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Abstract

In this paper, by means of an isomorphism, we express the Clifford algebra
Cls; as hyperquaternion algebra HOH®H®H (a four-fold tensor prod-

uct of quaternion algebras) and we provide the hyperquaternionic approach
to the inner product null space (IPNS) representation of conic sections.
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1. Introduction

In the realm of Hyperquaternion algebras, for a choice of generators, the authors
presented in detail the multivector structures of the biquaternion algebra or Pau-
li algebra H®C , the tetraquaternion algebra H®MH , the Dirac algebra
H®H®C, and the algebra HOH®H respectively in [1] [2] [3] and [4]
where H denotes the quaternion algebra described for the first time by Sir
William Rowan in 1843. Their symmetric groups are also given; we will cite:
SO(3),S0(1,3),SU (4) and USp(4) respectively for
HICHOHHOH®C and HOH®H . In particular, more physical ap-
plications associated are developed in 3D, special theory of relativity, general
theory of relativity, quantum theory, ... The papers of Girard et al. inspire us to
deal with the hyperquaternion formulation of the Clifford algebra Cl;, with the
difference that we combine the results Cl ,, ., ~Cl  ®Cl, H®H~R(4),
Cl, ~R(2) and R(m)®R(n)=~R(mn) instead of Clifford’s theorem in or-
der to establish the isomorphism Cl;, ~HQH®H®H . We recall Clifford’s
theorem used by P. Girard.

If n=2m (m:nteger), the Clifford algebra Cl,, is the tensor product of
m quaternion algebras. If n=2m-1, the Clifford algebra Cl,, , is the tensor
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product of m—1 quaternion algebras and the algebra (1, ) where @ is the
product of 2m generators (@ =€, --€,, ) of the algebra Cl, [2]. The enti-
rety of the proof can be seen in [5], p.378 and a modern proof can be found in
[2], p.3.

In [6], W.Sprofig gave a brief origin of the term hyperquartenion by saying
verbatim the following: “The name hyperquaternion was coined in 1922 by the
American mathematician Clarence Lemuel Elisha Moore (1876-1931). Nowa-
days, there are remarkable works of M.Pitkanen and P.Girard in this field”.

This study of the Clifford Algebra CI(5,3) ~ H* allows expressing as con-
formal hyperquaternion algebra the Conic Conformal Geometry Algebra (CCGA)
we intend to carry out starting from papers [7] and [8].

Unless otherwise mentioned, throughout this paper H®’ is the tensor prod-
uct of p quaternion algebras H,ie. H** =H®H®- --®H (pfactors).

This paper is structured as follows:

In the first section, which is the introduction, we briefly present some works
done on the hyperquaternion algebras, their historical and the central objective
of this paper. The aim of the second section is to gather some basic results con-
cerning the quaternion algebras, hyperquaternion algebras and Clifford algebras.
In the third section, we first recall the ingredients will be used to show the iso-
morphism between the hyperquaternion algebra H®* and the clifford algebra
Cl;; and we establish an isomorphim of these algebras. We also express the
multivector structures of H®* in this section. In the fourth section, we develop

the hyperquaternion algebra for conics.

2. Preliminaries of Clifford Algebras and Hyperquaternion
Algebras

2.1. Clifford Algebras

Definition 2.1. Let (E,q) be a quadratic vector space over K and
T(E)=KOEOE®ECEQER®E®D =@, _,E® be the tensor algebra of E

T(E
over K. The quotient algebra CI(E,q)= (E) , where | (E,q) Is the ideal

I (E.q)

generated by all elements of the form x®x—q(x) for x€E, is called the
Clifford algebra associated to the quadratic vector space (E,q).
Consider the quadratic space RP?, this notation means that p basis vectors

e ) be an

square to +1 and g basis vectors square to —1. Let (el,---,ep,ep+l,-~-, piq

orthonormal basis of R™9,
q(x):q(x‘ei):(xl)z+--~+(xp)2—(x1)2—--~—(xp*q)2,forany x e RPY. Thus,
we have

el =1(1<i<p),e’ =-1(p+1<i<q).ee;+e;e =0,(i= j). (1)

We denote the Clifford algebra associated to the quadratic space R by
Cl (Rp'q) or Cl .

Definition 2.2. Let CI(E,q) be the Clifford algebra associated with the qua-
dratic vector space (E,q), the Clifford product of two vectors u,v e CI(E,q)
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is defined by
u=u-v+Uuav (2)

where U-v and UAV are respectively the interior product and the exterior
product of the vectors zand v[1].
It follows from this definition that

u.v=%(uv+vu) (3)
and

ux\v=%(uv—vu). (4)

2.2. Clifford Algebra Cl;,

In this subsection, we are interested in just one particular Clifford algebra, Cl;,,
which is the principal object of our investigation. We consider R>® an eight-
dimensional vector space over R endowed with a bilinear symmetric and non-
degenerate form with signature (+, +, +, +, +, —, —, —), which means that 5 basis
vectors square to +1 and 3 basis vectors square to —1. Let (el, €,,€;,6,,65,65,€,6)

be a basis of R>?, the Clifford algebra Cl;; is the real associative unital alge-

bra generated by the vectors e ,e,,e;,e,,6.,6,8, and e, satisfying the rela-

tions:
e/ =1(1<i<5),ef =-1(6<i<8), (5)
and
ee; +ee =0,(i=# j). (6)

A basis of the Clifford algebra Cl;, can be taken to be 1,e,¢,,6;,8,,€5,€;,€;,€;,
€1€),€1€3,7+,6;€3,€,8,65, 8,6, -+, 68,85, 616,856, -, €1€,85€,6,€,€, €5 .

Definition 2.3. Let CI(E,q) be the Clifford algebra associated with the qu-
adratic vector space (E,q), the products of k generators are called multivectors
of grade k, blades of degree k or k-vectors.

Every element of CI(5,3) can split into:

8
Oj =1 scalar (or 0-vector): 1,
8

1 =8 vectors (or 1-vectors): €,€,,6,,€,,6,6,€;,6,

N 0o

8

3) =56 trivectors (or 3-vectors): €e,e,,6,6,e,, -,8.e,6;,

0]

=70 quadrivectors (or 4-vectors): €€,6,8,, +,8.6:€,€6;,

j =28 bivectors (or 2-vectors): ee,,e€;, - -,€,6,
4]

(o]

5

(
(
[
[
(
(

)=56 (5-vectors): €€,6,8,6;, -, €,6:8:€,€6,,
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8

6):28 (6-vectors): €€,6,8,65€,, ", 8,€,6:8:€,€6;,

7]=8 (7-vectors): €€,6,8,8,6,€,, -, €,6,6,6,6,8,6;,

8
8 =1 pseudoscalar: e e,e,e,e.e.e,e,e,.

8
It is obvious that Zio[k} =28 =256 is the dimension of the Clifford algebra

Cl;; and a general element of this algebra is a linear combination of the 256

basis multivectors.

2.3. Quaternion Algebra

Definition 2.4. The quaternion algebra over R, denoted M, is an associa-
tive non-commutative four-dimensional algebra over R generated by 1,1,
and k such that i’ = j* =k* =ijk =-1.

A general element of the quaternion algebra H can be written as a linear
combination of 1,i,j and k, gq=a+bi+cj+dkeH with a,b,c,deR.

2.4. Hyperquaternion Algebras

2.4.1. Definition and Examples
Definition 2.5. Let H be a quaternion algebra over the real field R, a tensor
product of H (or a subalgebra thereof) is called a hyperquaternion algebra [9].
As hyperquaternion algebras, we can cite the biquaternion algebra or Pauli alge-
bra H® C, the tetraquaternion algebra H®H, the Dirac algebra HOH&®C,
HOH®H,..

2.4.2. Hyperquaternion Algebra HQH® H® H = H**
The hyperquaternion algebra concerned in this paper is H®*.

Definition 2.6. All system (a,b,c) such that a?=b?=c’=abc=-1 issaid
to be quaternionic system.

Fixing four quaternionic systems (i, j,k), (1,J,K), (I,m,n) and (L,M,N),
a basis of the hyperquaternion algebra H®H®H®H can be expressed as
follows:

(Li, j,K)®(1,1,3,K)®(L,1,mn)®(L,L,M,N). (7)

Each quaternionic system commutes with the three others. A basis of the hyper-
quaternion algebra H®' contains 4* =256 elements.
Explicitly,
(i, j,k)®181®1=(i, j,k),1®(1,J,K)®1®1=(1,J,K),
1®1®(I,m,n)®1=(l,m,n),1®1®1&®(L,M,N)=(L,M,N). (8)
An element of HOH®H®H can be expressed in the form
Q=0 +id, + ja, + kg )

where ¢, e HOH®H,0<i<3, ie, gcan be viewed as a quaternion with coef-
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ficients in H®H®H =H®. Similarly g can be expressed as quaternion
with tetraquaternionic coefficients Ze.

0 = i + 10, + J0;, + KQ,. (10)
Combining the expressions (2) with (3), we obtain
0 = (Ggo + 10y + J0lg, + Kalgg ) + (10 +ilay, +iday, +iKay, )
+ (00 + 10 + 30, + K0y )+ (kGgo +Kla, +kJay, +kKa, )
with q, e H®H,0<1i, j<3.
Obviously ¢, can represented asa quaternion with quaternionic coefficients,
Oic = Oico + Qi + MOy, + NG5 (12)

Theorefore, g will be expressed as follows:

(11)

q= (%00 + 105, + Mggp + NCgos ) +( 1oy + 110, + M@y, + |n%13)

+ (JQOzo + gy, +IMAy,, + an023)+ ( Kggo + Kltlgg; + KMy, + anoss)

+ (00 + 0y, +iM0g, +iNGyg5 )+ (10 +illgy,, +i 1My, +ilng,,, )

+ (105 +1310,,, +1IMG, +iING 54 ) + (1KO 50 + iK1, +iKMO, +iKNg,; )

+( J0a00 + J1001 + JMAlyg, + anzos)+( 50 + 110y, + JIMQy,, + j|nQZ13)
#9020+ 3+ Mz + 39N) + (Ko + Kl + KM, + JKNG55)
+(K0lag + KlOlgg; + kMg, + KNQlygg ) + (IG5 + KIlGg,, +KIMa,, +KIngs,, )
+( k030 + kIG5, +kIMOy,, + kIG5 ) + (KK + kKIgs, + kKM, +kKngy, ).

with @, € H,0<i, j,m<3.

ikm
We express the quaternion ¢, with real ¢, coefficients,
Qin = Gikmo + Lims + MOz + NGz, (14)
where 0<i, j,mn<3.
At the last, an element € H is a linear combination of 256 elements of a

basis of H®*,

0 = Goooo + Lo + M0lgooz + Nllogos + 18loozo + ILGgoas + 1Mooy + INGggs
+M0gz0 + MLGggp1 + MM0g5, +MNGg55 + NGlggze + NLllgga; + NMUggs,
+NNGgoz + 105100 + ILCls01 + IMGgy0p + INGg05 + 10y + LG,

+ 1My, + 1INy 35 + IMGgyp0 + IMLCgg5; + IMMUgp, + IMNGy,
+1nGyy50 + INLGgy5; + INMUlg135 + INNGgy35 + JGgz00 + JLloze; + IMTpzg,

+ INGg03 + Igp10 + IILgyrs + Mgy, + JINGg15 + JINGg15 + IM U0
+IML0gp, + IMMUgp, + IMNGy,55 + INGgpg0 + INLGg3; + INMGyys,

+ INNGgy35 + Kllggge + KLgg0, + KM0gag, + KNGgae5 + Kllggyo + KlL gy,
+ KIMy;y, + KING315 + KM0ggy, + KMLGgg,, + KMMUgs,, + KMNGg;,3
+ KN30 + KNLGgzg; + KNMGy35, + KNNGg5 + 000 + 11000, +IMyg,
+iNGy05 + 10559 +11L0yq13 +iIMygy, +TINGgy5 +iM0 gy +IMLGG,
+1IMMyq5, +IMNG 5 +iNCGyg50 +INL 005 +INMO g5, +iINNGyg5; +1i10500
+ilLayq; +1IM0y,q, +1INGy 05 +ill0y, 0 +i11LG,,,; +i1IMay,,, +i1ING,; ;5
+ilmay o +ilmLa,,,; +ilmMa,;,, +iIMmNa, 5 +iIn0,;,5, +iInLg;, 4
+ilnMa 5, +TINNG, 55 +130;,00 + 130050, +1IMU 50, +1ING, 505 +1310;510
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+ i‘]Iqule + iJIMqIZIZ + i"]Iquzl3 + i"]mqlzzo + i"]qulZZl + iJqu].ZZZ

+ i‘]qu1223 + ianlZ30 + iJnLq123l + i"]anlZ32 + iJan1233 + qul3OO

+ iKLq1301 + iKMql302 + iKNq1303 + iKIql3lO + iKIqu3ll + iKIMq1312

+ iKINq1313 + iKmq1320 + iKqul321 + iKqul322 + iKqu1323 + ian1330
+1KNL0y g3, +1KNMGy g3, +TKNNGy535 + JOp000 + JL0z001 + JMU00 + JNUp005
+ 1005050 + JILO01; + JIMGpg;, + JINGg15 + JMCpgp0 + JMLG0; + JMMOg;,

+ JMNGgp5 + JN0a050 + JNLCp0; + JNMUp05, + JNNGg55 + 10100 + J1L G100

+ JIMGyp05 + JINGpy05 + JH0150 + LG5 + JIIMO;, + JIING,;55 + IMGyyp,
+ JIMLGy5, + JIMMGyy5, + JIMNG,55 + NGy + JINLG, + JINMO,;,

+ JINNG55 + 30000 + 19L05000 + JIMUa0, + JINCp05 + JINGppp + JINLG50,
+ J3IM0p1, + JIING05 + JIMGp500 + JIMLGy50; + JIMMG;0, + JIMNG,,

+ JIN0p50 + JINLGp5 + JINMUp5, + JINNG55 + JKCpg00 + JKLGps0,

+ JKMp50, + JKNGp505 + JKIO300 + JKILGp5, + JKIMGy;, + JKING,

+ JKMGpz0 + JKMLGys; + JKMMGp5, + JKMNGp55 + JKNGa50 + JKNLG55
+ JKNMGp3, + JKNNG 355 + Kllgop + KLOlsn0; +kMiggp, + KNGiggo5 + Kldlzgs
+KILG0,; + KIMGgq;, + KING055 + kMG + KMLG305, + kMM, + kMNG,
+KNGjggg0 + KNLOjgq; +KNMGgg5, + KNG53 + K100 + KILGq; +KIMG;q,

+ KINGy05 + KllOgy50 + KL, + KIIMA,,, + KIING,, ;5 + KIMa,,, + KIMLG,,,,
+ kImMd,,,, + KImMNQ,,,; + KINgs, 5, + KINLG,,5, + kKINMA,, 5, + KINNG,, 5,

+ kJU3000 + KIL G0, + KIMU00, + kINGsy05 + KNGy, + kIILOS,,, + kIIMA,,,,
+kJINGgy;5 +kIMGlgpp + kIMLG5p5; + kIMMUp5, +KIMNG,55 +kINGgg
+kINL0l5p5 +kINM0lzp5, +KINNGlgp55 + KK Cgz00 + KK L0350, + KKMO55 (15)
+KKNGg305 + kKIOg310 + KKILG3,; + kKIMOg;,, +KKINGs,5 +KKMOs,

+ kKNNQ,,,,-

Definition 2.7. Let H® be a hyperquaternion algebra, the product of two
elements of H® s the product in a tensor product of quaternion algebras, it is
called hyperquaternion product of H** .

Note that the hyperquaternion product, of H®*, is defined independently of
the choice of generators of the Clifford algebra Cl,; [2].

Since the dimension of the hyperquaternion algebra H®' is very large, it
would be desirable to use the computer to perform the calculations in this alge-
bra (dimH® = 256).

3. Multivector Structure of H®*

The principal operations in the hyperquaternion algebra H®* (interior product,
exterior product, duality, ...) are defined from its multivector structure which
depends on generators but the hyperquaternion product is independent of the
choice of generators.

3.1.Isomorphism Cl; >~ H®

In order to establish the expected result in this section, we use the isomorphism
Cl,, ~Cl,, ~R(2), (16)
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and the isomorphism between the hyperquaternion algebra of tetraquaternions
and the algebra of 4 x 4-matrices with entriesin R and the below two lemmas.

Lemma 3.1. ZLet Cl,, be a Clifford algebra associated with the quadratic
space R . Then the following isomorphism holds

Cl, 40 =Cl,,®Cl,,, (17)

where either p>0 or >0,and ® denotes the usual tensor product.
Proof. The entirety of the proof can be seen in [10], p.90. ]

Lemma 3.2. Ifm and n are positive integers then
R(m)®R(n)~R(mn), (18)

where R(n) designs the algebra of nxn -matrices with entriesin R.

Proof. The entirety of the proof can be seen in [5], p.378 and a modern proof
can be found in [2], p.3. [ ]

Theorem 3.3. Let H be the quaternion algebra, the Clifford algebra Cl;,
is isomorphic to the four fold-tensor products H®* .

Proof. We recall first the isomorphism Cl,, ~R(2) which in combination
with the lemma (3.1) leads to

Clyyyqn ~Cl,  ®R(2). (19)

p+1,0+

Using the last isomorphism, we set

Cls; ~Cl,, ®R(2), (20)
Cl,, ~Cl,; ®R(2), (21)
Cl,, ~Cl,, ®R(2). (22)

The substitution of (21) into (20) leads to
Cly; ~(Cly, ®R(2))®R(2), (23)

and the substitution of (22) into (23) gives
Cly, ~[(Cl,, ®R(2))®R(2) |®R(2). (24)

From the isomorphism Cl,, ~R(2) and the associativity of the tensor prod-

uct, we can write

Cls; ~(R(2)®R(2))®(R(2)®R(2)). (25)
In virtue of the second lemma above, we obtain
Cls; = (R(4)®R(4)). (26)
Finally, the isomorphism H®H ~R(4) induces
Cly, ~(H®H)®(H®H). (27)
Hence,
Cl, ~H®H®H®® H. (28)
The Clifford algebra Cl;, generated by e,e,,e;,€,,6;,€,6;, and € is iso-
morphic to the hyperquaternion algebra H® . ]
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According to the isomorphism Cl; 5 =~ H*, we make the following choice of
the eight generators of the hyperquaternion algebra H®*:
e k®I®1®1=KI,
e, > k®J®1®1=kJ,
g, > k®K®n®L =kKnL,
e, > Kk®@K®n®M =kKnM,
e, > k®K®n®N =kKnN,
g > k@K ®I®1=kKI,
e, > k@K ®m®1=KkKm,
g~ j®1IR1®1=j.

(29)

We opt for the identification of the basis vectors generators of H®* ~ Cly; be-
low:
e =kl e, =kJ, e, =kKnL, e, =kKnM,

. (30)
&; =KKnN, e; = kKl, e, =kKm, g; = j.

It is easy to show that the hyperquaternion algebra H® is isomorphic to the

set of real matrices R(16). Since H ~RR(2), it is obvious that
H* —=HOH®H®H=R(2)®R(2)®R(2)®R(2)=R(16).  (31)

3.2. Multivector Structure of HO H® H® H

Definition 3.4. The product of k generators of the hyperquaternion algebra
H® s called multivector of rank k or polyvector of rank k or k-vector.

We denote by ee,e,---e, =¢e,, , the product of kvectors e€,e,,e,,e,,-:-,€, .
As shown in the table below describing the multivector structure of the hyper-
quaternion algebra H® =H®H®H ®H, a basis of it has:

1 scalar (or 0-vector): 1,

8 vectors (or 1-vectors):

e =kl,e, =kJ,e; =kKnL,e, =kKnM, e, = kKnN,
e, =kKl,e, =kKmand g; = j,
28 bivectors (or 2-vectors):
g, =il,e; =Jm,e, =Jl,e. =JInN,e, =JInM e, =JnL,e,, =K,e,, = InL,
e, =InM e, =InN,e,, =1l,e,, =Im, ey, =iJ,e,; = N,e,, =M, e, =mL,
e,; =1L, =iKnL,e, =L,e,s =mM,e,, =IM, g, =iKnM, e, =mN,
e, =IN, e, =1KnN, e, =n, e, =Kl and g, = iKm,
56 trivectors (or 3-vectors):
€, = kKn, e,;, = kKmL,e,,. =kkmM e, = kKKnN, e,, = KKIL,
€, = kdmL,e ,; =KkIN, -

70 quadrivectors (or 4-vectors):

€7 = 1L, 83167 = JL, Bp1ey = KL, €yy5p = IM, €555, = IKL, €55, = 1L, €555, =1L, -

56 multivectors of rank 5:

€56 = KIM, €734, = kJI, €567 = kM, €156, = KN, €555, = JIL,
€154 = JKL €gyy67 = JIL, -
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28 multivectors of rank 6:
o378 = iL, €ioa678 = iM 1€105678 = iN 18812654 = ”L19812754 =imL,---
8 multivectors of rank 7:

€2134567 = k’68234567 = ]I, 310567 = 191 €ap17305 = JKI'e8213456 = JKm,
€a216754 = JKnL'e8216735 = JKnM 1€g016743 = JKnN

1 pseudoscalar: € ,5567 =1 -

8
It is obvious that Zio&j =2% =256 is the dimension of the hyperquaternion

algebra H® and a general element of this algebra is a linear combination of

the 256 basis multivectors as in (15).

1 L=e¢, M =¢e, N =g,
I = €pasers IL = €567 IM = e, IN = €567
j=¢ JL =t M =egy IN =€y
k= €5134567 KL = €21367 kM = €21467 kN = €1567
I'= €y3667 IL = ey, IM =g, IN = €,
J =€31567 JL=¢eyq IM =eyq IN =€
K=e, KL =65 KM =€, KN =€,
I =€, IL=e, IM =e, IN=e,
M = €54 mL = ey mM =g, mN =e,
n=¢ nL = g, nM = e NN =€,
il =¢y ilL =g, iIM =¢eg.c iIN =g,
iJ =¢e, il =g, iIM =eg,. iIIN =g,
IK =g KL =gy IKM =e,qe; IKN = g
"= C8234567 L= €28367 iIM = €28467 JIN = €28567
9= €a314567 L= €a3167 M = Cea167 JIN = €as167
iK=ey JKL=tg5  JKM =555 JKN =gy,
kI =¢ KIL=e;, kKIM =e . KIN =e,,
ki =e, kL =e,, kIM =e .. kdN =e,,,
KK =€, kKL=¢g,, kKM =¢g,, kKN =g,
il =eg556 L =g 1IM =€51555 1IN =555,
im= Ca127 imL = Ce12754 imM = Ca12735 imN = €812743
IN = €153 inL = €y, inM =e;,, iNN = €y,
i = €g7345 j“-:esn 1LY = €14 JIN = €15
M = €6 JmL = egyq JIMM =t JMN = ey5q56
in=ey, INL=t6g75,  INM =575 JNN =855755
Kl =€, KIL =€y, KIM = €555 KIN = €54
km=e,,, kmL = €12754 kmM = €12735 kmN = €12743
KN = €555 knL = ey, knM =e,,, kNN = e,
Il=e, IIL = e, IIM =eg . IIN =e,,,
Im=e, ImL=¢e,, ImMM=e,, IMN=¢,,
| In=¢5 InL =e,, InM =e,, InN =e,,
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N =eg, JIL = eggps, JIM = egqy55 JIN = g5 |
jim =egy, JImL = €755, JIMM = €756 JIMN = €753
jln:esms jInL:essz jinMm =€ JjInN )
Pl =epg, JIL = eyge5, HIM = eygq5, JIN =eygq
m =gy, JIML = €g7e, JIMM = €574 JIMN = e,
JIN =¢eg5: JInL =gy, JInM =g, JINN =e;;;
iKI= €a217345 JKIL = €a2173 JKIM = €a2174 JKIN = €a2175

JKM = €4513456

JKmL = €32136

JKmM = €32146

JKmN = €32156

JKn=eg;  JKNL =€y 55  JKNIM =e€g16755  JKNN = €517
KIl = €,545 KIIL = e, kiIM =e,,, KIIN = e,
kim=e,, KImL = e 4 kKImM =e,,, KImN =e,,
kin =g, KInL = €475, KINM = €575 KINN = €57,
kIl = €555, KL =¢e,,, kKJIIM =e,,, kJIN = e,
kdm =e,;,; kImL = e, kdmM =e,, kImN = e,
kdn = e, kInL = ey, kINM = €575 kINN = €545
kK1 = ¢, KKIL = g, KKIM = &g, KKIN = g5,
kKm =e¢, kKmL =e,, kKKmM =e,,. kKKmN =e,,,
kKn =g, kKnL = e, kKnM =g, kKnN =g,

4. Hyperquaternion Algebra for Conics

In this section, we relate the conic sections expressed in CCGA (Conic Confor-
mal Geometric Algebra) developed in [7], [8] and [11] to their hyperquaternion
Clifford algebra presentation.

4.1. Conformal Hyperquaternion Algebra H®*

Firstly, we recap of what we have done above by recalling that the hyperquater-
nion algebra HOH®H®H is generated by the following selected basis of the
vector space R>*:

e =kl,e, =kJ,e; =kKnM, e, =kKnN,

e; = kKnL,es = kKl, e, =kKm,g; = j.

Consider now the three first null vectors called the infinity’s points and defined
from the six vectors e,,e,,e.,6,,6, and €, as follows:
1 1
2 2
The three others null vectors, called the origins points, are

€y = i(—kKnL +kKm), e, = i(—kKnM +KKI), 65 = i(—kKnN +j). (33)

7 7z 7

So, we built a new basis (e;,,,€,,,€,,,€,5,€,€5,,€,;) of the vector space R53

021

1

N

e, (KKnL+kKm),e,, =—=(kKnM +kKl),e,, =—=(kKnN + j). (32)

composed of the Euclidean basis (e, e,) of R? and the six null vectors e,
and ey, where 1<i<3.
The new choice of the generators (e,,e,,€_,,€_,,€ ,,€,.8, and €y, ) respects

the hyperquaternion product of H® which is defined independently of any
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specific choice of the generators and the multivector structure of H® changes.
Definition 4.1. Let H be a quaternion algebra, the hyperquaternion algebra,
€

021

generated by the basis vectors e,e,,€ €,3.€0.8p, and ey of the vector

ol ?
space R>*, is called the conformal hyperquaternion algebra HOHO®H®H .

Note that the conformal hyperquaternion algebra HOH®H®H is the
hyperquatenion algebra H®* with another multivector structure and the hyper-
quaternion product is the same in the two algebras.

We perform easily the inner product of the generators e,,e,,€,,,€_,,€_,,€,,€p,
and ey,

e =(KI)(kl)=k*1? =(-1)" =12 = (kJ)(kJ)=k2J2 =(-1)" =1,  (34)

each generator eii ,egi (1 <i< 3) is isotropic, it squares to zero

e, = i(kKnL + ka)i(kKnL-i- kKm)

2 V2
:%(szznsz +KPKEm? 4 k*K? (mn) L+ k*K? (mn) L) (35)

:%(1—1+ k?K? (nm)L—k*K? (nm)L) =0.

2, =L (kKM + kKI) =

e
02 \/E \/E
(KM K K (M <K (M) (39

(KKnM +KKI)

:%(1—1+ k*K? (nl)M —k*K? (nI)M ) = 0.

1 1 .
2, =—=(KKnN + j)—=(kKnN +
:%(szznzNz (k) KnN +( k) KK + °) (37)
1

=2 (1= iKnN +iKnN ~1) =0.

It is easy to establish the following

e = {%(—kKnL + ka)} =0, (38)
1 2
e, = {ﬁ(—kKnM +kKI)} =0 (39)
1 2
e, = {E(—kKnN + j)} =0. (40)

We recall that for any vectors u and v; their inner product can be written
1
u-v= E(UV +VU). By using this last relation, we compute the following

1

1 1
€1 €01 :E E

=

—kKnL + ka)i(kKnL + ka)}

N

(KKnL +kKm)—=(-kKnL + kKm)

+i(
V2
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:%(—szznsz +k?K2m? +k2K? (nm) L —k?K? (nm) L
—KPKZnPL? + kK2 m? —k?K? (nm) L+ k*K? (nm) L) (41)
:%(—1—1—IL—IL—1—1+IL+IL) =-1.

Similarly, we establish the following,

€,2 €y =€,3€3 =—1. (42)

Thus for any i e {1, 2,3} ,

€.i € =€ €y =-1 (43)
We define two others null vectors,
1 1
e, =—(e, +e,,)=—=(kKnL+kKm+kKnM +kKI). (44)
2 ( 1 2) 2\/5 ( )
and
€, =€y + €y =i(—kKnL+ka—kKnM +KKI). (45)
V2
We can easily prove that the vectors e, and e, are isotropics Ze.
e :%(kKnL+ka+kKnM +kKI)® =0 (46)
e :%(—kKnLJrka—kKnM +KkKI)® =0 (47)

and their inner product is

e, € =%(kKnL+ka+kKnM +KKI)-(—kKnL + kKm —kKnM +kKI ) = —1. (48)

In the following subsection, we use the fact that the Clifford algebra Clg, is the
geometric algebra for conic (CGA) and the isomorphism Cl;, ~ H* to pro-

vide the hyperquaternion formulation of conic sections.

4.2. Hyperquaternion Representations IPNS

Consider the conformal embedding ¢:R* — Img — R*?,

X = xkl + ykJ
1 1
= @( X ) = xkl + ykJ + ——=x? (kKnL + kKm) + —= y? (kkKnM + kKI (49)
#(X) W+ Xl )45 Y | )
+ixy(kKnN + j)+i(—kKnL+ka)+i(—kKnM +KkKI)

V2 V2 V2
Proposition 4.2. Let (kI ,kJ) be a basis of the Euclidean vector space R?,
#:R* > Imp < R>® be an embedding and X = xkl + ykd € R?, the embedded
point ¢(X) of R*® cH* isisotropic.
Proof. It is obvious, a straightforward calculations of the inner product give
the result #(X)-#(X)=0
This result confirms the fact that in conformal geometric algebra (CGA), the

inner product of any point with itself is zero.
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Proposition 4.3. Let (KI,kJ) be a basis of the Euclidean vector space R?,
#:R* > Img c R>® be an embedding and X = xkl + yk] e R?, the subspace
1

NG

of dimension 1 generated by the null vector €,, =——=(KKnN + j) is orthogonal

to any embedded point ¢(X) of R** c H*.
Proof. For any X = xkl + ykJ € R? a straightforward computation of the in-
ner product show the relation ¢(X)-e,,=0. [ ]
Definition 4.4. Let X be an element of the Euclidean space R?, A an 1-blade
of the hyperquaternion algebra W™ and the conformal embedding
¢:R? — Img = R*®, the inner product null space of A, denoted by 1PNS (A),
is defined as follows IPNS(A)={X :¢(X)-A=0}.
In order the define the inner product null space of an 1-blade

a b c
A =—(—kKnL + kKm) + —(—kKnM +kKI)+—
= )+ 7o )+

g h
+dkl +ekJ + = (kKnL + kkKm)+—(kKnM +kKI (50)
\/E( ) \/2( )

(KKnN + j) e R*® c H*.

(—kKnN + j)

i
+ —_—
V2
we perform the inner product of ¢(X) and A as expressed above,

¢(X)~A:dx+ey—%x2—gyz—cxy—g—h. (51)
the inner product null space of A is the set,

IPNS(A):{X:dx+ey—%x2—gyz—cxy—g—hzo} (52)

and the geometric entity corresponding to the above equation,
a b
J— XZ _—

Z_cxy—g-—h=0 53
> 2y y—g9 (53)

dx+ey—

is a conic section.

An elegant equation of a conic section is given by
Ax? + By? + 2Cxy + 2Dx+2Ey+F =0 (54)
obtained by laying A=-a,B=-b,C=-c,D=d,E=e and F=-2(g+ h) .
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