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Abstract 
The improved physical information neural network algorithm has been proven 
to be used to study integrable systems. In this paper, the improved physical 
information neural network algorithm is used to study the defocusing nonli-
near Schrödinger (NLS) equation with time-varying potential, and the rogue 
wave solution of the equation is obtained. At the same time, the influence of 
the number of network layers, neurons and the number of sampling points 
on the network performance is studied. Experiments show that the number of 
hidden layers and the number of neurons in each hidden layer affect the rela-
tive 2 -norm error. With fixed configuration points, the relative norm error 
does not decrease with the increase in the number of boundary data points, 
which indicates that in this case, the number of boundary data points has no 
obvious influence on the error. Through the experiment, the rogue wave so-
lution of the defocusing NLS equation is successfully captured by IPINN me-
thod for the first time. The experimental results of this paper are also com-
pared with the results obtained by the physical information neural network 
method and show that the improved algorithm has higher accuracy. The re-
sults of this paper will be contributed to the generalization of deep learning 
algorithms for solving defocusing NLS equations with time-varying potential. 
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1. Introduction 

It is well known that differential systems are nonlinear phenomena that describe 
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mathematics, physics, biology, chemistry, transportation, finance and other 
fields. Solving these differential systems can make people understand these phe-
nomena as much as possible, especially in the study of differential systems in 
finance, such as financial soliton solutions and financial rogue wave solutions. 
The peaks and troughs of these waves correspond to the inflection points of 
stock prices in the financial market. Obviously, it provides a theoretical mechan-
ism for people to understand the phenomenon of the financial crisis. In recent 
years, many classical analytical and numerical methods have been developed in 
the field of computing. Although these methods give numerical solutions or 
analytical solutions of partial differential systems to a certain extent, such as Lie 
symmetry in analytical methods, this method first calculates the characteristic 
sequence set, then calculates the infinitesimal generator, and finally transforms 
the partial differential system into an ordinary differential system solution. The 
amount of calculation involved in this process is very large. Although there is the 
help of a computer only reduces the computational burden to a certain extent, 
and some problems must be calculated manually. Especially when the partial 
differential problem is transformed into an ordinary differential problem, al-
though the order of the differential equation is reduced, some ordinary differen-
tial problems cannot be solved, and the final problem is still unsolved. Another 
example is the finite difference method in the classical numerical method, which 
divides the solution domain into differential grids, but with the increase of the 
complexity of the boundary, the grid intersections cannot all be guaranteed to 
fall on the boundary conditions; this method lacks flexibility on complex boun-
daries. Therefore, the solution of differential systems has always been a research 
hotspot in the scientific community. 

In recent years, with the development and application of artificial intelligence 
technology in various neighborhoods, experts have turned their attention to ar-
tificial intelligence, and they have considered using neural networks to study 
differential systems. For example, I.E. Lagaris and A.C. Likas studied the solu-
tions of ordinary and partial differential equations using artificial neural net-
works in 1998 [1]. In 2000, S. He and K. Reif investigated the solution of partial 
differential equations by multilayer neural networks [2]. In the same year, I.E. 
Lagaris et al. studied differential equations with irregular boundaries by neural 
networks [3]. In 2006, A. Malek and R.S. Beidokhti obtained numerical solutions 
for high-order differential equations by a hybrid neural network method [4]. In 
2008, Y. Shirvany et al. studied the numerical solution of the nonlinear 
Schrödinger equation by feedforward neural networks [5]. In 2011, H. Chen et al. 
got the numerical solution of PDEs by integrated radial basis function networks 
[6]. In 2015, N. Yadav et al. got the solution to nonlinear elliptic boundary value 
problems by the neural network [7]. Lin Z. studied the multiphase flow problem 
by Physics-Aware deep learning [8]. D.A. Maturi and H.M. Malaikah solving 
nonlinear partial differential equation by Adomian decomposition method [9]. 
In 2018, Y. Yang et al. studied the solution of ordinary differential equations by 
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Legendre neural network methods [10]. The breakthrough in using a neural 
network to solve differential equations is the physical information neural net-
work(PINN) algorithm proposed by professor Raissi from Brown University in 
2019 [11]. The physical information neural network algorithm does not need to 
assume the expression of the solution. It embeds the physical information and 
the initial-boundary value conditions in the neural network. Only a small num-
ber of random sample points on the initial-boundary value conditions can ob-
tain the numerical solution of the differential equation. In view of these advan-
tages, many scholars have studied them. Such as Z. Yan et al. studied forward 
and inverse problems of the Schrödinger equation with  -symmetric har-
monic potential [12], the team of Y. Chen used the PINN method to study in-
tegrable systems [13] [14] [15] [16]. With the research on PINN, it is found that 
it does not converge on some complex problems, so many improvement methods 
are proposed. Such as Bayesian physics-informed neural networks (B-PINNs) 
[17], fractional Physics-Informed Neural Networks(fPINNs) [18], Parareal phys-
ics-informed neural network (PPINN) [19], Conservative physics-informed neural 
networks(CPINN) [20], nonlocal Physics-Informed Neural Networks(nPINNs) 
[21] and so on. Jagtap A. D. et al. added an adaptive activation function [22] to 
PINN and studied the inverse problem of differential equations. Subsequently, 
based on the work of Jagtap A. D., the team of Chen Yong used the PINN algo-
rithm with an adaptive activation function to study the problem of solving diffe-
rential equations and named it IPINN [23]. We also studied the rogue wave so-
lution [24] and the soliton solution [25] using by IPINN method. Although the 
PINN algorithm and its improvement have made some achievements, the re-
search of these new algorithms on differential systems is much more than that. 

Recently, some scholars discovered an interesting thing in their research. It is 
found that the nonlinear wave phenomenon that occurs in the focused NLS equ-
ation also appears stably in the generalized defocusing NLS equation with an ex-
ternal potential [26], and they used PINN method to study the rogue wave solu-
tions of the defocusing NLS equation with spatio-temporal potential. In this pa-
per, we will use the IPINN algorithm to study defocusing NLS equation. It is 
known that the IPINN algorithm converges faster and has higher accuracy by 
comparing the results obtained by the IPINN algorithm and the PINN algorithm. 
The numerical experiments in this paper are performed on a computer with an 
11th generation Intel(R) Core(TM) i7-11800H @ 2.30 GHz processor and 16.0 
GB memory.  

2. Rogue Wave Solution for Defocusing NLS Equation 

The defocusing NLS equation with spatio-temporal potential [27] is written as  

 
( ) [ ] [ ]

( ) ( ) [ ]
( ) ( ) [ ]
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where ( ),V t x  denotes the spatio-temporal potential and it can be written as  

( )
( )
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x t
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+ +
, q is the complex solution with the independent  

variables x, t of Equation (1). Li Wang and Zhenya Yan [27] proved for the first 
time that there is also an analytical rogue wave solution for the defocusing NLS 
equation. We assume ( ) ( ), ,q u t x v t x i= + , the real part and imaginary part of 
( ),q t x  are ( ),u t x  and ( ),v t x . Equation (1) can be inverted into  
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In this paper, we focus on solving the rogue wave solution of Equation (1) by 
applying an improved PINN algorithm. Suppose the network has 8 hidden layers 
and each hidden layer has 40 neurons. The real parts ( ),Rf t x  and imaginary 
parts ( ),If t x  of the network residual are defined as  
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Loss function is defined as 0f b aLoss Loss Loss Loss Loss= + + + , where  
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where { } 0

0 0 1
,

Ni i

i
t x

=
 and { }

1
, bNi i

b b i
t x

=
 denote randomly sampling 0N  and bN  points 

on the initial-boundary value conditions. The exact solutions ( )0 0,i iu t x , ( )0 0,i iv t x , 

( ),i i
b bu t x , ( ),i i

b bv t x  are given by initial-boundary value conditions. ( )0 0,i iu t x , 

( )0 0,i iv t x , ( ),i i
b bu t x , ( ),i i

b bv t x  are the predicted values by improved PINN of 

( )0 0,i iu t x , ( )0 0,i iv t x , ( ),i i
b bu t x , ( ),i i

b bv t x  respectively. We obtain configuration 
points { }

1
, fNi i

i
t x

=
 of real part ( ),Rf t x  and imaginary part ( ),If t x  through 

the Latin hypercube sampling strategy [28]. The optimal weights W , bias b  
and activation function slopes a  are obtained by automatic differentiation 
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technology, Adam [29] and L-BFGS [30] algorithm to minimize the loss func-
tion Loss , and the numerical solution of Equation (1) is finally determined. We 
also give the deep neural network in Figure 1 and schematic of IPINN for the 
defocusing NLS equation in Figure 2.  

The rogue wave solution [27] of Equation (1) is  

( ) ( )
( ) ( )2 2

4 1 2
, 1 exp

4 1
it

q t x it
x t

 +
 = −
 + + 

, we use the IPINN algorithm to study the 

Cauchy problem of Equation (1), and assuming that the initial conditions are 

( ) ( )
( ) ( )2

4 1 3
, 1 exp 1.5

4 2.25 1
i

q t x i
x

 −
 = − −
 + + 

, [ ],x∈ −π π . We divide [ ],x∈ −π π   

 

 
Figure 1. Schematic of deep neural network. 

 

 
Figure 2. Schematic of Improved PINN for the defocusing NLS equation.  
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into 3000 points and [ ]1.5,1.5t∈ −  into 2000 points by MATLAB. The improved 
physical information neural network is composed of 8 hidden layers, and each 
hidden layer has 40 neurons. We sample 0 600bN N= =  points from the initial- 
boundary value conditions by random sub-sampling and 10000fN =  points in 
the feasible region by Latin hypercube sampling strategy as our experimental 
training point. Without loss of generality, we initialize the scalable parameter as 

10, 0.1l
in a= = . Hyperbolic tangent is chosen as an activation function. Finally, the 

training time is 8174.6736 seconds, the network residual is 1.6892622e−05, relative 

2  norm errors of ( ),u t x , ( ),v t x , and ( ),h t x  are 3.55117e−02, 5.829360e−02, 
2.273524e−02 respectively. We show the fitting diagram of accuracy (blue solid 
line) and prediction(red dotted line) at different times 0.30,0.00,0.30t = − , the 
curve diagram of network residual changing with the number of iterations under 
the condition of the Adam optimization algorithm, and the density diagram of 
accurate rogue wave and predicted rogue wave in Figure 3. 
 

 
(a) 

 
(b) 
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(c) 

Figure 3. We choose a neural network with 8 hidden layers, each with 40 neurons, and choose 1800 points on the initial boundary 
value condition. (a) shows the density diagrams and predicted numerical solution at 0.3,0.0,0.3t = − ; (b) shows the variation of 
the loss function of the network with the number of iterations when Adam optimization algorithm is adopted; (c) represents the 
exact density diagram and predicted density diagram of rogue waves of Equation (1).  

 
In order to study the influence of the number of hidden layers and the neu-

rons in each layer on the relative 2  norm errors of ( ),q t x , we select the 
training point 0 100bN N= = , 10000fN = , the number of hidden layers are 2, 
4, 6 and 8 respectively, and the neurons in each hidden layer are 10, 15, 20, 25 
and 30 respectively, as is shown in Table 1. According to the data from Table 1, 
relative 2  norm errors of ( ),q t x  of neurons with fixed hidden layers do not 
decrease monotonically with the increase in the number of hidden layers. When 
the hidden layer is fixed, the norm error does not decrease monotonically with 
the increase of neurons. Therefore, we know that the norm error is affected by 
the number of hidden layers and neurons. At the same time, we study the influ-
ence of sampling points 0q bN N N= +  and fN  on the relative 2  norm er-
rors of ( ),q t x . We fix the hidden layer of the improved physical information 
neural network as 8 and each layer has 10 neurons, then the corresponding rela-
tive 2  norm errors of ( ),q t x  value is given when we assume that sampling 
points 100,200,300qN =  and 2000,4000,6000fN = , as is shown in Table 2. 
When qN  is fixed, the relative 2  norm error of ( ),q t x  decreases with the 
increase of fN . However, when 2000fN = , the relative 2  norm error of 
( ),q t x  does not decrease with the increase of qN . When 4000,6000fN = , 

the relative 2  norm error of ( ),q t x  decreases with the increase of qN , 
which also shows that the boundary sampling points and regional configuration 
points jointly affect the relative 2  norm error of ( ),q t x .  

In order to understand the influence of regional configuration points fN  on 
the predicted rogue wave solution, we fixed the improved physical information 
neural network, which has 8 hidden layers and each layer contains 10 neurons.  
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Table 1. The rogue wave solution of Equation (1): The relative 2 -norm error of ( ),q t x  

when taking the 0 100, 100, 10000b fN N N= = =  with different network layers and dif-

ferent numbers of neurons per hidden layers.  

2 -norm  Neurous 
error 

Layers 

10 15 20 25 30 

2 5.5093e−01 1.9859e−02 2.0163e−02 2.1916e−02 2.2094e−02 

4 2.0949e−02 2.1834e−02 2.1865e−02 2.2016e−02 2.2101e−02 

6 2.1460e−02 2.1518e−02 2.2099e−02 2.2101e−02 2.2102e−02 

8 2.1219e−02 2.1730e−02 2.2034e−02 2.2067e−02 2.2312e−02 

 
Table 2. The rogue wave solution of the Equation (1): We chose the neural network with 
8 hidden layers, one input layer and one output layer, and each hidden layer has 10 neu-
rons. The relative 2 -norm error of q was studied under different 0q bN N N= + , 

0 bN N=  and fN  conditions.  

2 -norm error   qN  

fN  
100 200 300 

2000 5.487201e−01 4.770664e−01 5.487201e−01 

4000 2.156434e−02 2.176194e−02 2.156434e−02 

6000 2.119324e−02 2.013049e−02 1.019324e−02 

 
We set the initial-boundary value sampling point 300. From Figure 4, we can see 
that with the increase in regional configuration points  

1000,2000,3000,4000fN = , the fitting effect of the exact rogue wave solution 
and predicted rogue wave solution is getting better and better. In order to study 
the influence of sampling point fN  on the relative norm error of  
( ) ( ) ( ), , , , ,u t x v t x q t x  of the improved physical information neural network, 

when the fixed network has 8 hidden layers and their neurons (10, 15, 20, 25, 30), 
the corresponding norm error is shown in Figures 5(a)-(e). From the figure, we 
can see that the relative norm error ( ( ) ( ) ( ), , , , ,u t x v t x q t x ) roughly shows a de-
creasing trend with the increase of fN . 

Finally, we compare the performance of PINN and IPINN in solving rogue 
wave solutions. The two algorithms have the same hidden layer and its neurons, 
and both have the same random sampling points 300 from initial-boundary val-
ue condition. The network residuals is 0.009715796 and relative norm error of 
( ) ( ) ( ), , , , ,u t x v t x q t x  are 9.229974e−01, 1.630527e+00, 3.833559e−01 respec-

tively of PINN. The network residuals is 8.936103e−05 and the relative norm 
error of ( ) ( ) ( ), , , , ,u t x v t x q t x  are 3.415088e−02, 6.299041e−02, 2.121869e−02 
respectively of IPINN. It is known from the experimental data that the IPINN 
has a better fitting effect on the exact solution and prediction solution, as shown 
in Figure 6(a) & Figure 6(b). At the same time, the curve of the network resi-
dual corresponding to the Adam algorithm and the L-BFGS algorithm of the two  
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4. A hidden layer with 8 hidden layers, each of which has 10 neurons, was selected and 
300 sample points were randomly selected under initial boundary value condition to study the 
influence of Nf. on the numerical rogue wave solution of Equation (1). The experimental re-
sults under the conditions of 1000,2000,3000,4000fN =  are shown in Figure 4(a)-(d) re-

spectively. 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5. (a)-(e) respectively represent 8 fixed hidden layers, and study the influence of 
neurons contained in hidden layers on the relative errors of q, u and v of Equation (1) 
with the change of Nf. (a)-(e) respectively show the line diagram of the relative error of q, 
u and v as Nf changes when neurons are 10, 15, 20, 25 and 30.  

https://doi.org/10.4236/jamp.2022.1010211


C. J. Zhang, Y. X. Bai 
 

 

DOI: 10.4236/jamp.2022.1010211 3186 Journal of Applied Mathematics and Physics 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 6. Equation (1): We study the influence of PINN algorithm and IPINN algorithm 
on the accuracy of the rogue wave solution of the equation respectively. A neural network 
with 8 hidden layers and 10 neurons in each hidden layer is selected, and the same tanh 

activation function is sampled, to sample the same activation function 
e etanh
e e

x x

x x

−

−

−
=

+
. 

(a) and (b) are the numerical solutions of the rogue waves obtained by the PINN and 
IPINN algorithms, respectively; (c) shows the variation of network residual with the 
number of iterations when Adam optimization algorithm is adopted; (d) shows the varia-
tion of network residual with the number of iterations when the Adam optimization algo-
rithm is adopted and then L-BFGS optimization algorithm is adopted.  
 
methods with the number of iterations is given, as shown in Figure 6(c) & Fig-
ure 6(d). It is known from the curve that whether it is the Adam optimization 
algorithm or the L-BFGS optimization algorithm, the IPINN algorithm has fast-
er convergence and higher accuracy.  

3. Conclusion 

In this paper, we mainly use the IPINN algorithm to solve the rogue wave solu-
tion of the defocusing NLS equation and study the influence of the network’s hid-
den layer and its neurons on the relative norm error value of ( ) ( ) ( ), , , , ,u t x v t x q t x . 
At the same time, in order to illustrate that IPINN has better network perfor-
mance than PINN, such as faster convergence and higher precision. The expe-
rimental results show that IPINN has better potential in solving high-order and 
nonlinear differential equations. Whether to apply it to more complex high-order 
differential equations or adding conservation laws or more integrable system 
properties to the IPINN algorithm to expand IPINN algorithm are our research 
content in the future.  
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