
fore whereas it occurs later when γ increases. These cases are shown in Figure 9. 

We observe that Figure 8 falls in the B area shown in Figure 9. 
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● Example of a SIR model: Influenza epidemic in a boarding school in England 
(1978) 

In 1978, in [15], a study on an outbreak of influenza virus in a boarding 
school was reported. The school had a population of 763 children. Of these, 512 
were confined to bed during the epidemic, which lasted from January 22 to Feb-
ruary 4. It appears that an infected child started the epidemic on day 0. At the 
outbreak of the epidemic, none of the children had previously had influenza, so 
there was no resistance to infection. The raw data is collected from the graph 
provided by the reference. Bedridden children are the Infected group, convales-
cents are the Recovered group. The number of Susceptible has been calculated. 

In Figure 10, we see the typical shapes provided by our version of the SIR 
Model, shown in Figure 6. The best match corresponds to the case of S(14, L), 
with a duration of the disease equal to 1 generation. 

 

 
Figure 10. Counting of S, I and R in the case of an influenza epidemic in England, 1978. 

5.2. The SIS Model 

The deterministic SIS model is easily derived from the SIR model. It is solved 
with an ODE system shown in (5).  

d
d
d
d

S IrS I
t N
I IrS I
t N

β γ

β γ

= − +

= −
                       (5) 

The SIS model assumes that the population size N is closed and the incubation 
period of the infectious agent is instantaneous. The population is divided here 
into two health states: susceptible (S) and infected (I). There is no recovered 
state because the SIS model does not provide immunity; that is, individuals are 
immediately susceptible once they have recovered. The rate at which susceptible 
nodes become infected is the product of the number of contacts each node has 
per unit of time, r, and the probability of infection transmission per contact, β. 
The rate at which infected nodes become susceptible is γ. The total population 
size is N = S + I. This model is adequate to represent the case of diseases with 
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non-permanent immunity [16]. The analytical solution of the system is as fol-
lows, see Equations (6). 

( )
( )

( )

( ) ( )
0

1 1 e r t

N r
rI t

N r
r I

S t N I t

β γ

β γ
β
β γ

β
− −

−
=

 −
+ − 
 

= −

                 (6) 

As follows, Figure 11 represent the simulation of the deterministic SIS model 
for different combinations of parameters βr and γ. The horizontal axis is for 
time, the vertical axis is for the number of individuals.  

 

 
(a) 
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(b) 

Figure 11. (a) Simulation of the SIS deterministic model for N = 100, βr = 1, γ = 0.2; 0.5 
and 0.8. (b) Simulation of the SIS deterministic model for para 8 for N = 100, γ = 0.3 and 
βr = 1; 0.8; 0.6; 0.5 and 0.4. 

 

 
Figure 12. Plots of different behavioral areas depending on γ and βr (SIS model). 

 
The simulation of (6) shows that as it occurs in the SIR model, the values of 

S(t) y I(t) depend on the values of parameters βr and γ. We also have three cases 
in what refers to the shapes of S(t) e I(t). These are summarized in Figure 12. 
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* βr ≈ 2γ, the values of (βr, γ) corresponding to the blue line represent the 
cases the number of decreasing Susceptibles and increasing Infected converge to 
the same equilibrium value, N/2. 

* βr < 2γ (Area A): In Area A, although the number of Susceptible decreases, 
it is always greater than the number of Infected that increases, so S and I have 
different equilibrium values. The difference between these equilibrium values 
increases when γ increases. 

* βr > 2γ (Area B): In Area B, the number of Susceptibles decreases and is fi-
nally lower than the number of infected that increases. This means S and I cross. 
The difference between the equilibrium values of S and I increases when γ de-
creases. 

We also observe that when N increases, areas A and B remain unchanged, on-
ly the intersection points between S and I occur a little later. 

● Example of an SIS model: AIDS epidemic in Cuba (1986-2000) 
The first case of AIDS was diagnosed in Cuba in April 1986 [17]. Some sero-

positive (HIV+) were detected in late 1985. Once the first cases were confirmed, 
the government began implementing a program based on tracing known HIV+ 
sexual contacts to prevent the spread of the virus. The table presents the data 
collected by the Department of Epidemiology. For our investigation, the HIV+ 
population (second column) represents the Susceptible compartment and the 
AIDS population is the Infected compartment. The last column corresponds to 
deaths. We have considered percentages rather than raw data to capture the true 
meaning of the evolution of the different compartments over 14 years. The 
transformation calculates the percentage of all data within the year to which it 
belongs. See Figure 13.  

 

 
Figure 13. Percentage of susceptible, infected and deaths in the case of the AIDS epidem-
ic in Cuba, between 1986 and 2000. 
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In Figure 13, we observe the typical shapes provided by our version of the SIS 
Model of Figure 7, S(13, R), S(13, K) and S(13, L) where the time between two 
consecutive infections increases and becomes greater than the duration of the 
disease (there is no crossover of S and I, and the equilibrium value of S is greater 
than the equilibrium value of I). This is in line with the low prevalence of the 
epidemic (Cuba has a cumulative AIDS incidence rate of 190 per million (11.2 
per million per year).  

5.3. The SEIRS Model 

Another well-known model based on SIR is SEIRS (Susceptible-Exposed-Infected- 
Recovered-Susceptible). The SEIRS model adds a state E, exposed, in which the 
individual carrying the disease is in the incubation period and, therefore, does 
not show symptoms and is not in a condition to infect others. This caveat gives 
the paradigm more power to approach modeling with real data. A good example 
would be some vector-borne diseases like dengue hemorrhagic fever that have a 
long incubation time when the individual cannot yet transmit the pathogen to 
others. This model has also traditionally been solved using an ODE system and, 
as for the SIR model, it does not have an analytical solution but it does have a 
numerical one. This model is equally suitable for modeling childhood diseases 
[18]. The equations that describe the SEIRS model are shown in (7). 

d
d
d
d

S IrS I
t N
I IrS I
t N

β γ

β γ

= − +

= −
                        (7) 

where 
N = S + E + I + R, 
β = contagion rate (change from S to E), 
γ = recovery rate (change from I to R), 
ρ = rate of recoveries who lose temporary immunity and become susceptible 

again (change from R to S), 
σ = rate of exposed individuals who end up becoming infected (change from E 

to I), 
η = rate of exposed who are no longer in danger thanks to human action 

(change from E to R). 
In Figure 14, we observe that Susceptible and Recovered have similar evolu-

tions as for SIR and SIS models. Exposed and Infected have the same evolution 
but Infected is delayed with respect to Exposed.  

● Example of an SEIRS model: The Lotka-Volterra competition model 
The mathematical predator-prey model and its cyclical nature were published 

in 1920 by Alfred Lotka, an American biologist. Lotka is regarded as the origi-
nator of many useful theories of stable populations, and his publications have 
been accepted as the basis for much subsequent work. Subsequent to these ex-
tensive publications, Vito Volterra in 1925, proposed the same model as an  
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Figure 14. Simulation of the deterministic SEIR model. 

 
explanation of data from some fish studies. Several of the two species of preda-
tor-prey and competition models are called Lotka-Volterra Models [19]. The 
Lotka-Volterra competition model generalizes the logistic growth model to de-
scribe the competition of two or more populations for limited resources. See 
Equation (8). 

( )

( )

d
d
d
d

x x a y
t
y y x
t

β

γ δ

= −

= − −
                       (8) 

where: 
x stands for the number of prey,  
y stands for a predator,  
dy/dt and dx/dt are the increase of the two populations when time passes, 
α, β, γ and δ are positive parameters that depict the interaction of the species, 
α = growth rate of the prey, 
β = decrease of the growth rate of the prey produced by the predators,  
γ = decrease of the growth rate of the predators by natural death, 
δ = increase of the growth rate of the predators by consumption of prey. 
This model provides us with very valuable examples of real-world applications 

such as the evolution of the rates of different animal or vegetal colonies sharing 
the same ecosystem [20] [21]. 

As an example, we consider the rate of catches of lynx and rabbits made by the 
Hudson Bay Company between the 1900s and 1920s [22]. See Table 2. 

Figure 15 shows the evolution of the populations of Lynx and rabbits between 
1900 and 1920, and Figure 16 shows the simulation by ODE. Figure 17 presents 
the evolution of our model, and after recovering, a percentage of people are Sus-
ceptible again (SEIRS). This causes the cyclic evolution. 
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Table 2. Lynx and rabbits catches in thousands. 

Year rabbits lynx Year rabbits lynx 

1900 30 4 1911 40.3 8 

1901 47.2 6.1 1912 57 12.3 

1902 70.2 9.8 1913 76.6 19.5 

1903 77.4 35.2 1914 52.3 45.7 

1904 36.3 59.4 1915 19.5 51.1 

1905 20.6 41.7 1916 11.2 29.7 

1906 18.1 19 1917 7.6 15.8 

1907 21.4 13 1918 14.6 9.7 

1908 22 8.3 1919 16.2 10.1 

1909 25.4 9.1 1920 24.7 8.6 

1910 27.1 7.4 1921 - -  

 

 
Figure 15. Evolution of the populations of lynx and rabbits between 1900 and 1920. 

 

 
Figure 16. Simulation by ODEs of the populations of lynx and rabbits between 1900 and 
1920. 
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Figure 17. Simulation of the lotka-volterra system by an SEIRS model.  

 
Figures 15-17 show very similar behavior. Real data fit the ODE model as 

well as our SEIRS model in what refers to the Infected and Recovered. Our grid 
model can model the Lotke-Volterra competition by introducing a delay ΔT = 1 
generation, which stands for the time the predators population (Lynx) begins to 
increase after the number of prey (rabbits) has increased in a cyclic dynamics, 
where the predator behavior receives feedback from the behavior of the prey and 
follows it. 

6. Conclusion 

In this paper, we have built a behavioral approximation to the ODE based on 
chess game moves. This framework is carried out by means of a grid that uses a 
neighborhood and an update rule to model the evolution of the state of the cells. 
Our approximation defines tuning parameters such as delays between the dif-
ferent steps of the evolution of the compartments that have the analogs in the 
ODEs. This work highlights the fact that since natural events are not mathemat-
ically exact, they may be good candidates for a simpler behavioral approach. 
This assumption is supported by study cases such as the well-known SIR, SIS 
and SEIRS models of disease expansion and the Lotka-Volterra system of com-
petition between species. In future work, we plan to improve our model to ex-
tend it to the PDE. For that, we plan an approach based on a column of grids, a 
grid per variable, and the overall behavior will be carried out as a compendium 
of the individual behavior of the grids.   
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