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Abstract 
Although Geometric Brownian Motion and Jump Diffusion Models have 
largely dominated the literature on asset price modeling, studies of the em-
pirical stock price data on the Ghana Stock Exchange have led to the conclu-
sion that there are some stocks in which the return processes consistently de-
part from these models in theory as well as in its statistical properties. This 
paper gives a fundamental review of the development of a stock price model 
based on pure jump processes to capture the unique behavior exhibited by 
some stocks on the Exchange. Although pure jump processes have been ex-
amined thoroughly by other authors, there is a lack of mathematical clarity in 
terms of deriving the underlying stock price process. This paper provides a 
link between stock prices existing on a measure space to its development as a 
pure jump Levy process. We test the suitability of the model to the empirical 
evidence using numerical procedures. The simulation results show that the 
trajectories of the model are a better fit for the empirical data than those 
produced by the diffusion and jump diffusion models. 
 

Keywords 
Poisson Process, Pure Jump Process, Compound Poisson Process, Jump  
Diffusion 

 

1. Introduction 

The study of asset price behavior is a fundamental link in the development of 
derivative pricing models. Consequently, having a model that accurately cap-
tures the behavior of the underlying asset is crucial in stock price modeling. A 
time series observation of the empirical distribution of some stock returns on the 
Ghana Stock Exchange (GSE) exhibits behavior that significantly deviates from 
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existing normality assumption models. In this study, we develop a model to 
capture the observed behavior and proceed to test its suitability using numerical 
procedures. The basic premise in Merton’s Jump Diffusion Model (JDM) is that 
the total change in an asset price is driven by a continuous and pure jump process. 
However, empirical observation of the stock price on the Ghana stock exchange 
shows that changes in some stock prices are driven strictly by jumps. It is there-
fore, imperative that we examine pure jump models to analyse stock behavior on 
the Exchange. One problem with the pure jump model is that researchers hardly 
give the mathematical background leading to the derivation of the model. This 
poses a problem for practitioners with limited mathematical backgrounds. In 
this study, we focus on deriving the pure jump model mainly from an abstract 
framework and give a step-by-step approach using basic mathematical language. 
The aim is to provide an accessible overview of the fundamentals of the pure 
jump model to the non-specialist reader and bridge the link between the abstract 
conception of the stock price process and the corresponding Levy process. To 
achieve this, emphasis is placed on certain aspects in the development of the 
pure jump model, specifically from the abstract perspective, that has not been 
well addressed in previous studies. In addition, although models with jumps in 
the underlying asset have been used extensively in asset price modeling, espe-
cially when market returns have only discontinuities, practical developments in 
this area are rare as most stocks have sufficiently high frequency data to depart 
from purely discontinuous processes. This arises because European and Ameri-
can markets are mostly characterized by high level trading activity resulting in 
high frequency data such that although the underlying assets evolve structurally 
as discrete, they can without any loss of generality be approximated by diffusion 
and jump diffusion models. This is, however, not the case in some African mar-
kets such as Nigeria, Kenya and more specifically, as observed on the GSE. Re-
cent empirical data and time series analysis from the exchange has shown that 
stocks assume specific prices for long periods and do not change for a consider-
able length of time. Price changes are irregular and lead to either small or large 
price jumps. To demonstrate these empirical observations, we present in Figures 
1-3 plots of a five-year time series of the actual movement of six trading stocks: 
Ecobank Transnational Inc, HFC Bank, SIC Insurance Limited, SG-SSB, Cocoa 
Processing Company and Starwin Products Limited totaling 1174 of trading days 
on GSE, from July 2013 to July 2018. 

Figure 1(a) and Figure 1(b) show the plots of stock prices of Ecobank 
Transnational and HFC Bank within the trading period. Clearly, the trajectories 
are purely continuous and are suitably modeled by Geometric Brownian Motion. 
Pricing follows diffusion processes and is modeled under Black-Scholes option 
pricing model. Figure 2(a) and Figure 2(b) also show the paths of SIC Insur-
ance Ltd and SG-SSB Limited during the same trading period. The trajectories 
are continuous but punctuated by occasional jumps at arbitrary time intervals. 
The pricing trajectories are thus suitably modeled by Merton’s Jump Diffusion 
processes. On the other hand, the plots in Figure 3(a) and Figure 3(b) show the  
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Figure 1. (a & b) Trajectories of Ecobank transnational and HFC—from July 2013 to July 2018. Source: Annual 
reports Ghana. 

 

 
Figure 2. (a & b) Trajectories of SIC insurance Ltd and SG-SSB limited: July 2013-July 2018. Source: Annual 
reports Ghana. 

 

 
Figure 3. (a & b) Trajectories of cocoa processing company and Starwin products: July 2013-July 2018. Source: 
Annual reports Ghana. 
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trajectories of Cocoa Processing Company and Starwin Products Limited for the 
same period. It is observed that the price paths have only jumps occurring at 
different times and the stock price either goes up or come down. In between 
these occasional jumps the price of the stock remains constant. Clearly, the tra-
jectories are dimensionally different and cannot be modeled using diffusion or 
jump diffusion models. To this end, we develop the pure jump processes which 
captures all the empirical facts associated with such stocks. Strictly speaking, the 
model is characterized purely by discontinuities such that at any given point in 
time, the sample paths are almost surely discontinuous with points of continuity 
forming a set of zero measures. The paper is organized as follows: In Section 2, 
we develop the pure jump process from the framework of an abstract probability 
space. This is done under the physical probability measure which describes the 
evolution of an arrival process into a Poisson jump process and consequently a 
compound Poisson process. Section 2.2 considers the compound Poisson process 
under the levy measure and derives the characteristic functions and the Levy-Ito 
decomposition. Section 3 discusses the results of the simulation of pure jumps 
for stocks listed on GSE. 

2. Literature Review 

Models of stock price processes with the Geometric Brownian Motion (GBM) 
were proposed by [1] and popularized as a pricing model in the [2] seminal pa-
per. However, to provide a realistic description of empirical stock price dynam-
ics and accommodate several practical situations many extensions have been 
made to the GBM. The most popular are Jump Diffusion Models (JDM), sto-
chastic volatility, and regime switching models. Models with jumps have their 
roots from [3], in which a compound Poisson process modeling pure jumps is 
added to the continuous GBM. Whilst Merton assumed a normal distribution 
for the jump sizes, [4] demonstrates that the dynamics of the asset price can be 
modeled as a combination of GBM and a Poisson process such that jump sizes 
have double exponential distribution. The Merton model underlying jump diffu-
sion models has since been thoroughly examined by many authors. [5] devel-
oped a discrete time version of Merton’s jump diffusion model so that the values 
of the discrete model converge weakly to the desired corresponding continuous 
time model values. [6] further showed that the sequence of American option 
values obtained from discrete-time models also converges to the corresponding 
value obtained from the continuous-time model. Option pricing on Jump Diffu-
sion Models has been examined extensively leading to closed form analytical so-
lutions or numerical simulations of European and American call-and-put options. 
[7] [8] presented closed form solutions of options written on JDMs. [9] presented 
a finite difference method for solving parabolic partial integro-differential equa-
tions of underlying assets driven by jump-diffusions. The Variance-Gamma (VG) 
model of [10] and the CGMY model of [11] have all proposed options prices on 
pure jump processes.  

https://doi.org/10.4236/jamp.2022.1010207


O. Antwi et al. 
 

 

DOI: 10.4236/jamp.2022.1010207 3105 Journal of Applied Mathematics and Physics 
 

Stochastic volatility models that generalize the traditional GBM by allowing 
the constant volatility to be stochastic have been presented by [12] [13] [14]. [15] 
in particular, allows for a volatility risk premium that is proportional to the 
square root of the stochastic variance. Options pricing models under stochastic 
volatility have been further examined by [16] [17]. Monte–Carlo simulations 
that numerically analyse the pricing of options in this regime have been ex-
amined extensively by [18] [19] [20]. Regime switching models that account for 
markets that may switch from time to time between a stable low-volatility state 
and an unstable high-volatility regime have been proposed by [21] and further 
examined by [22] [23] [24] [25]. The class of hyperbolic distributions that cap-
ture empirical data following pure jump distributions and characterized by infi-
nitely divisible fat-tails have been introduced in [26] [27]. Levy models that can 
rigorously analyse pure jumps and produce explicit computations of finite re-
sults have been analyzed [28] [29] [30]. 

3. Methodology 
3.1. The Model 

Let ( ), ,Ω   be a probability space with filtration ( )0t t T≤ ≤
=  , t  a sigma 

algebra generated by ( )( ),0t X s s tσ= ≤ ≤ . All processes that we shall con-
sider in this section will be defined in this space. Consider the price of a typical 
stock on the Ghana Stock Exchange specifically Starwin Limited, from June 1 
2018 to June 30 2018 as shown in Table 1.  

Table 1 shows that there were four price changes within a given month. Let’s 
consider these prices changes as jumps and assign 1 2, , , nω ω ω  as the event 
that there is a jump in the stock price. Since stock price changes occur randomly 
it can be considered as a stochastic process. Let 1 2, , , nX X X  be the real va-
lued function of the random variables describing jumps in the stock price and let 

1 2 3, , ,T T T   represent the arrival times of the jumps as shown in Figure 4.  
Suppose the process starts at time 0 then when the first jump event occurs at 

T1 we wait for a time period S1 until the next jump occurs at T2. The waiting time 
between the first and the second jump is S2 and the waiting time between the 
second and third jump is S3 and so on. Suppose Si’s are independent and the Ti’s 
are such that T0 is the time we start to observe the process and 0 0T = . Then we 
can write  

1 1T S=  

2 1 2T S S= +  

3 1 2 3T S S S= + +  

  

1 2 3n nT S S S S= + + + +  

So that 

1

n

n i
i

T S
=

= ∑  
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Table 1. Typical trading day stock prices. 

Trading Day 1 2 3 4 5 6 7 8 9 10 

Stock Price 2.06 2.06 2.06 2.06 2.06 2.08 2.08 2.08 2.08 2.13 

Trading Day 11 12 13 14 15 16 17 18 19 20 

Stock Price 2.13 2.13 2.13 2.19 2.19 2.19 2.19 2.57 2.57 2.78 

 

 
Figure 4. Abstract representation of the stock price process. 

 
Let tN  represent a process that counts the arrival of a jump event and let the 

value of the process at time t be equal to j. Then we can write tN j=  and the 
probability of the event as [ ]tN j= . In the time step ∆t, there are three possi-
bilities before the next observation: 

1) One jump occurs and the process value increase by 1 to j + 1.  

( ) 1t tN j+∆ = +  

2) More than one jump occurs and the process value increases to more than j 
+ 1. 

( ) 1t tN j+∆ > +  

3) No jump occurs and the value stays the same. 

( )t tN j+∆ =  

If one jump occurs then in an infinitesimal time interval the probability of j 
increasing by 1, conditional on the number of jumps at t is given by  

( ) 1| tt tN j N j+∆
 = + =   

Let’s assume that the intensity of the jump process is λ , then we can write that 

( ) ( )1| tt tN j N j t tλ ο+∆
 = + = = ∆ + ∆   

As ∆t is infinitesimal we expect the probability of the next jump (two or more 
jumps) to be negligible. 

( ) ( )1| tt tN j N j tο+∆
 ≥ + = = ∆   
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and ( ) ( )( )| 1tt tN j N j t tλ ο+∆
 = = = − ∆ + ∆   

Now in the reverse order suppose the process value was j - 1 at time t and 1 jump 
occurred in ∆t then  

[ ] ( )1tN j t tλ ο= − = ∆ + ∆           one jump occurred 

[ ] ( )1tN j tο> − = ∆       more than one jump occurred 

[ ] ( )1tN j t tλ ο= = − ∆ + ∆            no jump occurred 

( ) ( )| 1tt tN j N j t tλ ο+∆
 = = − = ∆ + ∆  . 

Thus, the from time t to time t + ∆t we have  

( ) ( )( )1| tt tN j N j t tλ ο+∆
 = = = − ∆ + ∆   

( ) ( )( ) ( )

( )( )( ) [ ]

1

1

t t

t

N j t t N t j

t t N j

λ ο

λ ο

+∆
 = = ∆ + ∆ = −   

+ − ∆ + ∆ =

 


 

Let’s denote [ ] ( )t jN j P t= =  then  

( ) ( )( ) ( ) ( )( )( ) ( )1 1j j jt t t t t t t tλ ο λ ο−+ ∆ = ∆ + ∆ + − ∆ + ∆    

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 11j j jt t t t t t t t tλ λ ο ο− −+ ∆ = ∆ + − ∆ + + ∆ + ∆     

( ) ( ) ( ) ( ) ( ) ( )1j j j j jt t t t t t t t tλ λ ο−+ ∆ = ∆ + − ∆ + ∆      

( ) ( ) ( ) ( ) ( )1j j j jt t t t t t t tλ λ ο−+ ∆ − = ∆ − ∆ + ∆     

( ) ( ) ( ) ( ) ( )
1

j j
j j

t t t t
t t

t t
ο

λ λ−

+ ∆ − ∆
= − +

∆ ∆

 
   

( ) ( ) ( ) ( )10
lim j j

j jt

t t t
t t

t
λ λ−∆ →

+ ∆ −
= −

∆

 
   

( ) ( ) ( )1

d
d
j

j j

t
t t

t
λ λ−= −


                      (1) 

Since j is an integer, we can have the following sequence 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 1
0 0 1

1

d d
, , ,

d d

d
d
n

n n

t t
t t t

t t

t
t t

t

λ λ λ

λ λ−

      = − = −   
      
  = − 
  



 
  


 

 

This system of equations can be written as a matrix 

( )

( )

( )

( )
( )
( )

0

01

1

2

d
d

0 0d
0d

0
d

d
n

t
t

tt
tt
t

t
t

λ
λ λ

λ λ

 
 
 

−     
    = −    

    −   
 
 
 











                 (2) 
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Hence, we can write the system of differential equations as  

( )d
d

t
t
=

                              (3) 

where   is a matrix. 
The process starts at zero with probability 1, that is ( )0 0 1= , 

( ) ( )0
0

d
d

t
t

t
λ= −


 , ( )0 0 1= . 

For 0j >  the condition is ( )0 0j = , 

( ) ( ) ( )1

d
d
j

j j

t
t t

t
λ λ−= −


                       (4) 

Essentially, the process starts at zero, so the probability of the process taking a 
value zero at time zero is 1 and the probability of the process taking any other 
value at time zero is 0 by the same logic. 

Now from (4) we have  

( ) ( )0
0

d
d

t
t

t
λ= −


  

( ) ( )0 0 0 e tt λ−=   

From the initial conditions ( )0 0 1=  hence,  

( )0 e tt λ−=                           (5)  

Now from 4 
( ) ( ) ( )1

d
d
j

j j

t
t t

t
λ λ−= −


  , 

When 

1j = , 
( ) ( ) ( )1

1 0

d
d

t
t t

t
λ λ+ =


  , but ( )0 e tt λ−= . 

2j = , ( ) ( )2
2 2

1
1 e e
2 2

t tt
t t λ λλ

λ − −= = . 

3j = , ( ) ( )3 2 2
3

d 1 e
d 2

tt
t t

t
λλ λ λ −= − ⋅


 . 

Iteratively for  

j n= , ( ) ( )
e

!

n
t

n

t
t

n
λλ −= . 

We recognise this as the Poisson random variable. The random variables Xi’s 
representing the arrival of jumps are independently distributed such that if tN  
counts the number of jumps in the interval [ ]0,T  then,  

{ }max :t nN n T t= ≤ . 

If t  is the natural filteration of the process then,  
1) 0 0N = , almost surely,  
2) tN  has independent increments, that is if s t<  then t sN N−  is inde-
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pendent of s , 
3) The increment t sN N−  is a Poisson distributed with parameter ( )t sλ −  

for all s t< . 

tN  has density  

( ) ( )
e

!

x
t

t

t
N x

x
λλ −= =                      (6) 

We have established that the stock process having distribution as in Table 1, 
follows the Poisson distribution. The distribution of waiting times between 
jumps is obtained by setting 0x =  in (6) and considering waiting at least t time 
units to see the first jump. This yield,  

( ) ( )0

0 e e
0!

t tt
X λ λλ − −= = =  

Hence ( )1 0 , 1 e tX T t λ−− = > = −    

Differentiating equation above we have  

( ) e tT t λλ −= =  

3.2. The Jump Model 

The Poisson process developed for the jump events appears too limited to obtain 
a realistic stock price model as its jump size is always equal to 1. In reality, jump 
sizes in stock prices vary hence there is some interest in considering jumps with 
random sizes. Consider the stock price tS , understood to be right-continuous 
function with left limits so that tS −  represents the value of tS  just before a 
possible jump at t. We write tS  as the limit from the left, i.e.  

limt tS tS S− ↑=                          (7) 

Suppose that in the small-time interval ∆t the stock price jumps by tY  so that it 
jumps from tS  to t tY S . The percentage change in the stock price is thus given 
by  

t t t t

t t

S Y S S
S S

−

− −

∆ −
=  

t t t t

t t t

S Y S S
S S S− − −

∆
= −  

1t
t

t

S
Y

S −

∆
= −  

In the infinitesimal limit 

d
1t

t
t

S
Y

S −

= −                           (8) 

Yt’s are non-negative random variables modeling the distribution of the jump 
sizes such that they are independently identically distributed and the trajectories 
of jump sizes are right-continuous with left limits. Equation (8) gives the relative 
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jump amplitude or percentage change in stock price as ( )1tY − . In addition to 
the jump sizes, the inter-arrival times of the jumps needed to be modeled. As 
shown earlier, the arrival times of jumps 1 2, , , mT T T  is generated by a Poisson 
process tN  independent of the jump sizes tY  with average arrival intensity λ . 
By combining the jump times and the jump sizes, the trajectory of the stock 
price process is now completely characterised by the compound Poisson process. 

1
1

tN

t t
j

S Y
=

= −∑  

The compound Poisson process gives us all the information about the jumps in 
the stock price process and tells us when the jumps occur and how big they are.  

3.3. Jump Measures of the Compound Poisson Process 

Now let ( )t tX In S=  then the stochastic process { } 0t t
X

≥
 is a compound Poi-

son process and the following preposition suffice. 
Proposition 1.1. 
The stochastic process { } 0t t

X
≥

 is a compound Poison process if and only if it 
is a Levy process and its sample paths are piecewise constant.  

Proposition 1.1 allows the stock price process to be characterized as a Levy 
process. There are ample reasons for introducing Levy processes at this stage. 
First of all, stock prices, when they jump carries associated risk and such risks 
can only be rigorously analysed by Levy models which allows for the explicit 
computations of finite results. In essence, the distributional properties of the 
empirical data admit the Levy-Khintchine formula which describes the structure 
of the sample paths via the Levy-Ito decomposition. 

We now calibrate the trajectories of tX  as a process having infinite number 
of jumps in a finite time grid. The increments ( ) ,t sX X s t− <  depends only on 
( )t s−  and tX  has the infinite divisibility property such that for a given path 

tX  there exist a sequence of i.i.d random variables 1 2, , ,n n n
nY Y Y  such that 

tX  can be decomposed as:  

1 2
n n n

t nX Y Y Y= + + +                         (9) 

( )2 1
n

i t t t t n t
n n n n

Y X X X X X −

  
= + + + + −        

  

and the increment ( )1kt k t
n n

X X −

 
−  

 
 yields a sequence of stationary i.i.d random 

variables. 
{ } 0t t

X
≥

 is a compound process on [ ]0,T× , having intensity λ  and jump 
size distribution f. We define a random measure X  on [ ]0,× ∞  describing 
the jumps of the stock price such that for any measurable Borel set [ ]0,∈ × ∞ , 

X  counts the number of jumps between 1t  and 2t . That is, 

{ }# ,X t tt X X −= − ∈   

Then X  is the Poisson random measure on [ ]0,× ∞  with intensity measure  
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( ) ( ) ( )d d d d d dx t x t f x tµ ν λ× = =  

where ν  is the Levy measure defined as the expected number of jumps per unit 
time and given by  

[ ]{ } ( )# 0,1 : 0,t tt X X A Aν  = ∈ ∆ ≠ ∆ ∈ ∈    

tX  is thus given by  

( )[ ]0,
d dt xX bt x s x

× ∞
= + ×∫                     (10) 

For a one-dimensional distribution 

( )d dt xX bt x s x
∞

−∞
= + ×∫                      (11) 

where b is the linear drift term. 

tX  has the characteristic triplet ( ) ( )
0 1

d ,0, d
x

xf x f xλ λ
< <

 
  ∫  and its charac-

teristic exponent can be expressed as  

{ } ( ) ( ){ }exp exp e 1 diux
tiuX t f xλ

∞

−∞
  = −  ∫            (12) 

Given the Levy measure ν  we can rewrite (12) as  

{ } ( ) ( ){ }exp exp e 1 diux
tiuX t xν

−∞

∞
  = −  ∫             (13) 

All paths of tX  has a finite variation if and only if ( )
1

d
x

x xν
∞

≤
< ∞∫ .  

By the levy-Ito decomposition, if ( )X t  is a pure jump then it can be de-
composed as  

1 2
t t tX bt M M= + +  

where b is the drift defined as ( ) ( )
1 1

d if d

0 otherwise
x x

x x x x
b

ν ν
∞ ∞

≤ ≤
 < ∞= 


∫ ∫  

1
tM  represents the behavior of large jumps and 2

tM  represents the behavior 
of small jumps. We assume that ( )dv x < ∞∫ , so the process has a finite ex-
pected number of small ( 1x < ) and large ( 1x ≥ ) jumps per time interval time 
interval of [ ]0,T . 

4. Results and Discussion 

To test the extent to which the model predicts the actual stock price, we simulate 
the path of each stock using Monte Carl simulations and the results are com-
pared to the actual stock price for the coming year. The previous year was from 
January 2018 to December 2018 and the coming year was January 2019 to De-
cember 2019. The estimates for the coming year are obtained from the simula-
tion-based estimator in   using log maximum likelihood as the sampling toll. 
The data for the input parameters were obtained for 36 common stocks on 
Ghana Stock Exchange and consisted of daily share prices quoted on GSE for the 
period. The data source is a daily Ghana Annual Reports stock price file wherein 
we assume no dividend payments within the period. We define a jump as when 
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the return on the stock is greater or less than 10% from the previous day. So a 
jump occurs if  

1 0.1k

k

X
X

+ > ±  

The Monte Carlo simulation results allow us to pin down the parameters of 
stocks that follow pure jumps, jump diffusion or strictly diffusion processes. The 
input parameters for the simulation comprising the mean and variance of the 
diffusion process, the mean and variance of the jump processes, the intensity of 
the Poisson process and the number of jumps per period. These parameters are 
summarised in Table 2. The simulation procedure for pure jumps and jump 
diffusion processes are well documented in Cont and Tankov (2003) and we 
adopt the procedure here. The codes for the simulation are given in the Appen-
dix and a cross-section of the simulated and actual results is also given in Table A1. 

The simulated results and the actual stock price processes that follow pure 
jump and jump diffusion processes are presented graphically in Figures 5-13. 
The figures show the log returns for 9 stocks whose price processes are characte-
rized by pure jump and jump diffusion processes. They include Total Petroleum, 
Fanmilk, Calbank Ltd., Ecobank, Ecobank transnational, Unilever, Produce 
 
Table 2. Input parameters for simulation process. 

 m s l a D ts, J 

Total Petroleum (0.0023096 0.01343 1 0.12 0.0 0.00405 122) 

Ecobank (0.0006356 0.0133 2 0.02 0.00405 0.00405 122) 

Fanmilk (0.00186 0.01192 1 0.10 0.01 0.00405 122) 

CALBANK (0.001428 0.03198 9 0.14 0.02 0.00405 122) 

Ecobanktrans (0.00191 0.03410 2 0.57 0.61 0.00405 122) 

Unilever (0.00191 0.03410 2 0.57 0.61 0.00405 122) 

PBC (0.0 0.04573 12 0.20 0.03 0.00405 122) 

SIC (−0.0007411 0.037589 12 0.14 0.03 0.00405 122) 

Starwin (0.0 0.0844 14 0.35 0.57 0.00405 122) 

m = mean of the data, s = standard deviation of the data, l = number of jumps, a = mean 
of the jumps, D = standard deviation of the jumps, ts = ∆x, J = number of trading days. 
 

 
Figure 5. Graphs of simulated and. actual stock price—Total Petroleum. 
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Figure 6. Graphs of simulated and. actual stock price—Fanmilk Ghana. 

 

 
Figure 7. Graphs of simulated and. actual stock price—CalBank. 

 

 
Figure 8. Graphs of simulated and. actual stock price—SIC.  

 

 
Figure 9. Graphs of simulated and. actual stock price—Starwin. 

 

 
Figure 10. Graphs of simulated and. actual stock price—Aluworks. 
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Figure 11. Graphs of simulated and. actual stock price—PBC.  

 

 
Figure 12. Graphs of simulated and. actual stock price—Unilever.  

 

 
Figure 13. Graphs of simulated and. actual stock price—Ecobank Transnational. 

 
Buying Company, State Insurance Company and Starwin Ltd. Other stocks that 
follow diffusion processes are not shown here. The actual and simulated trajec-
tories are shown in the graphs and the summary statistics and t-test analysis are 
also presented in Table 3. Using the t-test, the null hypothesis is that the popu-
lation means of the simulated and actual stock prices are equal assuming that the 
variances are equal. In this case if the t-stat is greater than the p-value at a given 
significance level and degrees of freedom, then for a two-tail test the population 
means will be statistically different. It is realised that this is the case for PBC, 
Starwin, SIC, Total Petroleum and Fanmilk. Thus it was realised that the trajec-
tories of Starwin, PBC, Total Petroleum, Fanmilk, PBC, Starwin and SIC follow 
pure jumps processes. However, the paths of Calbank, Unilever and Ecobank 
Transnational cannot be confirmed from the results as pure jump processes.  
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Table 3. T-test table of simulated and actual stock prices. 

 

TOTAL FANMILK Calbank Ecobank Transnational 

t-Test: Two-Sample Assuming Equal Variances 

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 

Mean 0.006109952 0.001126385 0.00080081 −0.0021171 −0.0112057 0.001392615 −0.01644359 0.001829046 

Variance 0.000262714 0.000670899 7.10164E−05 0.000279493 0.000381012 0.000613197 0.000616941 0.001501239 

Observations 122 122 121 121 122 122 122 122 

Pooled Variance 0.000466807 
 

0.000175255 
 

0.000497105 
 

0.00105909 
 

Hypothesized 
Mean Difference 

0 
 

0 
 

0 
 

0 
 

df 242 
 

240 
 

242 
 

242 
 

𝒕𝒕 Stat 1.801509858 
 

1.714408738 
 

−4.41319644 
 

−4.3853038 
 

P(T ≤ t) one-tail 0.036433605 
 

0.043872318 
 

7.67395E−06 
 

8.64339E−06 
 

t Critical one-tail 1.651174514 
 

1.651227393 
 

1.651174514 
 

1.651174514 
 

P(T ≤ t) two-tail 0.072867209 
 

0.087744636 
 

1.53479E−05 
 

1.72868E−05 
 

t Critical two-tail 1.969815134 
 

1.969897635 
 

1.969815134 
 

1.969815134 
 

 
Unilever PBC Starwin Ltd. SIC 

Mean −0.02034714 0.002677321 0.007608434 −0.00149444 0.01658298 −0.00332348 0.016461597 0.011155545 

Variance 0.000927635 0.000166699 0.00124384 0.006031404 0.018271564 0.02015848 0.001458876 0.001613947 

Observations 122 122 122 122 122 122 122 122 

Pooled Variance 0.000547167 
 

0.003637622 
 

0.019215022 
 

0.001536411 
 

Hypothesized 
Mean Difference 

0 
 

0 
 

0 
 

0 
 

df 242 
 

242 
 

242 
 

242 
 

t Stat −7.68766269 
 

1.178785096 
 

1.121601552 
 

1.05726195 
 

P(T ≤ t) one-tail 1.87386E−13 
 

0.119820731 
 

0.131571785 
 

0.145723148 
 

t Critical one-tail 1.651174514 
 

1.651174514 
 

1.651174514 
 

1.651174514 
 

P(T ≤ t) two-tail 3.74773E−13 
 

0.239641461 
 

0.26314357 
 

0.291446296 
 

t Critical two-tail 1.969815134 
 

1.969815134 
 

1.969815134 
 

1.969815134 
 

5. Conclusion 

The main results of the paper are: developing an underlying price model of a 
pure jump model from an abstract framework of empirical stock price data. The 
model is extended as Levy pure jump model that captures the features associated 
with pure jumps. The numerical results were able to isolate the stocks that follow 
pure jump processes from those that follow diffusion and jump diffusion processes. 
The summary statistics of the trajectories show that stock price processes on the 
Ghana stock exchange are characterized by diffusion, jump diffusion and pure 
jump processes. In conclusion, it is realised that the paths of Starwin, PBC, Total 
Petroleum, Fanmilk, PBC, Starwin and SIC follow pure jumps. The paths of Cal-
bank, Unilever and Ecobank Transnational cannot be confirmed as pure jumps. 
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Appendix 

Codes for simulation 
SimulatePureJump = function(m, s, l, a, D, ts, J) 
{L = length(ts); 
  T = ts[L]; 
  # simulate number of jumps;  
  N = rpois(J, l * T); 
  Jumps = matrix(0, J, L); 
  for(j in 1 : J); 
  {# simulate jump arrival time; 
    t = T * runif(N[j]); 
    t = sort(t); 
    # simulate jump size; 
    S = a + D * rnorm(N[j]); 
    # put things together; 
    CumS = cumsum(S); 
    Jumps_ts = matrix(0, 1, L); 
    for(n in 1 : L); 
    {Events = sum(t  ≤  ts[n]); 
      if(Events); 
      {Jumps_ts[n] = CumS[Events]; } 
    } Jumps[j,] = Jumps_ts;} 
  D_Diff = matrix(NaN, J, L); 
  for(l in 1 : L); 
  {Dt = ts[l]; 
    if(l > 1); 
    {Dt = ts[l] - ts[l - 1];} 
 D_Diff[, l] = m * Dt + s * sqrt(Dt) * rnorm(J);} 
X = cbind(matrix(0, J, 1), apply(D_Diff, 2, cumsum) + Jumps); 
  return(X);} 
 
tot<-SimulatePureJump(.0023096,0.01343,1,0.12,0,0.00405,122) 
Total1<-tot[,-1] 
plot(abs(Total1),type = “s”,col=“red”, xlab=“Trading Days”, 
     ylab=“Log Returns of Stock”, main = “Total Petroleum”, xlim=c(0, 40)) 
lines(abs(doc$Total),type =“s”,col=“blue”) 
legend(15, 0.125, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
eco<-SimulatePureJump(.0006356,0.0133,2,0.02,0.00405,0.00405,122) 
Ecobank<-eco[,-1] 
plot(abs(doc$ecobank),type = “s”,col=“blue”, xlab=“Trading Days”, ylab=“Log 
Returns of f(Y)”, main = “Ecobank”) 
lines(abs(Ecobank),type =“s”,col=“red”) 
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legend(0, 0.11, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
fun<- SimulatePureJump(.00186,0.01192,1,0.10,0.01,0.00405,122) 
Funmilk1<-fun[,-1] 
sim_2<-cbind(Funmilk1,doc$Funmilk) 
plot(abs(doc$Funmilk),type = “s”,col=“blue”, xlab=“Trading Days”, ylab=“Log 
Returns of Stock”, main = “Fanmilk”) 
lines(abs(Funmilk1),type =“s”,col=“red”) 
legend(0, 0.15, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
cal<- SimulatePureJump(.001428,0.03198,9,0.14,0.02,0.00405,122) 
ca<-cal[,-1] 
ca1<-cbind(ca,doc$calbank) 
View(ca) 
plot(abs(ca),type = “s”,col=“red”, xlab=“Trading Days”, ylab=“Log Returns of 
Stock”, main = “CALBANK”) 
lines(abs(doc$calbank),type =“s”,col=“blue”) 
legend(15, 0.125, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
ecot<- SimulatePureJump(.00191,0.03410,2,0.57,0.61,0.00405,122) 
Ecotrans<-ecot[,-1] 
e1<-cbind(Ecotrans,doc$eco_trans) 
plot(abs(Ecotrans),type = “s”,col=“red”, xlab=“Trading Days”, ylab=“Log Re-
turns of Stock”,main = “Ecobank Transactional”) 
lines(abs(doc$eco_trans),type =“s”,col=“blue”) 
legend(0, 0.2, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
uni<- SimulatePureJump(.00191,0.03410,2,0.57,0.61,0.00405,122) 
Uniliver<-uni[,-1] 
u1<-cbind(Uniliver,doc$uniliver) 
plot(abs(Uniliver),type = “s”,col=“red”, xlab=“Trading Days”, ylab=“Log Re-
turns of Stock”,main = “UNILIVER”) 
lines(abs(doc$uniliver),type =“s”,col=“blue”) 
legend(80, 0.25, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
pbc<- SimulatePureJump(0,0.04573,12,0.20,0.03,0.00405,122) 
PBC<-pbc[,-1] 
p1<-cbind(PBC,doc$pbc) 
plot(abs(doc$pbc),type = “s”,col=“blue”, xlab=“Trading Days”, ylab=“Log Re-
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turns of Stock”,main = “PBC”) 
lines(abs(PBC),type =“s”,col=“red”) 
legend(0, 0.3, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
sic<- SimulatePureJump(-.0007411,0.037589,12,0.14,0.03,0.00405,122) 
SIC<-sic[,-1] 
s1<-cbind(SIC,doc$sic) 
plot(abs(SIC),type = “s”,col=“red”, xlab=“Trading Days”, ylab=“Log Returns of 
Stock”,main = “State Insurance Company”) 
lines(abs(doc$sic),type =“s”,col=“blue”) 
legend(60, 0.21, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 
 
star<- SimulatePureJump(0,0.0844,14,0.35,0.57,0.00405,122) 
Starwin<-star[,-1] 
st1<-cbind(Starwin,doc$starwin) 
plot(abs(Starwin),type = “s”,col=“red”, xlab=“Trading Days”, ylab=“Log Returns 
of Stock”,main = “Starwin”) 
lines(abs(doc$starwin),type =“s”,col=“blue”) 
legend(0, 0.9, legend=c(“Simulated”, “Actual”),col=c(“red”, “blue”), lty=1:2, 
cex=0.8) 

 
Table A1. Cross section of simulated and actual results. 

TOTAL GH FANMILK GH CAL BANK 
ECOBANK 

TRANSNATIONAL 
UNILEVER 

Simmulated Actual Simmulated Actual Simulated Actual Simulated Actual Simulated Actual 

−0.0013772 0.0251762 6.94E−04 0 2.39E−03 0 0.0021152 0 −0.0005893 0.0007785 

−0.0021608 0.0109891 9.47E−04 0 3.08E−03 0.0092167 0.0019802 0 −0.0032496 0 

−0.0023799 0.0938188 −4.21E−04 0 3.84E−04 0 0.0064807 0 −0.001178 0 

−0.0026601 0 −1.86E−03 0.0056338 −6.16E−04 0.0448506 0.0076638 0 0.0015265 0 

−0.0038927 0.0024845 −1.59E−03 0 6.60E−04 0.0087337 0.0037751 0 −0.001663 0.0038835 

−0.004748 0.0172206 −7.03E−04 0 −2.79E−05 0.0257525 0.0026251 0 −0.0029136 0 

−0.0061715 0.0072904 −3.14E−05 0 2.14E−03 0.0084389 0.0033053 0.0606246 −0.0015818 0 

−0.0041518 0.0191852 5.57E−05 −0.0056338 1.32E−01 −0.0169496 0.0047569 0.0571584 −0.0033456 0 

−0.0030211 0.1311533 1.74E−03 0.0056338 1.73E−03 0.0169496 0.0062335 0 0.0018894 0 

−0.0016838 0.0020812 2.34E−03 0 2.34E−03 0.0083683 0.0068486 0 0.0007667 0 

0.0002284 0.0082816 9.07E−02 −0.000562 3.54E−03 0 0.0047891 0 0.0029069 0.0153849 

0.000204 0.0304592 1.05E−03 0 7.67E−03 0 0.0038499 0 0.0025675 0.0022875 

0.0001307 0.0099503 2.24E−03 −0.0050719 1.05E−02 0 0.0037602 0 −0.0014071 0 

−0.0007464 0.0019782 2.21E−03 0 1.03E−02 0 0.0045441 0 −0.0044147 0 

−0.0013594 0.011788 1.28E−03 0 9.51E−03 0 0.0038458 0 −0.0070985 0.0641576 
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