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Abstract 
In this paper, we study the oscillatory theory for two classes of fractional neu-
tral differential equations. By using fractional calculus and the Laplace trans-
form, we obtain several new sufficient conditions for the oscillation of all so-
lutions of this equation. Our results improve and extend some known results 
in the literature. Furthermore, some examples are provided to show the effec-
tiveness and feasibility of the main results. 
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1. Introduction 

The fractional differential equation (FDE) has gained considerable importance 
due to its various application in fluid mechanics, viscoelasticity, electrochemistry 
of corrosion, classical mechanics and particle physics, control theory, diffusive 
systems, and so on [1]-[7]. Therefore, the theory of fractional calculus has re-
ceived extensive attention from scholars at home and abroad. In the past few 
decades, many researchers have done a lot of research on the properties of frac-
tional differential, for example, the existence, uniqueness, stability, asymptoticity 
of solutions of fractional differential equations and numerical solutions of frac-
tional differential equations, etc. [8]-[13]. 

However, to the best of our knowledge, there are few results on oscillation for 
the fractional differential equation. We refer to [14]-[19] and the references there-
in. In [20], Meng et al. studied the linear fractional order delay differential equation  

( ) ( ) 0,CD x t px tα τ− − − =  

where 0 1α< < , , 0p τ > , ( ) ( ) ( ) ( )1 1 dC
t

D x t s t x s sαα α
∞ −−

− ′= −Γ − −∫ . 
In [21], A. George Maria Selvam and R. Janagaraj establish oscillation theo-
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rems for damped fractional order differential equation of the form:  

( ) ( ) ( ) ( ) ( ) ( ) 00, 0,k y k k y k k Z Y k k kγ γδ ρ ξ ∆ ∆ + ∆ + = ≥ >     

where ( ) ( ) ( )
0

1

1
k

u k
Y k k u y u

γ
γ

− +
−

=

= − −∑  and γ∆  defined as the difference opera-

tor of the Riemann-Liouville derivative of order ( ]0,1γ ∈ . 

In [22], Zhu et al. studied forced oscillatory properties of solutions to nonli-
near fractional differential equations with damping term and time delay:  

( )( ) ( )( )( ) ( ) ( )( ) ( )1
0 0 ,D y t p t D y t q t f y t g tα ατ τ τ+
+ +− + − − + =  

where ( ) ( )y t tξ=  when [ ),0t τ∈ −  and ( )tξ  is a given continuous function, 
where τ  and ( )0,1α ∈  are constants, ( )0

lim 0
t

tξ−→
= , b is a real number, 

0D yα
+  is the Riemann-Liouville fractional derivative of order α  of y. 
In [23], Zhou et al. study the following fractional functional partial differential 

equation involving Riemann-Liouville fractional derivative:  

( ) ( ) ( ) ( ) ( )
1

,
, , ,

n

i i
i

u x t
C t u P x u x t R x t

t

α

α σ
=

∂
= ∆ + − +

∂ ∑  

supplemented with the initial condition  

( )
[ ]

( ) { }
1

1
,0

,
, , , where max , 1,2, , ,i

t

u x t
x t x i n

t

α

α
σ

ϕ σ σ
−

−
∈ −

∂
= ∈Ω = =

∂
  

and boundary conditions  

( ) ( ) [ )
,

0 on , 0, ,
u x t

x t
N

∂
= ∈∂Ω× ∞

∂
 

( ) ( ) [ ), 0 on , 0, ,u x t x t= ∈∂Ω× ∞  

( ) ( ) [ )
,

0 on , 0, .
u x t

vu x t
N

∂
+ = ∈∂Ω× ∞

∂
 

Motivated by the analysis above, in this paper, we are concerned with the os-
cillation of two classes of fractional differential equations as follows:  

( ) ( )( ) ( )( )0 0,tD x t rx t f x tα σ τ+ − + − =              (1) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

0
1

1 1

, ,

, , , ,

n

t i i
i

L m

k k i i
k i

D u x t ru x t

a t u x t b t u x t p q t f u x t

α σ

τ

=

= =

 + − 
 

= ∆ + ∆ − − −

∑

∑ ∑
    (2) 

where oddinteger0 1
oddinteger

α< = < , ( )0 tD x tα  is Riemann-Liouville fractional deriv-

ative of order α . 
This paper is organized as follows. In the next section, we introduce some 

useful preliminaries. In Section 3, we present various sufficient conditions for 
the oscillation of all solutions to Equations (1) and (2) by using fractional calcu-
lus, Laplace transforms and Green’s function. Finally, we provide some examples 
to show the applications of our criteria.  
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2. Preliminaries 

In this section, we introduce preliminary facts which are used throughout this 
paper.  

Definition 1 ([24]). Let [ ]( ),a b a b−∞ < < < ∞  be a finite interval and let 
[ ],AC a b  be the space of functions f which are absolutely continuous on [ ],a b . 

It is known (see [25], p.338) that [ ],AC a b  coincides with the space of primi-
tives of Lebesgue summable function:  

( ) [ ] ( ) ( ) ( ) ( )( ), d , , .
x

a
f x AC a b f x c t t t L a bφ φ∈ ⇒ = + ∈∫  

Definition 2 ([24]). The Riemann-Liouville left-sided fractional integral of 
order 0α >  of a function :f + →   on the half-axis +  is given by:  

( )( ) ( )
( )

( )0 10

1 d , 0,
t

t

f s
D f t s t

t s
α

αα
−

−= >
Γ −

∫  

provided the left hand side is pointwise defined on + , where Γ  is the gamma 
function.  

Definition 3 ([24]). The Riemann-Liouville left-sided fractional derivative of 
order 0α >  of a function :f + →   on the half-axis +  is given by:  

( )( ) ( )
( )

( )0 0

1 d d , 0,
1 d

t
t

f s
D f t s t

t t s
α

αα
= >
Γ − −

∫  

provided the left hand side is pointwise defined on + .  
We recall some facts about Laplace transforms. If ( )X s  is the Laplace 

transform of ( )x t ,  

( ) ( ) ( ) ( )
0

e d ,stX s L x t s x t t
∞ −= =   ∫  

then the abscissa of convergence of ( )X s  is defined by:  

( ){ }inf : exists ,b R Xγ γ= ∈  

Therefore, ( )X s  exists for ( )Re s b> .  
Definition 4. A function ( )x t  is eventually positive if there is a 0c ≥  such 

that ( ) 0cx t >  for all 0t > , where ( ) ( )cx t x t c= + .  
Definition 5. By a solution of (3) in [ )0,∞  with the initial function  

[ ],0ACϕ ξ∈ − , we mean a function [ ],x AC ξ∈ − ∞  such that ( ) ( )x t tϕ= ,  

[ ],0t ξ∈ − , ( )( )0 tD x tα  exists and ( )x t  satisfies (3) in [ ) [ ), : 0, 0,v w ∞ → ∞ . 
A nontrivial solution ( )x t  of equation (3) is said to oscillate if it has an arbi-
trarily large number of zeros. Otherwise, the solution is called non-oscillatory.  

Lemma 1 ([24]). Let ( )( )0 tL D x sα  be the Laplace transform of the Riemann- 
Liouville fractional derivative of order α  with the lower limit zero for a func-
tion x, and ( )X s  is the Laplace transform of ( )x t . Further, for [ ]0,x AC b∈  
and for any 0b > ,  

( ) ( )0e 0m tx t A t b≤ > >  

holds for constant 0A >  and 0 0m > . Then the relation  
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( )( ) ( ) ( )( )1
0 0 0

,0 1t t t
L D x s s X s D x tα α α α−

=
= − < <  

is valid for ( ) 0Re s m> .  
Lemma 2 ([23]). For any c R∈ , the Laplace transform ( )cX s  of ( )cx t  

exists and has the same abscissa of convergence as ( )X s .  
Lemma 3 ([26]). Let [ ) [ ), : 0, 0,v w ∞ → ∞  be continuous function. If w is 

non-decreasing and there are constants 0a >  and 0 1β< <  such that  

( ) ( ) ( )
( )0

d ,
t v s

v t w t a s
t s β≤ +
−

∫  

then there exists a constant ( )k k β=  with  

( ) ( ) ( )
( )0

d ,
t w s

v t w t ka s
t s β≤ +
−

∫  

for every [ )0,t∈ ∞ .  

3. Main Results 

In this section, we present our main results.  
Lemma 4. 0 tD xα  is the Riemann-liouville derivative of order α  with the 

lower limit zero for a function ( )x t , ( )X s  is the Laplace transform of ( )x t , 
0σ > , 0 1α< < , then the following relation holds.  

( ) ( ) ( ) ( ) ( )( )0 1
0 0 0

e e e ds s st
t t t

L D x t s s X s s x t t D x tα α σ α σ α
σ

σ σ− − − −

− =
 − = + − −  ∫  

Proof.  

( ) ( )
( )( )

( )

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1
0

0

1 1
0 0 0

1
00 0

1
0 0

1
0 0

d

d

1 d
1

1

.
1

t
t

t t t

t
t t

t t

t t

D x t
L D x t s L s

t

sL D x t s D x t

sL t s x s s s D x t

tsL x t s D x t

tsL L x t D x t

α
α

α α

α α

α
α

α
α

σ
σ

σ σ

σ σ
α

σ σ
α

σ σ
α

−

− −

=

− −

=

−
−

=

−
−

=

 −
  − =    

 = − − − 

 
= − − − − 

Γ −  

 
= ∗ − − − 

Γ −  

 
= − − −    Γ −  

∫  

By Lemma 2, ( )L x t σ−    exists such that  

( ) ( ) ( )0
e e e d ,s s stL x t X s x t tσ σ

σ
σ − − −

−
− = +   ∫  

then  

( ) ( ) ( ) ( ) ( )( )0 1
0 0 0

e e e ds s st
t t t

L D x t s s X s s x t t D x tα α σ α σ α
σ

σ σ− − − −

− =
 − = + − −  ∫  

The proof is complete.                                             □ 
We consider the following fractional-order delay differential equation:  
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( ) ( )( ) ( )0 0tD x t rx t qx tα σ τ+ − + − =                 (3) 

where r R∈ , , ,q Rσ τ +∈ . The standard initial condition associated with (3) is  

( ) ( ) [ ], ,0 ,x t t tϕ ξ= ∈ −                      (4) 

where ( ) [ ]( ),0 ,t C Rϕ ξ∈ − , { }max ,ξ σ τ= .  
Lemma 5. If 1r < , the solution of Equation (3) has an exponent estimate  

( ) ( ) ( )0e 0q tx t o t b= > >  

for constants 0 0q > .  
Proof. Taking the Riemann-Liouville integral of Equation (3), we have  

( ) ( ) ( ) ( ) ( )
1

0
t qx t x rx t F t
α

σ
α α

−

= − − −
Γ Γ

              (5) 

where ( ) ( ) ( )1

0
d

t
F t t s x s sα τ−= − −∫ ,  

( )( ) ( )( )1 1
0 0 00 0t tt t

x D x t r D x tα α σ− −

= =
= + − . 

As ( ) [ ]0,x t AC b∈ , there exists a constant 0M >  such that ( )x t M≤ . 
For t b> , we have  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )

1

0

1 1

0

1 1

0

1

d

max d max d

d max d

max d ,

t

b t

bs s s s

b t

b b s

t

b b s

F t t s x s s

t s x s t s x s

t s M s t s x M s

t M t s x s

α

α α

τ η τ η

α α

η

α
α

η

τ

η η

ϕ η ϕ

ϕ η
α

−

− −

− ≤ ≤ − ≤ ≤

− −

≤ ≤

−

≤ ≤

≤ − −

≤ − + −

≤ − + + − + +

≤ + + −

∫

∫ ∫

∫ ∫

∫

 (6) 

which, together with (5), yields  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

1

max

max d

t t

t

b b s

b qx t x r x t F t

b q tx r x M

q t s x s

α

α α

σ η

α

η

σ
α α

η ϕ
α α α

η
α

−

−

− ≤ ≤

−

≤ ≤

≤ + − +
Γ Γ

≤ + + +
Γ Γ

+ −
Γ ∫

 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

1

0

1

max

max d

max

max d .

b t

t

b b s

b t

t

b b s

b q tx r M x M

q t s x s

b q tx r M r x

q t s x s

α α

η

α

η

α α

η

α

η

ϕ η ϕ
α α α

η
α

ϕ η
α α α

η
α

−

≤ ≤

−

≤ ≤

−

≤ ≤

−

≤ ≤

≤ + + + + +
Γ Γ

+ −
Γ

 
≤ + + + +  Γ Γ 

+ −
Γ

∫

∫

       (7) 

In the interval [ ],b t , taking the maximum value on both sides of inequality (7), 
then  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

max max

max d .

b t b t

t

b b s

b q tx x r M r x

q t s x s

α α

η η

α

η

η ϕ η
α α α

η
α

−

≤ ≤ ≤ ≤

−

≤ ≤

 
≤ + + + +  Γ Γ 

+ −
Γ ∫

 

One can introduce nondecreasing function ( )m t  as  

( ) ( ) ( ) ( )
1

0
1 ,

1
b q tm t x r M

r

α α

ϕ
α α α

−  
= + + +   − Γ Γ   

 

then we have  

( ) ( ) ( ) ( ) ( )11max max d .
1

t

bb t b s

qx m t t s x s
r

α

η η
η η

α
−

≤ ≤ ≤ ≤
≤ + −

− Γ ∫  

By lemma 3, there exists a constant ( )1k k α= −  such that  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11max d
1

1 .
1

t

bb t

qx t x m t k t s m s s
r

kq tm t
r

α

η

α

η
α

αα

−

≤ ≤
≤ ≤ + −

− Γ

 
≤ +  − Γ 

∫
 

Obviously, from the above formula, we infer that ( )x t  has an exponent esti-
mate. The proof is complete.                                        □ 

Theorem 1. Assume that τ σ> , r R+∈ . If the equation  

( ) e e 0p r qα α λσ λτλ λ λ − −= + + =                   (8) 

has no real roots, then every solution of (3) is oscillatory.  
Proof. Suppose that ( )x t  is a nonoscillatory solution of Equation (3). With-

out loss of generality, we assume that ( )x t  is an eventually positive solution of 
Equation (3) which means that there exists a constant T such that ( ) 0x t >  for 
t T> . Since Equation (3) is autonomous, we may assume that ( ) 0x t >  for 

[ ),t ξ∈ − ∞ . Taking Laplace transform of both sides of (3), we obtain  

( ) ( ) ( )

( ) ( )

0

0

e e e d

e e e d 0,

s s st

s s st

s X s A rs X s rs x t t Br

q X s q x t t

α α σ α σ
σ

τ τ
τ

− − −

−

− − −

−

− + + −

+ + =

∫

∫
 

where ( )( )1
0 0t t

A D x tα −

=
= , ( )( )1

0 0t t
B D x tα σ−

=
= − . 

Hence  

( )( )
( ) ( )0 0

e e

e e d e e d .

s s

s st s st

X s s rs q

A Br rs x t t q x t t

α α σ τ

α σ τ
σ τ

− −

− − − −

− −

+ +

= + − −∫ ∫
        (9) 

Let  

( ) e e ,s sp s s rs qα α σ τ− −= + +  

( ) ( ) ( )0 0
e e d e e d ,s st s sts A Br rs x t t q x t tα σ τ

σ τ
− − − −

− −
Φ = + − −∫ ∫  

then, from (9), we get  

( ) ( ) ( ).X s p s s= Φ                      (10) 
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Since ( ) 0p s =  has no real roots and ( )0 0p > , ( ) 0p s > . By positivity of 
( )x t  in [ ],0AC ξ− , then exists constant , 0m M >  such that ( )m x t M< < . 

Since 0r > , τ σ>  then  

( )
( )

( )

( )
( )

0

0

e e d e e .
ee e d

s st ss

ss st

q x t t q q s
rs r srs x t t

τ τ στ
τ

α σ αα σ
σ

− − − −−
−

−− −

−

≥ ≥ → ∞ → −∞
− −−

∫
∫

 

Thus there exists a constant 0k <  such that for s k< ,  

( )
( )

0

0

e e d
2.

e e d

s st

s st

q x t t

rs x t t

τ
τ

α σ
σ

− −

−

− −

−

≥
−

∫
∫

 

Then,  

( ) ( )

( )
( )
( )

( )

( )
( )

0 0

0
0

0

0 0

1

e e d e e d

e e d
e e d 1

e e d

e e d e e d

1 e 1 1 e .
e

s st s st

s st
s st

s st

s st s st

s s

s

rs x t t q x t t

q x t t
rs x t t

rs x t t

rs x t t rs m t

rms rm s
s s

α σ τ
σ τ

τ
α σ τ

σ α σ
σ

α σ α σ
σ σ
σ σ

α
σ α

− − − −

− −

− −
− − −

− − −

−

− − − −

− −

−

−

− −

 
 = − −
 − 

≤ ≤

− −
= = → −∞ → −∞

−

∫ ∫

∫
∫

∫

∫ ∫
 

Thus we conclude that ( ) ( )s sΦ → −∞ → −∞ , but ( )p s  and ( )X s  are posi-
tive. Hence, (10) leads to a contradiction. The proof is complete.           □ 

Corollary 1. Assume that 0r = , ,q Rτ +∈ . If the equation  

( ) e 0p qα λτλ λ −= + =  

has no real roots, then every solution of (3) is oscillatory.  
Proof. If we modify the function ( )p s  and ( )sΦ , defined in Theorem 1, as  

( ) e sp s s qα τ−= +  

( ) ( )0
e e d .s sts A q x t tτ

τ
− −

−
Φ = − ∫  

Then, following the method of proof for Theorem 1, one can complete the proof.  
□ 

Corollary 2. Assume that 0r < , , ,q Rτ σ +∈ . If the equation  

( ) e e 0p r qα α λσ λτλ λ λ − −= + + =  

has no real roots, then every solution of (3) is oscillatory.  
Proof. Proceeding as in the proof of Theorem 1, according to (9) and (10), for 

0s < , we have  

( )01 e 1 ee e d ,
s s

s stqm q x t t qM
s s

τ τ
τ

τ

− −
− −

−

− −
≤ ≤∫  

( )
( )

( )
0

1 1

1 e 1 ee e d .
s s

s strm rs x t t rM
s s

σ σ
α σ

α ασ

− −
− −

− −−

− −
≤ ≤

− −
∫  

Thus, we obtain  
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( ) ( )0
e e d ,s stq x t t sτ

τ
− −

−
→ ∞ → −∞∫  

( ) ( )0
e e d .s strs x t t sα σ

σ
− −

−
→ ∞ → −∞∫  

Thus we conclude that ( ) ( )s sΦ → −∞ → −∞ , but ( )p s  and ( )X s  are posi-
tive. Hence (10) leads to a contradiction. The proof is complete.            □ 

Theorem 2. Assume that τ σ> , r R+∈ , and if  

( )
1

1 ,
1 e

q
r

α
τ σ  − > + 

                     (11) 

then every solution of Equation (3) is oscillatory.  
Proof. Assume that Equation (8) has a real roots 1λ , if 1 0λ ≥ , then ( )1 0p λ > , 

it is impossible. Thus we conclude that 1 0λ < . Since α  is the ratio of two odd 
integers, it follows from (8) that  

( )

1

1 11
1

e ,
11 e e e

q q q
rr r

λ τ
α

λ σ λ τ σλ τ
λ

−

− −
= − = − ≤ −

++ +
 

then  

( )1 ,
1

q
r

αλ− ≥
+

 

( )
1

1
1 .

1
q

r

α
ααλ
−

−  − ≥  + 
                    (12) 

By (12) and the inequality e ex x≥  for 0x ≥ , we get  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

11

1 1

1
1 1

1

1
1 1 1

e ee e
1 11 e e

e e
,

1 1 1

q qq q
r rr r

q q q
r r r

λ σ τλ τ
α

λ σ λ σ

α
αα α α

λ σ τ τ σ
λ λ

τ σ τ σ
λ λ λ

−−

−

−

−

− −
− = = ≥ = −

+ ++ +

− −  = − − ≥ −  + + + 

 

which implies that  

( )
1

1 e ,
1

q
r

α
τ σ  ≥ −  + 

 

this is a contradiction. The proof is complete.                           □ 
Theorem 3. Assume that 0r = , ,q Rτ +∈ , and if  

1

,qατ α>                           (13) 

then every solution of Equation (3) is oscillatory.  
Proof. In regard to ( ) e 0p qα λτλ λ −= + = , since ( ) 0p λ >  for 0λ ≥ , thus 

we conclude that if ( ) 0p λ =  has real roots, the roots are definitely less than 
zero. 

Let  

( ) 1 e 0,p qα λτλ αλ τ− −′ = − =                   (14) 

from (14), we get  
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( ) ( )
1

1
1e 1 0, 0 .q τλα
ατ λ λ

α
−−

−  − − = < 
 

               (15) 

Equation (15) has only one real root for 0λ < . Thus (14) has only one real root 
for 0λ < , and Assume that the root is ( )0l l < . Meanwhile, as for 0λ < , 
( ) ( )p λ λ→∞ → −∞ , thus ( )p λ  has only one extreme point, which is also the 

minimum point for 0λ < . 
Let  

( ) ( )
1

1
1e 1,qg
τλα
ατλ λ

α
−−

− = − − 
 

                 (16) 

since ( )0 1 0g = − <  and 

1
1

1
1

1
1

1 e 1 0
q

g
q

α

τ
α

τ
α

ατ
α

−
−

 
 
 

−

 
 
 
− = − > 
  
  

  

, we can obtain  

1
1

1 0.l
q ατ
α

−

− < <
 
 
 

                       (17) 

By ( ) ep qα λτλ λ −= +  and (14), we get  

( ) e e e e 1 ,l l l lq l lp l l q q qα τ τ τ ττ τ
α α

− − − −  = + = + = + 
 

 

and by (17) and (13), we obtain  

1
1

11 1 0.l

q α

τ τ
α ατ

α
−

+ > − + >
 
 
 

 

Thus we conclude ( ) 0p l > , and then ( ) 0p λ >  ( )Rλ ∈ . By Corollary 1, 
every solution of (3) is oscillatory. The proof is complete.                 □ 

Theorem 4. Assume that 1 0r− < < , , , 0qτ σ > , if  

( )( )
1

4 ,
e

qr α
ατ σ+ − >                     (18) 

then every solution of Equation (3) is oscillatory.  
Proof. To prove the result, it suffices to prove that (8) has no real roots under 

the conditions (18). One can note that any real root of (8) cannot be positive and 
since ( )0 0p q= > , 0λ =  is not a root. Thus any real root of (8) can only be 
negative if it is possible. Let us set λ µ= −  for convenience and show that  

( ) e e 0, 0.p r qα α µσ µτµ µ µ µ− = − − + = >            (19) 

From (19), we have  

e1 e 0qr
µτ

µσ
αµ

− − + =  

( )e e1 e 2q rqr
µ τ σµτ

µσ
α αµ µ

+−
= − + ≥  
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( )e1 4 .rq
µ τ σ

αµ

+

≥ −                        (20) 

Let  

( )
( )e , 0.h

µ τ σ

αµ µ
µ

+

= >  

Then  

( )
( )

( )
0

e min e .h h h
αµ τ σ

α
α µ

α τ σµ µ
τ σ αµ

+

>

+   = ≥ = =   +   
 

So, we get  

( ) ( )
1

1 4 e 4 .
e

rq rq
α

α α
τ σ α τ σ
α
+ ≥ − ⇒ ≥ − + 

 
 

This contradicts (18) which implies that (8) has no real roots. By Corollary 2, 
then every solution of (3) is oscillatory. The proof is complete.             □ 

Now, we consider fractional differential equations with multiple delays  

( ) ( ) ( )0
1 1

0
n m

t i i i i
i i

D x t r x t q x tα σ τ
= =

 + − + − = 
 

∑ ∑           (21) 

where , , ,i i i ir q Rσ τ +∈ , oddinteger0 1
oddinteger

α< = < .  

Lemma 6. If 1nr < , { }max , 1,2, ,ir r i n= =  , then the solution of Equation 
(21) has an exponent estimate  

( ) ( ) ( )e 0 ,Atx t o t b= > >  

for constants 0, 0A b> > .  
Proof. The proof of this conclusion is similar to that of Lemma 5, and thus we 

omit it.                                                          □ 
Theorem 5. Assume that τ σ> , { }min , 1,2, ,i i mτ τ= =  ,  

{ }max , 1,2, ,i i nσ σ= =  , if  

( )
1 1

e e 0i i
n m

i i
i i

p r qλσ λτα αλ λ λ − −

= =

= + + =∑ ∑              (22) 

has no real roots, then every solution of (21) is oscillatory.  
Proof. Taking Laplace transform of both sides of (21), we obtain  

( ) ( ) ( )

( ) ( )

0

1 1

0

1 1 1

e e e d

e e e d 0,

i i

i

i i

i

n n
s s st

i i
i i

n m m
s s st

i i i i
i i i

s X s A X s r s r s x t t

B r X s q q x t t

σ σα α α
σ

τ τ
τ

− − −

−
= =

− − −

−
= = =

− + +

− + + =

∑ ∑ ∫

∑ ∑ ∑ ∫
 

where ( )( )1
0 0t t

A D x tα −

=
= , ( )( )1

0 0i t i t
B D x tα σ−

=
= − . 

Hence,  

( )

( ) ( )

1 1

0 0

1 1 1

e e

e e d e e d .

i i

i i

i i

n m
s s

i i
i i

n n m
s sst st

i i i i
i i i

X s s r s q

A B r r s x t t q x t t

σ τα α

σ τα
σ τ

− −

= =

− −− −

− −
= = =

 + + 
 

= + − −

∑ ∑

∑ ∑ ∑∫ ∫
  (23) 
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Let  

( )
1 1

e e ,i i
n m

s s
i i

i i
p s s r s qσ τα α − −

= =

= + +∑ ∑  

( ) ( ) ( )0 0

1 1 1
e e d e e d ,i i

i i

n n m
s sst st

i i i i
i i i

s A B r r s x t t q x t tσ τα
σ τ

− −− −

− −
= = =

Φ = + − −∑ ∑ ∑∫ ∫  

then, from (23), we get  

( ) ( ) ( ).X s p s s= Φ                       (24) 

Then, the following proof process is similar to Theorem 1. one can complete the 
proof.                                                           □ 

Corollary 3. Assume that τ σ> , { }min , 1,2, ,i i mτ τ= =  ,  
{ }max , 1,2, ,i i nσ σ= =  , if  

1
1

1
1

1 1

1

1 1 1 ,
e

1

m m

im n
i

i i
i i n n

i
i

m q

m n
n r

α

τ σ =

= =

=

 
  
     − >  

    +     

∏
∑ ∑

∏

            (25) 

then every solution of (21) is oscillatory.  
Proof. By using the arithmetic-geometric mean inequality  

1

1 1
,

mm m

i i
i i

a m a
= =

 ≥  
 

∑ ∏  

for 0s < , we find  

1 1

1 1
1 1

1 1

1 1

1 1

e e

e e

e e

e e .

i i

i i

n m
i i

i i

n m

i i
i i

n mn m

i i
i i

n mn m
n m

i i
i i

B D

r q

n r m q

n r m q

A C

λσ λτα α

λσ λτα α

σ τ
λ λα α

α α λ λ

λ λ

λ λ

λ λ

λ λ

= =

− −

= =

− −

= =

− −

= =

− −

∑ ∑

+ +

   ≥ + +   
   

   = + +   
   

= + +

∑ ∑

∏ ∏

∏ ∏

          (26) 

Let  

( ) e eB Df A Cα α λ λλ λ λ − −= + +                  (27) 

where 

1

1

n n

i
i

A n r
=

 =  
 
∏ , 

1

1 n

i
i

B
n

σ
=

= ∑ , 

1

1

m m

i
i

C m q
=

 =  
 
∏ , 

1

1 m

i
i

D
m

τ
=

= ∑  and D B> . 

By (25) and the proof process of Theorem 2, we can obtain ( ) 0f λ >  for 
Rλ ∈ . This is, (22) has no real roots, by Theorem 4, every solution of (21) is os-

cillatory. The proof is complete.                                      □ 
We consider the following fractional order delay differential equation  

( ) ( )( ) ( )( )0 0tD x t rx t f x tα σ τ+ − + − =            (28) 

(H): ( ) ( ),f u C R R∈ , ( ) 0f u u C const≥ = > , for 0u ≠ , r R∈ ,  
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, ,q Rσ τ +∈ . 
The standard initial condition associated with (28) is  

( ) ( ) [ ], ,0 ,x t t tϕ ξ= ∈ −                       (29) 

where ( ) [ ]( ),0 ,t C Rϕ ξ∈ − , { }max ,ξ σ τ= .  
Theorem 6. Assume that (H) holds, and if  

( )
1

1 ,
1 e

C
r

α
τ σ  − > + 

                      (30) 

then every solution of Equations (28) is oscillatory.  
Proof. Assume that (28) has an eventually positive solution ( )x t , that is, there 

exists a sufficiently large positive constant T such that ( ) 0x t > , ( ) 0x t σ− > , 
( ) 0x t τ− >  for t T> , from (28), we obtain  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )00 .t tD x t rx t f x t D x t rx t Cx tα ασ τ σ τ= + − + − ≥ + − + −  

Then we can see that the eventually positive solution ( )x t  satisfies the inequality  

( ) ( )( ) ( ) 0, .tD x t rx t Cx t t Tα σ τ+ − + − ≤ >              (31) 

According to (30) and Theorem 2, it follows that Equation  
( ) e e 0p r Cα α λσ λτλ λ λ − −= + + =  has no real roots. Therefore, similarly to the 

proof of Theorem 1, inequality (31) has no eventually positive solution, which 
implies that every solution of (28) oscillates.                            □ 

We consider the delay fractional order partial differential equation  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

0
1

1 1

, ,

, , ,

n

t i i
i

l m

i i i i i
i i

D u x t ru x t

a t u x t b t u x t p q t f u x t

α σ

τ

=

= =

 + − 
 

= ∆ + ∆ − − −

∑

∑ ∑
   (32) 

where ( ) ( ), 0,x t G∈Ω× ∞ = . Here NRΩ ⊂  is a bounded domain with boun-
dary ∂Ω  smooth enough. The hypotheses are always true as follows: 

(H1): , , ,i i i ir p Rσ τ +∈ ; ( ) ( ) ( ) ( ), , ,i ia t b t q t C R R+ +∈ ; ( )inf 0i iq q t= > . 
(H2): ( ) ( ),if u C R R∈ , ( ) 0i if u u C const≥ = > , for 0u ≠ . 
The initial condition ( ) ( ), ,u x t x tφ= , ( ) [ ], ,0x t ζ∈Ω× − ,  

{ }max , , , 1, 2, , ; 1, 2, , ; 1, 2, ,i j kp i n j l k mζ σ τ= = = =   . Consider the boun-
dary conditions as follows:  

( ) ( )
,

0, on , ,
u x t

x t R
N

+∂
= ∈∂Ω×

∂
               (33) 

where N is the unit exterior normal vector in ∂Ω .  
Theorem 7. Assume that τ σ> , { }min , 1,2, ,i i mτ τ= =  ,  

{ }max , 1,2, ,i i nσ σ= =  , if  
1

1

1
1

1 1

1

1 1 1 ,
e

1

m m

i im n
i

i i
i i n n

i
i

m q C

m n
n r

α

τ σ =

= =

=

 
  
     − >  

    +     

∏
∑ ∑

∏
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then every solution of (32) with the boundary condition (33) is oscillatory.  
Proof. Assume that (32) with the boundary condition (33) has no oscillation 

solution, without loss of generality, we assume that ( ),u x t  is an eventually posi-
tive solution of (32) which implies that there exists 0T >  such that ( ), 0u x t > , 
( ), 0iu x t σ− > , ( ), 0iu x t τ− >  in [ ),TΩ× ∞ . Since (H1) and (H2), from (32), 

we can obtain  

( ) ( )

( ) ( ) ( ) ( ) ( )

0
1

1 1

, ,

, , , .

n

t i i
i

l m

i i i i i
i i

D u x t ru x t

a t u x t b t u x t p q C u x t

α σ

τ

=

= =

 + − 
 

≤ ∆ + ∆ − − −

∑

∑ ∑
      (34) 

Integrating (34) with respect to x over Ω  yields  

( ) ( )

( ) ( ) ( ) ( ) ( )

0
1

1 1

, d , d

, d , d , d .

n

t i i
i

l m

i i i i i
i i

D u x t x r u x t x

a t u x t x b t u x t p x q C u x t x

α σ

τ

Ω Ω
=

Ω Ω Ω
= =

 + − 
 

≤ ∆ + ∆ − − −

∑∫ ∫

∑ ∑∫ ∫ ∫
 (35) 

By Green’s formula and the boundary condition (33), we have  

( ) ( )

( ) ( )

,
, d d 0

,
, d d 0.i

i

u x t
u x t x S

N
u x t p

u x t p x S
N

Ω ∂Ω

Ω ∂Ω

∂
∆ = =

∂
∂ −

∆ − = =
∂

∫ ∫

∫ ∫
              (36) 

Let ( ) ( ), dv t u x t x
Ω

= ∫ , from (35) and (36), we get  

( ) ( ) ( )0
1 1

0.
n m

t i i i i i
i i

D v t r v t q C v tα σ τ
= =

 + − + − ≤ 
 

∑ ∑             (37) 

That is, there exists eventually positive solution for inequality (37). Accord-
ing to the conditions of Theorem 7 and Corollary 3, it follows that Equation  

( )
1 1

e e 0i i
n m

i i i
i i

p r q Cλσ λτα αλ λ λ − −

= =

= + + =∑ ∑  has no real roots. Therefore, similarly  

to the proof of Theorem 5, inequality (37) has no eventually positive solution 
which implies that every solution of (32) oscillates.                      □ 

4. Example  

Example 1. Consider the following fractional differential equation  

( ) ( )( ) ( )( ) ( )31 3
0 0.5 0.5 1 2 1 0, 0.tD x t x t x t x t t+ − + − + − = >      (38) 

Notice 1 3α = , 0.5r = , 0.5σ = , 1τ = , ( ) 3 2f u u u= + , then it is easy to  

find 2C =  and ( )
1

32 1
1 27 e

C
r

α
τ σ  − = > + 

, then (38) is oscillatory by Theorem 

6.  
Example 2. Consider the following fractional differential equation  

( )1 5
0

1 1 1, , ,
4 3 2tD u x t u x t u x t    + − + −    

    
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( )

( )( ) ( )

21 4e , , ,
2 5

1 3, sin , 1 2 , 1
2

t u x t u x t t u x t

t u x t u x t u x t
t

   = ∆ + ∆ − + ∆ −   
   

    − + − + − + −        

       (39) 

with the boundary conditions  

( ) ( ) ( ) ( ) ( )
0, 5,

0, , 0,5 0, .
u t u t

x t
x x

∂ ∂
= = ∈ × ∞

∂ ∂
           (40) 

Notice 1
5

α = , 1
1
4

r = , 2 1r = , 1
1
3

σ = , 2
1
2

σ = , ( ) eta t = , ( )1 1b t = ,  

( ) 2
2b t t= , 1

1
2

p = , 2
4
5

p = , ( )1
1q t t
t

= + , ( )2 1q t = , ( )1f u u= ,  

( ) ( )2 sin 2f u u u= + , 1
3
2

τ = , 2 1τ = , then it is easy to find 1 2q = , 2 1q = ,  

1 1C = , 2 1C = . 

Therefore, 

1
1

1
1

1 1

1

1 1 10 2 1
3 e

1

m m

i im n
i

i i
i i n n

i
i

m q C

m n
n r

α

τ σ =

= =

=

 
  
     − = >  

    +     

∏
∑ ∑

∏

 then (39) is os-

cillatory by Theorem 7.  
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