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Abstract 
Purpose: To review some of the basic models, differential equations and solu-
tions, both analytic and numerical, which produce time courses for the frac-
tions of Susceptible (S), Infectious (I) and Recovered (R) fractions of the pop-
ulation during the epidemic and/or endemic conditions. Methods: Two and 
three-compartment models with analytic solutions to the proposed linear dif-
ferential equations as well as models based on the non-linear differential equ-
ations first proposed by Kermack and McKendrick (KM) [1] a century ago are 
considered. The equations reviewed include the ability to slide between so-called 
Susceptible-Infected-Recovered (SIR), Susceptible-Infectious-Susceptible (SIS), 
Susceptible-Infectious (SI) and Susceptible-Infectious-Recovered-Susceptible 
(SIRS) models, effectively moving from epidemic to endemic characteriza-
tions of infectious disease. Results: Both the linear and KM model yield typi-
cal “curves” of the infected fraction being sought “to flatten” with the effects 
of social distancing/masking efforts and/or pharmaceutical interventions. 
Demonstrative applications of the solutions to fit real COVID-19 data, in-
cluding linear and KM SIR fit data from the first 100 days following “lockdown” 
in the authors’ locale and to the total number of cases in the USA over the 
course of 1 year with SI and SIS models are provided. Conclusions: COVID-19 
took us all by surprise, all wondering how to help. Spreading a basic under-
standing of some of the mathematics used by epidemiologists to model infec-
tious diseases seemed like a good place to start and served as the primary 
purpose for this tutorial. 
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1. Introduction 

Since the introduction of coronavirus circa late 2019 (COVID-19), the sentient 
world has been subjected to media reports with curves representing the time 
courses of various aspects of the disease like the number of new cases, the num-
ber of deaths, the number of Intensive Care Unit (ICU) beds occupied, etc. For 
example, one common public relations strategy to enhance compliance with 
recommended health measures has been the concept of “flattening the curve”. 
The “curves” in such cases are often displayed with “peaks” accompanied by 
hard horizontal lines hovering over, through, or below the peaks, allowing a 
ready conception of the limits of various hospital capacities. Generating such 
epidemic curves and related endemic curves with useful compartmentation 
models is well-known in the field of epidemiology, with a rich history beginning 
nearly a century ago with the groundbreaking paper by Kermack and McCen-
drick [1]. Herein we review in tutorial fashion some of the basic models from 
which differential equations arise, provide derivations of analytic solutions when 
possible or provide numerical modeling examples when tackling non-linear as-
pects of infectious disease transmission. Specifically, the conceptualization of 
compartmentation and its role in identifying the various differential equations 
which are used by epidemiologists to model the course of infectious diseases, as 
well as the relationship between the different models and their solutions, wheth-
er analytic or numerical, are emphasized. Problems addressed within this tutori-
al include understanding the role of the different rate parameters within the 
model, associated with either social distancing aspects or pharmacological inter-
ventions, and to address how measured infection data can be fitted with appro-
priate models to extract relevant rate parameters. 

2. Theory 

Life and the diseases that affect it are so complex that it may seem absurd to re-
duce the effects of contagions upon life by the boxes shown in Figure 1, boxes 
which represent the susceptible fraction S, the infectious fraction I and the re-
covered fraction R of the general population. Nevertheless, such boxes and the 
arrows connecting them are indeed the conceptual starting point for the diffe-
rential equations whose solutions we will seek in order to better understand 
and model important, everyday aspects of life during contagious diseases like 
COVID-19.  

The top row of Figure 1 shows what is referred to as the SIR model and the 
SIR/SIS model. The pure SIR model involves transfer from the S box to the I box 
at the rate βS in the linear version and the rate βIS in the KM version, the latter 
reflecting the notion that the more infected people there are the greater the 
chance of susceptible people becoming infected. In the pure SIR model, it is as-
sumed that the only way to leave the infected box is to go to the recovered box at 
a rate γ2I with no return to the infected or susceptible box, implying immunity 
or death. In the SIR/SIS model an additional mechanism exists for people in the  
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Figure 1. Schematic representations of the SI, SIS, SIR and SIRS models as described in 
the text. Note the flux rate between the S and I boxes in the linear model (parentheses) is 
not proportional to the infected fraction I as it is in the Kermack-McKendrick model. 
 
infected box to return to the susceptible box at the rate γ1I, implying a recovery 
but without achieving immunity.  

The middle row shows the simpler SIS/SI models in which individuals never 
gain immunity or death and so pass back and forth between the susceptible and 
infectious boxes with no recovery box available. In the SIS/SI models, S to I rate 
is βS for the linear model and βIS for the KM mode with a backward I to S rate 
of γI. 

The bottom row in Figure 1 shows the SIRS model in which the immunity 
within the recovered fraction does not last forever. This is reflected by a flux 
back to the susceptible fraction as shown by the arrow labeled with the rate γ1R 
from the R box to the S box. In this model, we ignore the possibility of the in-
fected fraction returning to the susceptible fraction. These simple concepts will 
form the baSIS for the following differential equations, their solutions, exposito-
ry demonstrations of the effects of individual parameters and finally for model-
ing some actual data typical of the “curves” being sought to “flatten” which have 
become routine fixtures in the media. 

2.1. The Linear Model 

The first linear model (LM) proposed contains three free parameters. These are 
characterized by the rate constant of β for the virus converting healthy people 
into sick people, a rate constant γ2 at which sick people leave the infectious pool 
either through recovery with bestowed immunity or death into the “recovered 
pool”, and a third rate parameter γ1, which will allow for the possibility of in-
fected people returning to the susceptible pool, i.e., without immunity. The latter 
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provides a sliding parameter that may be adjusted to allow for SIR towards SIS 
conditions. The units of the rate constants are specified in days−1. The following 
set of differential equations describes the linearized version of the SIR/SIS condi-
tions of the top row in Figure 1:  

1
d
d
f f g
t

β γ= − +                           (1a) 

1 2
d
d
g f g g
t

β γ γ= + −                        (1b)  

2
d
d
m g
t

γ=                             (1c)    

where f is the susceptible fraction of the population, g is the infectious fraction of 
the population and m is the recovered fraction of the population where the va-
nishing sum of Equations (1a)-(1c) yields the normalization condition, 

0 0 0 1f g m f g m+ + = + + =                     (2) 

where 0f , 0g , and 0m  are the starting fractions of each pool at t = 0. With 
apologies to Kermack and McKendrick [1], who used x, y and z for the actual 
pool numbers, not fractions, and modern adaptations of KM models which use S, 
I and R, for fractional populations once properly normalized [2] [3], our nota-
tion of f, g and m allow us to reserve their capital counterparts F, G and M for 
their respective Laplace transforms. Equations (1a)-(1c) are what we refer to as 
linearized versions of the non-linear equations provided by Kermack and 
McKendrick, albeit without the γ1 term [1]. Despite the simplification which al-
lows for analytic solutions for f, g and m (vide infra), the essentials of three of 
the SIR, SIS and SI may be gleaned from them which will also apply to the 
non-linear KM versions discussed below. In the SIR model, the parameter γ1 is 
set to 0 which has the following implication. Once an individual passes from the 
S pool to the I pool, there is no going back. The assumption is that this individu-
al will end up in the R pool, having either recovered with immunity or having 
died, in either case escaping reinfection. In the SIS model, γ2 is set to 0, effec-
tively implying that there is no recovered pool R and individuals get sick and 
then return to the healthy but susceptible fraction. With SIS, a steady state level 
of the infected fraction is achieved. The SI model sets both γ1 and γ2 to 0 and is a 
limit of the SIS model in which everyone ultimately becomes infected. The SI 
model is the simplest of the three and interestingly the model selected by Mo-
hazzabi et al. to fit CDC COVID-19 case data over the course of a year within 
the United States (3) and throughout the world [4]. Regardless, the Laplace 
transform of the system of Equations (1a)-(1c) leads to the following algebraic 
relations among F, G and M, with α being the Laplace transform variable: 

0 1F f F Gα β γ− = − +                       (3a) 

0 1 2G g F G Gα β γ γ− = + −                     (3b) 

0 2M m Gα γ− =                         (3c)    

https://doi.org/10.4236/jamp.2022.1010204


R. V. Mulkern, R. Nosrati 
 

 

DOI: 10.4236/jamp.2022.1010204 3057 Journal of Applied Mathematics and Physics 
 

where e dtF f tα−= ∫ , etc., as integrated from 0t =  to ∞  with the tacit as-
sumption that terms like e tf α−  at t = ∞  vanish. Solving for G from Equa-
tions (3a)-(3b) leads to: 

( )
( )

( )
( )( )

0 0 0 0
2

2

g f g f
G

α β β α β β
α αα α β γ βγ + −

+ + + +
= =

−Ψ −Ψ+ + +
              (4) 

with 1 2γ γ γ≡ + . The second equality in Equation (4) introduces the roots of the 
quadratic defining the denominator of the first equality which are:  

( ) ( )2
2Ψ 4 2β γ β γ βγ±

 = − + ± + −  
.               (5)  

A similar derivation for F from Equations (3a)-(3b) yields, 

( )( ) ( )
( )( )( )

0 1 0 1 0f g f
F

α α γ α β γ β
α β α α
+ −

+ −

−Ψ −Ψ + + +
=

+ −Ψ −Ψ
.           (6)   

To extract f and g from F and G, the following inverse Laplace transform rule [5] 
which utilizes the residues (Res) of F and G at their poles is invoked:  

( )( )Res e it
ig G αα= ∑                      (7a)    

( )( )Res e it
if F αα= ∑                      (7b) 

where the sum is over two poles for G and three poles for F. Proceeding by in-
spection, we find that g and f consist of two and three exponential functions of t, 
respectively, which read: 

( )( ) ( )( ) ( )0 0 0 0e et tg g f g fβ β β β+ −Ψ Ψ
+ − + − = Ψ + + − Ψ + + Ψ −Ψ    (8a) 

( )( )
( )( )
( )( )

( )( )
( )( )

1 0 1 01 0
0

1 0 1 0

ee
e

e

tt
t

t

g ff
f f

g f

β
β γ β γ βγ β

β β β

γ β γ β
β

+

−

Ψ−
+−

+ − + + −

Ψ
−

− − +

Ψ + +
= + +

+Ψ +Ψ Ψ + Ψ −Ψ

Ψ + +
+

Ψ + Ψ −Ψ

.    (8b)  

One could also solve for m via Equation (3c) and Equation (4) using the in-
verse Laplace transform but there is no need as the normalization condition of 
Equation (2) may be used once f and g are specified. A further set of differential 
equations which will underpin a linearized version of the SIRS model considers a 
flux from the susceptible fraction S to the infected fraction I and then to the re-
covered fraction R but then also incorporates the possibility of “immunity” 
within the recovered fraction to “wane” by introducing a flux from the recovered 
back to the susceptible fraction, as shown in the lower row of Figure 1. The dif-
ferential equations governing this situation read: 

 1
d
d
f f m
t

β γ= − +                         (9a) 

2
d
d
g f g
t

β γ= −                          (9b) 

2 1
d
d
m g m
t

γ γ= − .                        (9c)   
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Again, the Laplace transform approach may be gainfully applied to this system 
with the details left to the reader. One obtains for f, g and m the following time 
courses: 

( )( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

0 1 21 2

1 2 1 2

0 1 2 0 1 2 1 2 0

0 1 2 0 1 2 1 2 0

e

e

e

t

t

t

f
f

m g f

m g f

ββ β γ γγ γ
βγ βγ γ γ β β

γ β γ γ γ β γ γ β
β

γ β γ γ γ β γ γ β
β

+

−

−
+ −

+ −

Ψ
+ + +

+ + + −

Ψ
− − −

− − − +

+ Ψ +Ψ −
= +

+ + +Ψ +Ψ

+Ψ +Ψ + +Ψ +
+

Ψ Ψ + Ψ −Ψ

Ψ + Ψ + + Ψ + +
+

Ψ Ψ + Ψ −Ψ

    (10a) 

( )( ) ( )( )
( )

( )( ) ( )( )
( )

0 2 0 2 0 22

1 2 1 2

0 2 0 2 0 2

e

e

t

t

m g f
m

m g f

β γ γ β βγβγ
βγ βγ γ γ

β γ γ β βγ

+

−

Ψ
+ + +

+ + −

Ψ
− − −

− − +

Ψ + Ψ + + Ψ + +
= +

+ + Ψ Ψ −Ψ

Ψ + Ψ + + Ψ + +
+

Ψ Ψ −Ψ

(10b) 

1g f m= − −                           (10c) 

with 

( ) ( ) ( )2
1 2 1 2 1 2 1 24 2β γ γ β γ γ βγ βγ γ γ±

 Ψ = − + + ± + + − + +  
.   (11) 

For non-vanishing rates of β, γ1 and γ2, the susceptible, infected, and recov-
ered fractions achieve steady state values as t approaches ∞ which are given by: 

1 2

1 2 1 2
ssf γ γ

βγ βγ γ γ
=

+ +
                       (12a) 

1

1 2 1 2
ssg βγ

βγ βγ γ γ
=

+ +
                      (12b) 

2

1 2 1 2
ssm βγ

βγ βγ γ γ
=

+ +
.                      (12c)   

2.2. SIR and SIRS Condition “Curve Flattening” with the Linear  
Model 

Utilizing Equations (8a)-(8b), we first examine how decreasing the β parameter, 
the transmissibility rate, through such factors as social distancing, the use of 
personal protective gear, business closings, limited capacity recreational events, 
etc., can flatten the curve within the context of pure SIR conditions, e.g., 1 0γ =  
in Equations (1a)-(1c). The γ2 parameter, in contrast and if given no effective 
treatment, is largely based on the biology of the virus and the host which may be 
somewhat beyond our control, though the advent of vaccines and more nuanced 
control of sick patients does allow some control over the γ2 parameter and allows 
us to demonstrate how increasing this parameter via effective medical practices 
can also flatten the curve within the context of pure SIR conditions.  

Figure 2(a) shows the effects of decreasing β (social distancing, etc.) on “flat-
tening the curve” when β is decreased for a fixed γ2. The solid curves in the figure  
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Figure 2. (a) Effects of social distancing to “flatten the curve” with the linear model. Solid lines are plots of f, the susceptible frac-
tion, vs time while the dashed traces are plots of g, the infected fraction, vs. time with increasing degrees of social distancing 
represented by the black, red, and blue curves, respectively. See text for specific parameter values. (b) Effects of potential pharma-
ceutical interventions evaluated with the linear model for a fixed social distancing parameter β with the solid black curve showing 
the decay of the susceptible fraction f and with the blue, red and black dashed traces showing increasingly effective pharmaceutical 
interventions on the infected fraction g, as reflected by increasing γ2 values. See text for specific parameter values. (c) The effects of 
allowing for a return from the recovered to the susceptible pool with positive values of γ1 in Equations (9a)-(9c) are demonstrated 
by plotting the susceptible fraction (solid lines) and the infected fraction (dashed lines) as a function of time for variable immunity 
periods (see color inset) for fixed values of β and γ2 provided in the text. This unflattening of the curves with waning immunity 
lifts steady state values for infected and susceptible fractions away from 0, heralding an endemic vs. an epidemic situation. Im-
munity must last forever (dark blue curves) for an epidemic or pandemic which are the same things, just on different scales. 

 
represent f, the healthy but susceptible fraction of the population. The dashed 
curves represent g, the sick fraction of the population. The curves were generat-
ed with a fixed γ2 value of 0.072 days−1 and β values of 0.096 days−1 (black curves), 
0.048 days−1 (blue curves) and 0.024 days−1 (red curves). In this case, the strategy 
to strongly advise or otherwise mandate various degrees of social distancing to 
reduce the rate at which the virus spreads clearly worked. With the highest β 
value, perhaps representing the case of no social distancing, one sees the highest 
peak height of the g curve, a worst-case scenario with the potential to surpass 
various hospital capacities while the next two curves with lower β values show a 
successive lowering of the peak heights, hopefully flattened sufficiently so as to 
not overwhelm various hospital capacities. It is worth noting however that “flat-
tening the curve” via increasing levels of social distancing also results in more 
infected people in the later stages of the pandemic. For example, Figure 2(a) in-
dicates that at 70 days from t = 0 approximately 10% of the population remains 
infected in the case of the highest social distancing while only ~2% remains in-
fected in the absence of social distancing. In fact, one finds identical areas be-
neath each of the three g curves in Figure 2(a) for this model as proven by cal-
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culating the area under g curves over all time from 0 to ∞. For SIR conditions 
( 1 0γ = ) we have: 

( ) ( )2 20 0 0
0

2 2

d e e d e dt ttf f g
g t t t g tγ γββ

γ β γ
− −− +

= − + =
− ∫∫ ∫         (13) 

thus, proving identical areas under the g curves for fixed γ2 and areas which are 
independent of β. This result has some implications regarding “flattening the 
curve”. Namely, within the confines of this model and with no way to affect γ2, 
then regardless of the degree of social distancing, masking, etc., invoked to “flat-
ten the curve”, the same number of people will ultimately get sick, reach ICU 
units and/or ventilators, and die or recover.   

Figure 2(b) shows the effects of potential pharmaceutical interventions when 
social distancing is fixed by using a β of 0.072 days−1 with the susceptible fraction 
f plotted as the solid black curve. The blue, red and black dashed curves plotted 
the infected fraction g for increasing levels of the effectiveness of potential 
pharmaceutical interventions and were generated using γ2 values of 0.024, 0.048 
and 0.096 days−1, respectively. Figure 2(b) shows that effective interventions can 
alleviate the burden of disease as quantified by the area under each of the three 
curves, the red and black dashed curves showing half and one-fourth of the area 
of the blue curve, in accordance with their respective γ2 values (see Equation (13)).  

The effects on the curves when the immunity bestowed upon the recovered 
fraction is allowed to wane, as portrayed by the lower row of Figure 1 and charac-
terized via Equations (9)-(12) are provided in Figure 2(c) which shows that as 
one allows a flux from the recovered to the susceptible pool with a non-vanishing 
γ1 the steady state levels of the infected fraction rise from 0, in the pure SIR con-
dition, to levels commensurate with Equation (12b) while the susceptible frac-
tion also rises to non-vanishing levels (Equation (12a)) at long times. This “un-
flattening” of the curves are shown as solid and dashed lines in Figure 2(c) for 
the susceptible fraction f and the infected fraction g, respectively, for fixed β and 
γ2 values of 0.076 days−1 and 0.096 days−1, respectively, as γ1 value ranges from 0 
to 0.07 days−1. This range of values for γ1 has been gleaned from some recent lite-
rature regarding various measurements of the length of immunity from COVID-19 
following recovery [6] [7] [8]. The lifting of the steady state values from 0 to 
non-zero values for the infected and susceptible pools heralds the transition 
from an epidemic situation to an endemic situation.  

The linear models proposed above successfully achieved the goal of generating 
curves amenable to flattening, curves which resemble those reported in the me-
dia. Furthermore, the curves so generated behaved quite sensibly with respect to 
alterations in the parameters such as β and γ2 as indicative of the effects of social 
distancing type interventions and pharmacological type interventions, respec-
tively. We defer a discussion of the γ1 parameter in Equations (3a)-(3c) which 
allows for the possibility of a return of an individual from the I pool to the S pool 
for potential reinfection until after a discussion of the non-linear KM type mod-
els. There are a number of differences between the linear models and the KM 
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models more commonly deployed for epidemiological considerations, differenc-
es we now discuss in the following exposition of the KM models.  

2.3. Kermack and McKendrick (KM) Models SI, SIS and SIR 

The article which Kermack and McKendrick published [1] shortly after the end 
of the “Great Influenza” of the last century [9] laid the foundations for much of 
the mathematical modeling associated with epidemics since. The following sys-
tem of equations, normalized [2], slightly modified to include an I to S rate γ1, 
and cast in modern terminology, represent our KM starting points:  

1
d
d
S SI I
t

β γ= − +                        (14a) 

1 2
d
d
I SI I I
t

β γ γ= − −                      (14b) 

2
d
d
R I
t

γ=                           (14c)  

where the normalization relation: 

1S I R+ + =                           (15) 

follows from the vanishing sum of Equations (14a)-(14c). As Breda et al. [10] 
have recently and somewhat caustically remarked regarding the 1927 KM paper 
that “…even experienced experts believe that the paper is just about (this) sys-
tem…” while pointing out that Kermack and McKendrick introduced this sys-
tem of equations only as a special case of their more general formulation. Not 
being such experts, we happily consider these equations, noting that the most 
notable difference between the linear models and those of Equations (14a)-(14c) 
is the recognition that in the latter, the rate at which people are removed from 
the S fraction to the I fraction is not simply proportional to the S fraction but 
also to the infectious fraction I. The more people who are sick, the more likely a 
healthy person will encounter a sick person and so, quite reasonably, arises the ± 
βIS terms in Equations (14a) and (14b). Though this assumption has been chal-
lenged, particularly at high infection fractions [11], the equations posed have 
formed a very important backdrop from which to study not just disease spread 
but also some interesting mathematics [10]-[17]. Despite statements to the con-
trary [13], Equations (14a)-(14c) are non-linear so any hope that the Laplace 
transform approach to their solution might be of value is quickly vanquished, 
though this also means that notationally we no longer need to reserve capital 
letters for the Laplace transform counterparts of f, g and m and directly utilize 
the S, I and R representations for the three fractions. Rather than attempting to 
solve these equations as written, let’s first look at two simplified versions of them 
which are commonly deployed [3] [4] [10] [11] [12] [14] [15] [16] [17], the SI 
and SIS models, both of which have useful analytic solutions but do not lead to 
curves with “peaks” to flatten. 

The SI model involves considering only the susceptible fraction S and the in-
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fectious fraction I with no loss from the latter to a recovered fraction. This is 
done by setting 1 2 0γ γ= =  in Equations (14a)-(14c) to obtain:     

d
d
S SI
t

β= −                           (16a) 

d
d
I SI
t

β=                           (16b) 

with 1S I+ = . To solve this set of equations, this normalization condition is 
used to substitute for S into Equation (16b) as in: 

( )d 1
d
I I I
t

β= −                        (17a) 

or rearranging 

( )
d d
1

I t
I I

β=
−

                       (17b)   

Now since 
( )

d 1ln
d 1 1

I
l I I I
   =  − −  

 direct integration of the left side from I0  

to I and the right side from 0 to t may be performed to obtain, after some tedious 
rearrangement, the following expression for I:  

( )
0

0

e
1 1 e

t

t

I
I

I

β

β
=

− −
.                     (18)  

Thus, we see that the SI model has an analytic solution which yields an infec-
tious fraction I which is a monotonically increasing function of t, as shown by 
the black curve in Figure 3(a) which assumed a β value of 0.1 days−1 and an in-
itially infected fraction, I0, of 0.01. For any value of the single parameter β, the 
infectious fraction tends towards unity given enough time. The model simply 
implies that sooner or later all the susceptible fraction becomes infected, though 
there is no curve to flatten. The SI model effectively contains no further infor-
mation as the only other variable of interest S, is simply 1 − I. There is one in-
teresting feature of the SI model which is shared by the other KM models dis-
cussed below. This is the feature that if 0 0I = , as in no sick people, the infec-
tious fraction I will remain 0 and there will be no spread of disease with time. 
This is a very sensible feature indeed for an infectious phenomenon and one not 
shared by the linear model where the increase of the infected fraction (g in Equ-
ation (1b)) occurs from the start no matter what. Turning to the slightly more 
complicated SIS model, the governing differential equations read:  

d
d
S SI I
t

β γ= − +                      (19a) 

d
d
I SI I
t

β γ= −                       (19b)    

In this model, the rate γ represents the flux of sick people back to the suscept-
ible pool, recovery without immunity. We still have the normalization condition 
for the two fractions 1S I+ =  so that Equation (19b) may be written as: 
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Figure 3. (a) Kermack-McKendrick model SI and SIS curves for a fixed value of β but with increasing values of γ (inset) and as 
described in the text. In these simulations with β > γ, a steady state level of infection is achieved which decreases as γ, the propor-
tionality constant of the rate of the infected fraction back to the susceptible fraction, increases. (b) Kermack-McKendrick model SI 
and SIS curves for a fixed value of β but with increasing values of γ (inset) and as described in the text. In these simulations with β 
< γ, the vanishing steady state level of infection is achieved faster as γ, the proportionality constant of the rate of the infected frac-
tion back to the susceptible fraction, increases.  
 

( )d 1
d
I I I I
t

β γ= − −                        (20)   

After Shabbir et al. (16) we seek the solution to this equation by making the 

substitution 1I
y

=  and with d 1
dt y
 
 
 

 being 2

1 d dy t
y

 
− 
 

, Equation (20) be-

comes:  

( )d
d
y y
t

γ β β= − +                       (21a) 

or equivalently 

( )
d dy t

y γ β β
=

− +
                      (21b)   

Integrating the left and right sides from y0 to y and 0 to t, respectively, may be 

readily accomplished by noting that ( )( )( ) ( )
d ln
d

y
y y

γ ββ γ β
β γ β

−
+ − =

+ −
. 

Performing the requisite integrations and rearranging leads to the solution for 
y as:  

( )( ) ( )
0 e ty

y
γ ββ γ β β

γ β

−+ − −
=

−
                  (22) 

whose inverse finally yields the sought after I as: 

( ) ( )

( )( )
( )

( )( )
0 0

0 0

e e

1 e 1 1 e

t t

t t

I I
I

I I

γ β γ β

γ β γ β

γ β

γ β β

− − − −

− − − −

−
= ≡

− + − +Ψ −
        (23) 

where we have defined β
γ β

Ψ ≡
−

. It is easily shown that Equation (23) of the  

SIS model reduces to Equation (18) of the SI model when γ is set to 0. The pri-
mary difference between SI and SIS is that the endpoint of the infectious fraction 
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is not unity but rather some fraction less than unity. That is, given enough time 
not all the population becomes infected, as in SI, but rather the steady state 
achieved involves some smaller portion of the full population. Figure 3(a) shows 
SIS model simulations for the same β and I0 used for the SI model, β = 0.1 days−1, 
I0 = 0.01, but with γ values of 0.025, 0.05 and 0.075 days−1, respectively. Figure 
3(b) shows what happens when the γ values exceed the β value. Namely, the in-
fectious fraction dies out as shown using the β of 0.1 days−1 and γ values of 0.1 
(black curve), 0.12 (red curve), 0.14 (blue curve) and 0.16 (magenta curve) days−1, 
respectively.  

As mentioned briefly above Mohazzabi et al. used the SI model to fit available 
CDC measurements of the 5-day rolling average of individuals infected with 
COVID-19 over the course of a year within the United States [3] and also for 
similar data reported on a worldwide basis [4]. The SI model is, of course, just 
the SIS model with γ in Equations (19a) and (19b) set to 0. We have applied the 
SI and the SIS model to the same CDC data for the United States used by Mo-
hazzabi et al. The results are shown in Figures 4(a)-(c). Figure 4(a) shows the 
actual data (black curve) while the red and blue curves fit the data as performed 
with the SI and SIS models, respectively.  

To convert the fractional population of infected people I to the numbers of in-
fected people, multiplication by the estimated total population for people living 
in the USA was performed assuming this population was 3.31 × 108 individuals, 
the same estimate used by Mohazzabi et al. [3]. Also, as in that work, the total 
number of infected individuals at t = 0, n0, was incorporated as a free parameter 
in addition to the free parameters β and γ. Our fits yielded the parameters shown  
 

 
Figure 4. (a) Black curve shows the actual number of cases in the USA over 1 year with fits to the SI and SIS models (red and blue 
curves respectively). (b) Residuals from both fits to the data and (c) model predictions over an extended period with the parame-
ters from the SI and SIS model fits, as provided in Table 1.  

https://doi.org/10.4236/jamp.2022.1010204


R. V. Mulkern, R. Nosrati 
 

 

DOI: 10.4236/jamp.2022.1010204 3065 Journal of Applied Mathematics and Physics 
 

Table 1. Parameters for the SI and SIS model fits as seen in Figure 4(a) to actual number 
of cases in the USA over 1 year.   

 n0 β (days−1) γ (days−1) R2 

SI model 391,700 0.01152 - 0.993 

SIS model 391,700 0.01401 0.00245 0.993 

 
in Table 1, with the parameters for the SI model very similar to those reported 
by Mohazzabi et al. for this model. The model fitting for SI model was based on 
Equation (18) and the fitting coefficients were n0 and β. For the SIS model, the 
estimated n0 from SI model fit was used as an input and β and γ were estimated 
by fitting the data to Equation (23). 

Using the SIS model with one additional free parameter a slightly higher β is 
returned and of course a non-vanishing γ, but with equivalent correlation coeffi-
cients R2 of 0.993 for both models fits. Visualization of this equivalence is pro-
vided in Figure 4(b) which shows the residuals from both fits. Despite the equi-
valence of the SI and SIS model fits the data over this limited time range of 1 
year, the ramifications of longer time periods for either fit may be appreciated by 
Figure 4(c) in which the SI model leads to the entire population being infected 
while the SIS model parameters lead to significantly fewer numbers of infected 
people at long times. Of course, neither of these models incorporates a recovered 
population so the “bell” curves occurring in local populations and reported in 
the media will not be generated from such models and so we now turn to the 
three-compartment models to generate such curves. 

Thus, we examine the original KM equations, Equations (14a)-(14c), albeit 
with the additional γ1 term, and seek their solutions, as others have [10]-[17], to 
no avail. There is simply no obvious analytic solution and those who have of-
fered “algebraic” solutions offer up approximations, as KM did, and/or infinite 
series of elementary functions. It is, however, quite feasible to perform numeri-
cal evaluations of the KM equations and we do so with the aid of a mathematical 
trick originally provided by Kermack and Mckendrick who wrestled the three 
differential equations into one. Namely, one divides Equation (14a) by Equation 
(14c) to obtain: 

1

2

d
d

SS
R

γ β
γ
−

=                          (24a) 

or 

1 2

d dS R
Sγ β γ
=

−
                        (24b) 

which may be directly integrated to obtain:  

21 2
0 e

R

S S
β
γγ γ

β β

− 
 
 

= − − .                     (25)   

Applying the normalization condition and substituting Equation (25) into 

https://doi.org/10.4236/jamp.2022.1010204


R. V. Mulkern, R. Nosrati 
 

 

DOI: 10.4236/jamp.2022.1010204 3066 Journal of Applied Mathematics and Physics 
 

Equation (14c) one obtains:  

( ) 21 1
2 2 2 0

d 1 1 e
d

R
R I R S R S
t

β
γγ γ

γ γ γ
β β

−  
 = = − − = − − + −    

      (26) 

The only difference between this equation and that provided by Kermack and 
McKendrick nearly 100 years ago is the γ1 term which, again, simply allows for 
sliding between SIS and SIR conditions depending on the value of γ1 which, 
when non-zero, provides a means for people in the infected pool to go back to 
the susceptible pool in addition to, perhaps, proceeding to the recovered/dead 
pool via the rate γ2. It is now straightforward to utilize Equation (26) to numeri-
cally propagate a solution for R iteratively as in: 

( )1 d di i iR R R t t+ = + ∆                      (27)   

where d diR t  is given by the right side of Equation (26) at each integer time 
step i and ∆t is the length of each time step. Since numerical evaluation was a 
luxury Kermack and McKendrick could not really afford, at least not easily in 
their time, they may be excused for expanding the exponential in Equation (26) 
to 2n’d order and providing an approximate solution in terms of standard func-
tions. The advent of modern computing machines allows us to directly imple-
ment Equation (27) into Matlab (The Mathworks, Needham, MA) as a recursive 
relation, allowing us to generate the time courses of R, and subsequently I, as 
exemplified by the curves in Figure 5 which are intended to show how the stan-
dard SIR type curves from the KM model, with vanishing γ1, morph into the 
analytically tractable SIS like curves as one introduces stronger γ1 values in rela-
tion to γ2. The curves shown utilized a β value 0.1 days−1, an I0 of 0.01, a time 
sampling ∆t of 0.25 days and a total of 800 time samples from 0 to 200 days. The 
red curve is a pure SIR curve with 1 0γ =  and 2 0.04γ =  days−1, the magenta 
curve is a pure SIS curve with 2 0γ =  and 1 0.04γ =  days−1. The dashed black 
line through the magenta curve was generated with the analytic solution to the 
SIS model embodied in Equation (23) and confirms the accuracy of the numeri-
cal solution (magenta curve) in this regime. The numerically generated black 
and blue curves are SIS/SIR mixtures with γ1 value of 0.04 days−1 and γ2 values of 
0.005 and 0.01 days−1, respectively. The introduction of positive γ2 values into 
pure SIS models is seen to result in a “flattening” of the pure SIS model curves 
whose steady state values after many days are not representative of the curves 
typically reported in the media for COVID-19 epidemic outbreaks. The thick red 
curve in Figure 5, the pure SIR model with vanishing γ1, is more representative 
of the curves reported in the media for COVID-19 outbreaks.  

An application of the linear model and the KM model with SIR conditions to 
some real data is provided in Figure 6(a) where the number of cases reported in 
Massachusetts for the first 100 days following the initial lockdown in March of 
2020 are plotted along with fits to both the linear model (red curve) and the KM 
model (blue curve). The parameters for the linear and KM model fits are pro-
vided in Table 2, where SF is a Scaling Factor found from a three-parameter fit  
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Figure 5. Numerically generated SIR and SIRS curves. The red curve is a pure SIR curve with γ1 
= 0 and γ2 = 0.04 days−1, the magenta curve is a pure SIS curve with γ2 = 0 and γ1 = 0.04 days−1. 
The dashed black line through the magenta curve was generated with the analytic solution to 
the SIS model embodied in Equation (23) and confirms the accuracy of the numerical solution 
(magenta) in this regime. The numerically generated black and blue curves are SIS/SIR mix-
tures with γ1 value of 0.04 days−1 and γ2 values of 0.005 and 0.01 days−1, respectively. 

 

 
Figure 6. (a) Infected population reported in Massachusetts beginning on March 20, 2020, immediately following the initial lock-
down in our state along with fits to the linear model of equation 8a with a scaling factor added as an additional free parameter (red 
curve) and to the Kermack and McKendrick (KM) model using manual adjustments of the free parameter and the same scaling 
factor found for the regression analysis to the linear model. Table 2 provides the fit parameters. The correlation coefficients for 
the linear model and the KM model were 0.83 and 0.87, respectively. (b) Residual plots evaluated from the linear and KM model 
fits to the data of Figure 6(a).  

 
Table 2. Parameters for the linear model and KM model fits seen in Figure 5(a) to the 
first 100 days of COVID-19 cases as reported in Massachusetts following the initial 
“lockdown” of March 2020. SF is a scaling factor which was ascertained as a free parame-
ter from the linear model fit and then applied to the KM fit.   

 f0 β (days−1) γ2 (days−1) SF 

linear model 1 0.043 0.043 4798 

KM 0.95 0.190 0.045 4798 
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(β, γ2 and SF) to the linear model and was used for the KM fit as well. Note that 
only for the linear model with its analytic solution could the standard non-linear 
regression analyses of Matlab be used for the three-parameter fit while for the 
numerical KM curve shown, manual adjustment of the free parameters β and γ2 
was performed to minimize the r2 value with f0 and SF fixed at 0.95 and 4798, 
respectively. The r2 values of 0.83 and 0.87 for the linear and KM models, re-
spectively, are quite similar, albeit slightly better for the KM model (Table 2) 
with the residuals for both fits shown in Figure 6(b). 

3. Discussion 

Summarizing the differential equations and solutions discussed, we first note 
that with only two compartments—the fractions S and I alone—both the linear 
model and the KM approach, in which one of the rates connecting the S to I 
boxes is proportional to the I fraction (Figure 1), support analytic solutions as 
derived above but do not yield the up and down curves typical of COVID-19 
curves reported in the media. For the three-compartment model in which the 
recovery fraction R may or may not have waning immunity, only the linear model 
supports analytic solutions while the KM approach must be dealt with numeri-
cally. The benefits of having analytic solutions to readily understand the effects 
of parameters which reflect either social distancing or pharmaceutical interven-
tions are obvious (Figure 2), as are the benefits of being able to provide analytic 
expressions for areas under the curves or their peak heights. It is also clear that 
the three compartment linear model can compete reasonably well with the KM 
approach in modeling typical “curves” as shown by the similar correlation coef-
ficients found from the fits of Figure 5. Of course, only for the linear model with 
its analytic solution could standard regression analyses, which rely on derivatives 
of the fitting function, be fully brought to bear on this problem. We consider one 
last “curve flattening” exercise which further emphasizes the benefits of analytic 
solutions by returning to the original set of Kermack-McKendrick equations but 
with an exponent parameter α, not a Laplace transform variable in this case, that 
links the linear model to the KM approach. Namely as α varies from 0 to 1 in the 
following set of equations, one transition from the linear model to the KM mod-
el:  

d
d
S SI
t

αβ= −                           (28a) 

d
d
I SI I
t

αβ γ= −                         (28b) 

d
d
R I
t

γ= .                          (28c)   

No analytic solution appears possible except for the 0α =  linear model but, 
with modern computational capabilities, time courses for the fractions may be 
generated directly from these equations. Unfortunately, the trick of turning the 
three equations into one, as done by Kermack and McKendrick for 1α = , is no 
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longer viable. Nevertheless, a simultaneous numerical propagation approach for 
all three equations serves quite well to generate curves as a function of α for fixed 
values of β and γ, as shown in Figure 7. The figure plots infected fraction curves 
for five values of α from 0 to 1.1 for β and γ values of 0.096, 0.02 days−1, respec-
tively, and with starting conditions of 0 0.99S =  and 0 0.01I = . Note that as α 
increases the curves “flatten” and it might be of interest to evaluate the areas 
under the curves as a function of α to see if they are all the same. Unfortunately, 
only for the blue curve, the 0α =  linear model, is this possible. To evaluate 
areas under the other curves, numerical integration is required and of course 
must be performed individually for each curve as generated with a wide range of 
parameters. Though this can be done, it is rather onerous if not Herculean task. 
Similarly, Figure 7 shows how the peak heights diminish with α which would be 
considered beneficial from the hospital overload perspective though again, the 
inability to take an analytic derivative for all but 0α =  means numerical me-
thods must be deployed to evaluate peak height dependencies on α, another 
onerous task when considering the wide range of β and γ values that need to be 
investigated to arrive at any firm conclusions. Finally, concluding that a para-
meter like α would be a valuable addition to fits like those shown in the data in 
Figure 6(a) would benefit from the ability to perform non-linear regression ana-
lyses, a task again made difficult if not impossible due to the numerical nature of 
the curve generation. In this regard, it is of interest to note that approximate ana-
lytic solutions to non-linear, coupled differential equations can be determined, an  
 

 
Figure 7. Numerically simulated infection fraction curves for a Kermack and McKen-
drick (KM) model which considers the flux rate from the S to I fraction to be proportion-
al to Iα where α ranges from 0 (linear model) through 1 (KM model) to 1.1, why not? It is 
just another numerical simulation as are all the curves except for the blue, α = 0 curve. 
Note that as α increases these curves “flatten”, our last flattening demonstration, though 
it is difficult to ascertain whether the areas under the curves remain the same for these 
particular fixed values of the other free parameters in the model described by Equations 
(28a)-(28c). 
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excellent example being provided by Varadharajan and Rajendran [18] who con-
sidered the non-linear differential equations associated with enzyme-substrate- 
product interactions. Using a “homotopy perturbation method”, discussed in [18] 
and references therein, analytic solutions which well-approximated numerical 
solutions of non-linear equations not dissimilar to those discussed above were 
produced which, of course, may be integrated or differentiated, a topic of inter-
est indeed but which goes beyond the scope of this tutorial.  

4. Conclusion 

There remains a lot of uncertainty regarding the eventual time course of the co-
ronavirus throughout individual countries and the world. Model predictions 
abound and disagreements among the experts and non-experts regarding the 
assumptions and ultimate validities of different models have provided daily en-
tertainment for those of us who sat “working at home” in our armchairs doing 
our part to reduce the probability of individual viral infection and/or its spread. 
As the COVID-19 storm passes through us, valuable data become available in 
the form of infection vs. time curves, etc. Fits such curves with equations like 
those reviewed herein may provide insights into the different strategies deployed 
in different regions to mitigate the effects of the virus. Experienced mathemati-
cally oriented epidemiologists may find nothing new or surprising in the analys-
es we have provided and undoubtedly possess even more sophisticated models 
which will include nuances such as age dependencies on the rates of infec-
tion/recovery, effects of the initial viral load on disease severity and transmission, 
“vital statistics” [17] which account for births and deaths affecting the overall 
population and critically, accounting for data distortions due to insufficient or 
ineffective testing and subsequent knowledge of the overall infection and recov-
ery counts. In any event, the virus and its measured effects will long provide a 
fruitful epidemiological gold mine for model testing and predictions regarding 
future pandemics, models that can help guide public health policies in times of 
confusion.  
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