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Abstract 
Under the control framework of algae bloom in eutrophic lakes and reser-
voirs based on biological manipulation, the temperature variable is intro-
duced into ecological modeling to show that it is a necessary condition for the 
rapid occurrence of algal blooms, and an aquatic ecological model with tem-
perature effect is proposed to describe dynamic relationship between algae 
and biological manipulation predator. The mathematical theory work mainly 
investigates the existence and stability of some equilibrium points and some 
critical conditions for the occurrence of transcritical bifurcation and Hopf 
bifurcation. The numerical simulation mainly shows the dynamic evolution 
process of bifurcation dynamics, which can not only verify the validity and 
feasibility of these theoretical works but also analyze the influence of some 
key parameters on dynamic behavior evolution. Furthermore, It is worth 
emphasizing that temperature plays an important role in the coexistence of 
algae and biological manipulation predators. Moreover, the coexistence mode 
of algae and biological manipulation predators is discovered by means of dy-
namic bifurcation evolution. Finally, it is hoped that these research results 
can provide some reference for the study of aquatic ecosystems. 
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1. Introduction 

As we all know, the temperature is an important environmental factor that de-
termines the growth of the algal population, is one of the important factors that 
affect the growth of algal cells, the composition and content of biological ma-
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cromolecules in cells, and is also a key ecological factor that affects the growth, 
reproduction and population succession of aquatic plants [1] [2]. Furthermore, 
suitable temperature is a necessary condition for algal bloom outbreaks and also 
an important environmental factor for the replacement of the dominant algal 
population [3] [4]. Thus, it is important to study the effect of temperature on al-
gal growth and provide the theoretical basis for the prevention and treatment of 
water eutrophication. 

Algae is a ubiquitous photosynthetic organism; the algal growth rate can in-
crease with increasing temperature up to a certain limit; this is because that 
temperature strongly influences the cellular chemical composition and uptake of 
nutrients and also plays a significant role in algal growth [5]. The paper [6] pointed 
out that the ability to model algal productivity under transient conditions of tem-
perature was critical for assessing the profitability and sustainability of full-scale 
algae cultivation outdoors. The paper [7] investigated the effect of temperature 
and irradiance on the growth and reproduction of the green macroalga and gave 
that a suitable temperature range over 21˚C - 29˚C was more favorable for 
growth and reproduction. The paper [8] proposed that Microcystis aeruginosa 
had a wide range of adaptation to temperature, and the optimal growth temper-
ature was 25˚C - 30˚C. The paper [9] showed that the temperature condition 
that was most conducive to algal growth was 25˚C, and the optimal condition for 
algal toxins release was 28˚C. The paper [10] inquired into the effects of temper-
ature on the germination of micro-propagules via laboratory experiments and 
indicated that sea temperature played a significant role in the germination of 
green algae. The paper [11] sought to elucidate the effects of temperature on al-
gal growth rates, biomass accumulation, fatty acid production and composition 
and pointed out that temperature significantly impacted the overall productivity 
of algal biofuel systems by influencing species growth rates and fatty acid production. 
The paper [12] studied the effects of different temperatures and illumination time 
on algal growth and obtained that the value of the algal growth rate constant was 
reduced to 0.812d−1 by lowering the water temperature to 16˚C. In conclusion, 
the algal population has strong adaptability to the environment, and temperature 
is one of the important ecological factors affecting algal growth. 

In an aquatic ecosystem, the ecological effects between algae and biological 
manipulation predators are mutual, mainly including the harm of algal blooms 
to fish and the feeding and regulation of algae by biological manipulation pre-
dators [13]. The use of biological manipulation predators to control the exces-
sive algal growth in eutrophic lakes was proposed and gradually attracted atten-
tion after the eutrophication of lakes became more and more common, and cer-
tain results in the control of cyanobacteria blooms have been achieved in some 
lakes at home and abroad [14] [15]. The paper [16] pointed out that silver carp 
completely eliminated cyanobacteria Microcystis by size and biovolume reduc-
tion. The paper [17] deemed that silver and bighead carps were just suitable for 
controlling cyanobacteria bloom not total algae biomass, and the application of 
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the fish for algal control in water supply reservoirs should be cautious. The pa-
per [18] believed that it was feasible to use silver carp and bighead carp to con-
trol Microcystis in eutrophic water. Furthermore, using ecological models to ex-
plore the dynamic relationship between algae and biological manipulation pre-
dators has also developed rapidly. The paper [19] showed that Microcystis aeru-
ginosa aggregation could effectively control the dynamic feeding behavior of fil-
ter-feeding fish and provide shelter from predators. The paper [20] obtained that 
the filter-feeding fish population could be a crucial factor in controlling the pro-
liferation of the algae population based on an algae-fish model. Therefore, fully 
understanding the ecological function relationship between algae and biological 
manipulation predator is a premise for better implementing algae control strat-
egy with biological manipulation predators and ensuring algae control effect. 

In this paper, firstly, the temperature variable is introduced to build an aquatic 
ecological model which can describe the dynamic relationship between algae and 
biological manipulation predators. Secondly, mathematical theory works are im-
plemented to obtain some critical threshold conditions by investigating the evo-
lution process of some specific dynamic properties. Finally, the numerical simu-
lation works are carried out to show the evolution process of dynamic properties 
and the influence mechanism of temperature variables. Generally speaking, the 
main purpose of this paper is to use an aquatic ecological model with tempera-
ture effect to explore the coexistence mode between algae and biological mani-
pulation predators and reveal how temperature variable affect their dynamic re-
lationships. 

2. Aquatic Ecological Model 

At present, the temperature has been regarded as a key factor for monitoring 
and predicting algal blooms. Furthermore, the reproduction rate of algae has an 
important relationship with temperature, and the appropriate temperature is a 
necessary condition for the rapid propagation and growth of the algae population. 
In order to better investigate the effect of temperature on the dynamic relationship 
between algae and biological manipulation predator, we will propose an aquatic 
ecological model with temperature effect, which can be described as follow: 

( )

( )

min
1 1 1

ref min 1

2 2

d 1 ,
d

1d ,
d

R RN N aNPr N u s m N
T R R k b N

e aNPP r P m P
T b N

α

    −
= − − + + −    − +   

−
= + − +

      (2.1) 

where ( )N T  and ( )P T  are density of algae population and biological mani-
pulation predator (silver carp, bighead carp and anodonta woodiana elliptica) 
respectively. 1r  is maximum growth rate of algae population at reference tem-
perature refR  (it is considered to be 25˚C). 1k  is the maximum environmental 
capacity for algae population. R represents actual temperature during the test 
run, which can be either a constant or a function of time t. minR  is the lowest 
temperature value when the algal growth is 0, and it is generally considered to be 
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15˚C. 1u  is a respiratory rate, 1m  is a nonpredation-induced mortality of algae 
population, s is a sedimentation rate, 2r  is intrinsic growth rate of biological 
manipulation predator, 2m  is mortality rate of biological manipulation preda-
tor, e is energy conversion rate, a is capture rate of biological manipulation pre-
dator, b is a semi saturation coefficient, and α  is assimilated food of catabolic 
loss during predation period. 

For simplicity, we will replace the model (2.1) with the following variables: 

( )

min
1 1 1

1 ref min

11 2 2

1 1 1 1 1

, , , , ,

1
, , , , , .

R RNx c u s m g t r gT y P
k R R

e akk r mc am n p u v
r g r gb b r g r g r gb

α
β

−
= = + + = = =

−

−
= = = = = =

 

Then the model (2.1) can be rewritten as 

( )d 1 ,
d 1
d .
d 1

x nxyx x mx
t px
y vxyuy y
t px

β

 = − − − +

 = + −
 +

                   (2.2) 

For model (2.2), we first discuss the existence and stability of all possible equi-
librium points and explore the existence of a limit cycle with some key con-
straints. Then we give some critical conditions to demonstrate the occurrence of 
transcritical bifurcation and Hopf bifurcation. Finally, some numerical simula-
tion results are implemented to verify the validity and feasibility of theoretical 
results. At the same time, through some numerical simulation results, the influ-
ence of temperature on dynamic relationship between algae and biological ma-
nipulation predators will be explored, and then ecological evolution significance 
represented by bifurcation dynamic evolution behavior is also given.  

3. Equilibrium Points and Their Stability 

In this section, some preliminary results shall be presented, including the exis-
tence and stability of all possible equilibrium points of the model (2.2). 

We will consider the following equation to explore all possible equilibrium 
points of the model (2.2), 

( ) ( )

( )

, 1 0,
1

, 0.
1

nxyF x y x x mx
px

vxyG x y uy y
px

β

 = − − − = +

 = + − =
 +

              (3.1) 

It is easy to acquire that the model (2.2) always has trivial equilibrium point 
( )0 0,0E , and a biological manipulation predator extinction equilibrium point 
( )1 1 ,0E m−  if 1 m> . In view of the biological significance and the characteris-

tics of the model (2.2), the interior equilibrium points are conditional. 
In order to explore the existence and stability of all possible equilibrium 

points of the model (2.2), we will gradually give the following Theorems 1 - 6. 
Theorem 1. The model (2.2) has a unique interior equilibrium point ( ),E x y∗ ∗ ∗  
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if and only if the following conditions hold,  

0 1 , .ux m x
v p pu

β
β∗ ∗
−

< < − =
− +

 

Proof: From the previous analysis, we know that ( ), 0G x y =  has two dis-

tinct real roots, that is 1 0y =  or 0
1

vxu
px

β+ − =
+

, thus there are 1 0y =  and 

ux
v p pu

β
β∗
−

=
− +

. If we take 1 0y =  into ( ), 0F x y = , there are 1 0x =  or 

2 1x m= − . Similarly, we take ux
v p pu

β
β∗
−

=
− +

 into ( ), 0F x y = , we can ob-

tain 1 0
1

nyx m
px

− − − =
+

 and 
( )( )1 1x m px

y
n

∗ ∗
∗

− − +
= . According to the bi-

ological significance of the internal equilibrium point, 0u
v p pu

β
β
−

>
− +

 and 

( )( )1 1
0

x m px
n

∗ ∗− − +
>  must be established, hence the existence equivalence 

condition is 0 1u m
v p pu

β
β
−

< < −
− +

. This ends the proof. 

Theorem 2. The model (2.2) has a boundary equilibrium point ( )0 0,0E  and 
it is always unstable.  

1) If u β> , 0E  is an unstable node; 2) if u β< , then 0E  is a saddle. 
Proof: The Jacobian matrix of the model (2.2) evaluated at 0E  is  

0

1 0
.

0E

m
J

u β
− 

=  − 
 

The eigenvalues of 
0EJ  are 1 1 mλ = − , 2 uλ β= − . Based on the biological 

significance of the model (2.2), the value m must be less than 1. so 0λ > . The-
reby, if u β> , then 2 0λ > , and 0E  is an unstable node; if u β< , then 2 0λ < , 
and 0E  is a saddle. This completes the proof. 

Theorem 3. The model (2.2) always has a boundary equilibrium point  
( )1 1 ,0E m−   

1) if 1
1

vp
u mβ

> −
− −

, 1E  is a stable node; 2) if 1
1

vp
u mβ

< −
− −

, then 1E  

is a saddle. 
Proof: The Jacobian matrix of the model (2.2) evaluated at 1E  is  

1

1
1

.
0

1

E

n nmm
p pm

J
v vmu

p pm
β

− − − + − =
 −

− + + − 

 

The eigenvalues of 
1EJ  are 1 1mλ = − , 2 1

v vmu
p pm

λ β −
= − +

+ −
. Since 1 0λ < , 

so when 1
1

vp
u mβ

< −
− −

, there is 2 0λ > , then 1E  is a saddle. When  
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1
1

vp
u mβ

> −
− −

, there is 2 0λ < , then 1E  is a stable node. This completes the 

proof. 
Theorem 4. Under the condition ( ) 0F x∗ < , the boundary equilibrium point 

1E  is globally asymptotically stable, where ux
up v p

β
β∗

−
=

+ −
. 

Proof: This theorem can be derived by flow analysis. When ( ) 0F x∗ < , the 
model (2.2) has no internal equilibrium point, and has only two boundary equi-
librium points 0E  and 1E . It is easy to know that 0E  is always unstable and is 
a saddle, its unstable manifold is x-axis. Thus, we can divide the positive qua-
drant into the following three regions,  

( ){ }2
1 , | 0 , 0 ,R x y R x m y+= ∈ < ≤ >  

( ) ( ){ }2
2 , | 1 ,0 ,R x y R m x m y G x+= ∈ < < − < <  

( ) ( ){ }2
3 , | , .R x y R x m y G x+= ∈ > >  

Here ( )y G x<  is derived from the first equation of the Equations (3.1). Con-
sidering the biological significance of the model (2.2), we need only discuss the 
region 2R  and 3R . In fact, solutions that start in region 3R  will eventually 
enter region 2R  by crossing the algae population nullcline vertically (down-
wards) in finite time, for the reason that there is no internal equilibrium point in  

3R  and d 0
d
x
t
<  and d 0

d
y
t
< . Once in region 2R , it is clear to see that solutions 

are trapped, because d 0
d
x
t
>  and d 0

d
y
t
< , so the solutions in 2R  cannot cross  

the algae population nullcline, hence we must have ( ) ( )( ) ( ), 1 ,0x t y t m→ −  as 
t → +∞ . This ends the proof. 

Theorem 5. Under the condition that the theorem 1 exists, the equilibrium 
point E∗  is locally asymptotically stable if ( ) 0ETr J

∗
< , and is unstable if 

( ) 0ETr J
∗
> . 

Proof: The Jacobian matrix of the model (2.2) evaluated at E∗  is given by  

( )

( )

2

2

1 2
11

.
0

1

E

ny nxx m
pxpx

J
vy
px

∗

∗ ∗
∗

∗∗

∗

∗

 − − − − ++ =  
 
 + 

 

The determinant and the trace of matrix EJ
∗

 are given by  

( )
( )2 ,

1 1
E

nx vyDet J
px px∗

∗ ∗

∗ ∗

  
 =   + +  

 

( )
( )21 2 .
1

E
nyTr J x m
px∗

∗
∗

∗

= − − −
+

 

It is easy to check that ( )EDet J
∗

 is always positive. Hence, if ( ) 0ETr J
∗
< , 

then the equilibrium point E∗  is locally asymptotically stable; if ( ) 0ETr J
∗
> , 
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then the equilibrium point E∗  is unstable. If we can substitute the expression of 
E∗  into the trace of the Jacobian matrix, we cannot directly derive the sign of 

( )ETr J
∗

 because of algebraic complexity of the expression; therefore, we will 
calculate the values of ( )ETr J

∗
 by using numerical simulation in Section 5. 

Theorem 6. If 1
1

pny
px
∗

∗

<
+

 is satisfied, then the internal equilibrium point 

( ),E x y∗ ∗ ∗  is globally asymptotically stable. 

Proof: To prove the global asymptotic stability of the internal equilibrium 
point ( ),E x y∗ ∗ ∗ , the following Lyapunov function was constructed: 

( ), ln ln .x yV x y x x x B y y y
x y∗ ∗ ∗ ∗
∗ ∗

   
= − − + − −   
   

 

Based on the basic properties of the function, it can be concluded that ( ),V x y  is 
continuous for all 0x >  and 0y > , and is computationally available: 

1 , 1 .x yV V B
x x y y

∗ ∗ ∂ ∂
= − = − ∂ ∂  

 

Therefore, the internal equilibrium point ( ),E x y∗ ∗ ∗  is only extreme value of 
the ( ),V x y  function in the positive quadrant, 

( ) ( ) ( ) ( )
0 0

lim , lim , lim , lim , .
x y x y

V x y V x y V x y V x y
→ → →+∞ →+∞

= = = = +∞  

For all the 0x >  and 0y > , we can get 

( ) ( ), , 0.V x y V x y∗ ∗> =  

Then, we can obtain 

( ) ( )

d d d d d
d d d d d

1 .
1 1

x yV x x y yB
t t x t t y t

ny vxx x x m B y y u
px px

β

∗ ∗

∗ ∗

 
= − + − 

 
   

= − − − − + − − +   + +   

 

Furthermore, we know that the internal equilibrium point ( ),E x y∗ ∗ ∗  satisfies 
the following equation: 

1 0,
1

0.
1

nyx m
px

vxu
px

β

∗
∗

∗

∗

∗

− − − =
+

− + =
+

 

Combined with the above two formulas for the simplification, we can obtain 

( ) ( )

( )( ) ( ) ( )( )( )
( )( )

( )( )
( )( )

2

d
d 1 1 1 1

1
1 .

1 1 1 1 1 1

ny vxV ny vxx x x x B y y
t px px px px

n px x x y y Bv x x y ynpy x x
px px px px px px

∗ ∗
∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗∗
∗

∗ ∗ ∗

   
= − + − − + − −   + + + +   
  + − − − −

= − − − +  + + + + + + 

 

By choosing 

( )1
,

n px
B

v
∗+

=  
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if 1
1

pny
px
∗

∗

<
+

, we can obtain 

( ) ( )( ) ( )2 2d 1 1 0.
d 1 1 1

pny pnyV x x x x
t px px px

∗ ∗
∗ ∗

∗ ∗

   
= − − − < − − − <    + + +  

 

According to the above formula, it is obvious that the internal equilibrium point  

( ),E x y∗ ∗ ∗  makes d 0
d
V
t
=  and for all other ( ),x y  has d 0

d
V
t
< , so ( ),V x y   

satisfies the global stability theorem of the Lyapunov function. Thus the internal 
equilibrium point ( ),E x y∗ ∗ ∗  is globally asymptotically stable when E∗  is fea-  

sible and the implicit condition 1
1

pny
px
∗

∗

<
+

 is satisfied. This ends the proof. 

Theorem 7. When the following two conditions are true, there exists at least 
one limit cycle of the model (2.2). 

1) 
( )( )1 1

0
x m px

n
∗ ∗− − +

> ; 2) uβ > . 

Proof: From the conclusion of the Theorem 5, we know that the internal equi-
librium point E∗  may be an unstable focus. Now we will prove Theorem 7 by 
constructing an invariant region Ω , which consists of the following line 1 2,L L , 
and ,x y  axis,  

1 2: 1 , : 0.nyL x m L x M
v

= − + − =  

Through the derivation calculation, we can get 

( ) ( )
( )

1

1

1d 1 ,
d 1 1 1

x m

n m yL nxyx x mx
t px p m

= −

− − 
= − − − = + + − 

 

( ) ( )
( )

( ) ( )

2

2

d 1
d

1 .

v M x
y

n

n u yL x x mx
t v

x m u x u M

β

β β

−
=

− 
= − − + 
 

= − + − − + + −

 

It is easy to verify that 1d 0
d
L
t
<  for 0 1x m< < −  and 0y > . Furthermore, if 

( ) ( )21 4 0m u u Mβ β− − + − − <  when M is a sufficiently large positive number, 

then 2d 0
d
L
t
<  for 0 1x m< < − , which implies that as long as uβ >  holds,  

there must be a large enough positive number M to make  
( ) ( )21 4 0m u u Mβ β− − + − − <  hold. Thus, the model (2.2) has at least one 
limit cycle by Poincare-Bendixson Theorem [21] [22]. This ends the proof. 

4. Bifurcation Analysis 

It is well known that the evolution process of bifurcation dynamics has impor-
tant biological significance in the process of population dynamics. Therefore, we 
will explore some bifurcation dynamics behaviors of the model (2.2) and give 
some threshold conditions for specific bifurcation dynamics of the model (2.2). 
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4.1. Transcritical Bifurcation 

Here we will prove that the model (2.2) undergoes a transcritical bifurcation at  
1

1TC
vp p

u mβ
= = −

− −
. We recall from Theorem 3, the boundary equilibrium  

1E  loses its stability at TCp p=  and one of the eigenvalues of 
1EJ  is zero; it 

implies that the equilibrium point 1E  becomes non-hyperbolic, so it is possible 
to undergo a transcritical bifurcation around 1E . 

Theorem 8. The model (2.2) undergoes a transcritical bifurcation when  

TCp p= , where 1
1TC

vp
u mβ

= −
− −

. 

Proof: We use Sotomayor’s theorem [23] [24] to prove that the model (2.2) 
undergoes a transcritical bifurcation with a bifurcation parameter p. If TCp p= , 
then ( )1

0EDet J = , which means that the Jacobian matrix 
1EJ  has a zero ei-

genvalue. Now, let V and W be the eigenvectors corresponding to the zero ei-
genvalue of 

1EJ  and 
1

T
EJ  respectively. After a simple calculation they can be 

given by 

1 1

T0 , 0 .E EJ V V J W W⋅ = ⋅ ⋅ = ⋅  

Therefore, 

( )( )1

2

1 1 ,
1

n nm
v

p pm mV
v

− 
   + − −= =      

 

 

1

2

0
.

1
w

W
w
   

= =   
  

 

Due to 

( )
( )

( ) ( )1

2

2
1

1 2
2

2

,

1 0
; ,

0

1
TC

p
p TC

p

E p

nyx
pxF

F E p
F vyx

px

 
 

+    
= = =    

    −
 + 

 

( )
( )

( )
( )( )
( )
( )( )

1

2

2

1 1 1
1 2

2 2 2;
2

1

1 1
; ,

1

1 1
TC

px py
p TC

px py E p

n m

p mF F v
DF E p V

F F v v m

p m

 −
 
 + −     = =   
   − 
− 
 + − 

 

( )( )

( )

( )
( )

( )
1

2
1

22 2 2
1 1 1

31 1 1 2 2 22 2

2 2 2
2 2 2

1 1 1 2 2 2 32 2
;

; ,

2 1
2

1
.

2
2

1
TC

p TC

E p

D F E p V V

p m nF F Fv v v v v v
x yx y p pm

vF F Fv v v v v v
x yx y p pm

 − ∂ ∂ ∂
 + + ∂ ∂∂ ∂ + −  = =   ∂ ∂ ∂    −+ +   ∂ ∂∂ ∂ + −   

 

Furthermore, we can obtain 
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( ) ( )T
1

0
; 0,1 0,

0p TCW F E p  
= = 

 
 

( ) ( )

( )
( )( )
( )
( )( )

( )
( )( )

2

2 2
T

1 22

2

1

1 1 1
; 0,1 0,

1 11

1 1

P TC

n m

p m v m
W DF E p V

p mv m

p m

 −
 
 + − −
   = = − ≠    + −−
− 
 + − 

 

( )( ) ( )

( )
( )

( )
( )

2

3
T 2

1 3

3

2 1

1 2; , 0,1 0.
2 1

1

p TC

p m n

p pm vW D F E p V V
v p pm

p pm

 −
 

+ −   = = − ≠   + − −
 + − 

 

Thus, based on Sotomayor’s theorem we can deduce that the model (2.2) un-
dergoes a transcritical bifurcation as the parameter p passes through a critical 
threshold TCp . This completes the proof. 

4.2. Hopf Bifurcation 

From the analysis of Theorem 5, we know that if ( ) 0ETr J
∗
< , E∗  is locally 

asymptotically stable; if ( ) 0ETr J
∗
> , then E∗  is unstable. Hence, we can easily 

conclude that the interior equilibrium point E∗  may lose its stability by Hopf 
bifurcation under sufficient conditions. Considering p as a Hopf bifurcation 
control parameter, the Hopf bifurcation threshold Hp p=  can be detected by 
using ( ) 0ETr J

∗
= . When the value of the parameter p passes from one side of 

Hp p=  to the other side, the stability property of E∗  changes and the periodic 
orbits can be generated. Thus, we can yield the following theorem. 

Theorem 9. Based on Theorem 1, the model (2.2) undergoes a Hopf bifurca-
tion around E∗  when Hp p= . 

Proof: In order to ensure the existence of Hopf bifurcation, we need to verify 
the transversality condition; then we have 

( )
( ) ( )

( )2

d1 1
dd d2 0,

d d 1H

H

E p p

p p

xp pm x m x
x pTr J

p p px∗

∗
∗ ∗

∗

=
∗

=

 + − + − − 
   = − + ≠   +

  

 

and 

( )
( )

2

2

d .
d

ux
p v p pu

β

β
∗ −
=

− +
 

This can guarantee the existence of Hopf bifurcation around E∗ . 
Next we will compute the first Lyapunov number to discuss the stability of 

limit cycle. Firstly, we will transform E∗  to the origin by the transformation 
( ) ( ), ,x y x x y y∗ ∗= − − , then we can get 

( )
( )

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03

, ,

, ,

p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p

x x y x x y y x x y x y y P x y

y x y x x y y x x y x y y Q x y

α α α α α α α α α

β β β β β β β β β

 = + + + + + + + + +


= + + + + + + + + +
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where 

( ) ( )10 01 202 3

21 2 , , 2 ,
11 1

ny nx pnyx m
pxpx px

α α α∗ ∗ ∗
∗

∗∗ ∗

= − − − = − = − +
++ +

 

( ) ( ) ( )

2

11 30 212 4 3

6 2, , ,
1 1 1

p nyn pn
px px px

α α α∗

∗ ∗ ∗

= − = − =
+ + +

 

02 12 03 0,α α α= = =  

and 

( ) ( )10 01 112 2, , ,
11 1

vy vx vu
pxpx px

β β β β∗ ∗

∗∗ ∗

= = − + =
++ +

 

( ) ( ) ( )

2

20 21 303 3 4

2 62, , ,
1 1 1

pvy p vypv
px px px

β β β∗ ∗

∗ ∗ ∗

− −
= = =

+ + +
 

02 12 03 0,β β β= = =  

and ( ) ( ), , ,m m m mP x y Q x y  are power series with terms ( )4i jx y i j+ ≥ . 
Therefore, the first Lyapunov number l  is given by 

( ){ ( )

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
10 10 11 11 02 02 11 10 01 11 20 11 11 023 2

01

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2
01 20 20 11 20 01 10 10 11 02 11 20

2
10 01 10 10 03 01 30 10 2

3
2

2 2 2

2 2

3 2

l α β α α β α β α α β α β α β
α

β α α α β α β β α α α α α β β

α α β β β α β α β β α α

α α β β β α α α α

− π = + + + + +∆

+ + − − − −

− + + − − 

− + − + ( ) ( ) }1 12 10 12 01 21 ,β β α α β + + − 

 

where  

10 01 01 10 0.α β α β∆ = − >  

If 0l < , the limit cycle is stable; if 0l > , the limit cycle is unstable. However, 
the expression for Lyapunov number l  is rather cumbersome; we cannot di-
rectly judge the sign it, so we will give some numerical simulation results in Sec-
tion 5. 

Based on the mathematical theory, the existence and stability threshold condi-
tions of all possible equilibrium points are given, and the critical conditions for 
inducing specific bifurcation dynamics of the model (2.2) are analyzed, which 
can provide a theoretical basis for subsequent numerical simulation work. Fur-
thermore, it should also be emphasized that the key parameter p can seriously 
affect dynamic evolution characteristics of the model (2.2). 

5. Numerical Simulations and Results 

Now, we will investigate dynamic properties of the internal equilibrium point 
( ),E x y∗ ∗ ∗  and explore the effect of some parameters on dynamic relationship 

between x∗  and y∗ . From Theorem 1, we can see that the relation expression  

of x and y is 
( )( )1 1x m px

y
n

− − +
=  and ux

v p pu
β
β
−

=
− +

, thus some numerical  

simulations are given in Figure 1 with 0.2m = , 0.9n = , 0.2u = , 0.4v = ,  
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Figure 1. (a) Dynamic relationship between population density x, y and parameter p val-
ue; (b) Dynamic relationship between population density x and parameter p value. 
 

0.25β = . It is easy to find from Figure 1(b) that the density of algae x∗  in-
creases with the increase of parameter p-value, and the growth is slow in the 
early stage and extremely fast in the later stage, which implies that when the val-
ue of parameter p exceeds a certain critical threshold, the density of algae x∗  
will become larger and larger. Furthermore, it is obvious to know from Figure 
1(a) that when the value of parameter p exceeds a certain critical threshold and 
is determined, the density of biological manipulation predator y∗  is a concave 
function of the density of algae x∗ , and y∗  can get a maximum value when the  

value of x∗  is 
( )1 1

2
m p

p
− −

, which must satisfy 
( )1 1

0 1
2
m p

m
p

− −
< < − , this to 

say 1
1

p
m

>
−

. Therefore, it must be emphasized that the dynamic properties of  
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the internal equilibrium point ( ),E x y∗ ∗ ∗  and the dynamic relationship be-
tween population x∗  and y∗  mainly depends on key parameters m and p. 

In order to verify the validity and feasibility of Theorem 5 and 7, the stability 
of the internal equilibrium point ( ),E x y∗ ∗ ∗  and the existence of the limit cycle 
are numerically simulated with 5.12p =  and 3.8p = . It is easy to find from 
Figure 2(a) that the internal equilibrium point ( ),E x y∗ ∗ ∗  is stable, which means 
that algae and biological manipulation predators can form a constant steady-state 
coexistence mode. Furthermore, it is obvious to know from Figure 2(b) that 
model (2.2) has a limit cycle, which indicates that algae and biological manipulation  
 

 

 
Figure 2. (a) The stability of the internal equilibrium point E∗  with 0.2m = , 0.9n = , 

0.2u = , 0.4v = , 0.25β = , 5.12p = ; (b) The existence of limit cycle with 0.2m = , 
0.9n = , 0.2u = , 0.4v = , 0.25β = , 3.8p = . 
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predators can form a periodic oscillation coexistence mode. In a word, the value 
of parameter p has an important influence on coexistence mode of algae and bi-
ological manipulation predators. 

In order to better understand how the value of parameter p affects the dy-
namic behavior evolution of the model (2.2), we give a bifurcation diagram of 
the model (2.2) in Figure 3. It can be seen clearly from Figure 3 and Figure 4 
that if the value of parameter p is larger than 6.75TCp = , the model (2.2) has 
only two boundary equilibrium points ( )0 0,0E  and ( )1 1 ,0E m− , ( )1 1 ,0E m−  
is stable and ( )0 0,0E  is unstable, which implies that biological manipulation 
predator will eventually approach extinction and algae will eventually approach 
the maximum biomass state, that is to say, biological manipulation predator and 
algae cannot form a final coexistence mode. If the value of parameter p is be-
tween ( ),PH TCp p , the model (2.2) goes through a transcritical bifurcation, 
which will induce the model (2.2) to have an internal equilibrium point, and this 
internal equilibrium point is asymptotically stable, detailed numerical simulation 
results are shown in Figure 4(b) and Figure 4(a). Therefore, it can be said that 
the transcritical bifurcation induces the formation of a constant steady-state 
coexistence mode between biological manipulation predator and algae. If the 
value of parameter p gradually decreases and is less than the critical threshold  
 

 
Figure 3. Bifurcation diagram of the model (2.2) by taking p as bifurcation parameter 
with 0.2m = , 0.9n = , 0.2u = , 0.4v = , 0.25β = , Bifurcation diagram with respect 
to parameter 4.5543Hp = , 6.75TCp = , where the red circle is a hollow dot, that means 

the boundary equilibrium point ( )0 0,0E  is not exist, the pink and green lines implicit 

the critical values for the Hopf bifurcation and transcritical bifurcation respectively. In 
addition, the blue circle and blue asterisk separately denote the Hopf (PH) and transcriti-
cal (TC) bifurcation point. 
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value 4.5543PHp = , the internal equilibrium point ( ),E x y∗ ∗ ∗  loses stability 
and a stable limit cycle appears. In other words, the model (2.2) undergoes a 
Hopf bifurcation; the numerical dynamic evolution process is shown in Figure 5. 
Therefore, it is worth pointing out that the Hopf bifurcation can produce a pe-
riodic oscillation coexistence mode between biological manipulation predator 
and algae. Thus, the numerical simulation results not only prove the validity and 
feasibility of the theoretical derivation, but also directly show that the value of 
key parameter p seriously affects bifurcation dynamics evolution characteristics 
of the model (2.2). 
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Figure 4. The phase portraits of the model (2.2), 1E  has different dynamics with the value of 
parameter p varying. (a) the interior equilibrium point E∗  exists and it is a stable node, 
boundary equilibrium 1E  is a saddle, and 0E  is an unstable node when 6.65 TCp p= < . (b) 
the interior equilibrium point E∗  coincides with boundary equilibrium 1E , which is a sad-
dle-node and the parabolic sector is on the upper half plane, and 0E  is a saddle when 

6.75 TCp p= = . (c) 1E  is a stable node, 0E  is a saddle, and there is no interior equilibrium 
point when 6.85 TCp p= > . The green curves represent the stable or unstable orbits, and the 
red points are some equilibrium points. 
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Figure 5. The phase portraits of the model (2.2), where the interior equilibrium point E∗  
has different dynamics with the value of parameter p varying. (a) Stable periodic orbits bifur-
cate through Hopf bifurcation around ( ),E x y∗ ∗ ∗  with 4.5543Hp p= = . (b) Local ampli-

fication of (a) for ( ) [ ] [ ], 0.26,0.32 1.28,1.35x y ∈ × . (c) ( ),E x y∗ ∗ ∗  is a spiral source point 

with 4.5 Hp p= < . (d) ( ),E x y∗ ∗ ∗  is locally asymptotically stable with 4.6 Hp p= > . 
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To explore in detail how temperature affects the coexistence mode of biologi-
cal manipulation predators and algae, and analyze the advantages of the model 
(2.1), some numerical simulation results are shown in Figures 6-8. As we all 
know, in the laboratory algal-predator culture test, in order to better maintain 
the growth of algal population, we usually conduct the culture test at a constant 
temperature degrees. However, in subtropical reservoirs, the temperature has a 
periodic change in behavior with time, which is not a constant. Therefore, we will 
conduct numerical simulation with the state of laboratory culture temperature 

25R = , 32R =  and the state of field natural temperature 25 10sinR t= +  with 

1 0.6r = , 2 0.2r = , 1 5k = , 1 0.05u = , 0.05s = , 1 0.1m = , 2 0.25m = , 0.2α = , 
0.4a = , 2.5b = , 0.7e = , ref 25R =  and min 15R = . It is obvious to find from 

Figure 6 and Figure 7 that algae and biological manipulation predators can  
 

 
Figure 6. Time series diagram of the model (2.1) with 25R = .  
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Figure 7. Time series diagram of the model (2.1) with 25 10sinR t= + .  
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Figure 8. Time series diagram of the model (2.1) with 32R = .  

 
form a constant steady-state coexistence mode under the constant temperature 
assumption, however, algae and biological manipulation predator can form a 
periodic oscillation coexistence mode under the periodic change temperature 
assumption, In addition, for algae and biological manipulation predator, the 
center of the periodic oscillation amplitude is approximately a constant steady 
state value, which shows that the temperature expression does not affect the 
growth average biomass of algae and biological manipulation predator, but it 
will seriously affect their growth dynamics. Moreover, it is easy to see from Fig-
ure 8 that algae and biological manipulation predators have a periodic oscilla-
tion coexistence mode as the value of temperature parameter R increases to 32, 
and the biomass of biological manipulation predators has been greatly increased. 
These results not only show that the model (2.1) has experienced a Hopf bifurca-
tion as the value of parameter R increases, but also indicate that the increase in 
temperature is conducive to rapid growth of biological manipulation predators. 

Based on the numerical simulation results, can clearly indicate that the results 
of theoretical derivation are effective and feasible. Furthermore, it should also be 
emphasized that temperature not only affects the dynamic evolution characteris-
tics of the model (2.1), but also affects the biomass level of biological manipula-
tion predator. Moreover, the model (2.2) has specific bifurcation dynamic beha-
viors (transcritical bifurcation and Hopf bifurcation) under the influence of the 
value of key parameter p; these two bifurcation dynamics behaviors lead to a 
constant steady-state coexistence mode and a periodic oscillation coexistence 
mode of algae and biological manipulation predator respectively. 

6. Conclusions 

Under the conceptual framework of biological control of cyanobacteria in eu-
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trophic lakes and reservoirs, based on the fact that temperature is an extremely 
important factor in determining ecology, which has an important relationship 
with algae proliferation rate, an aquatic ecological model with temperature effect 
is proposed to explore the coexistence modes of algae and biological manipula-
tion predator and investigate how temperature affects their dynamic evolution. 
Suppose temperature parameter R is a constant variable, which can approx-
imately describe ecological culture system of algae and biological manipulation 
predator under laboratory conditions if temperature parameter R is a periodic 
function variable, which mainly represents the natural ecosystem of algae and 
biological manipulation predators in a naturally eutrophic lake. 

Based on dynamic population theory, some threshold conditions are given to 
guarantee the existence and stability of all possible equilibrium points, and some 
critical conditions for the occurrence of transcritical bifurcation and Hopf bi-
furcation are also deduced. Furthermore, some key parameters affecting the dy-
namic evolution characteristics of the model (2.2) are found through theoretical 
derivation and numerical simulation. All in all, these results are the theoretical 
basis for subsequent numerical simulation work and abstractly display the in-
fluence of some parameters on the dynamic evolution of the model (2.2). 

Through the numerical simulation test on dynamic behaviors of the model 
(2.1), the influence mechanism of temperature on the stable succession of aqua-
tic ecosystem is discovered in Figure 6 and Figure 8, the coexistence mode of 
algae and biological manipulation predator can change from a constant steady-state 
mode to a periodic oscillation mode with the temperature increasing gradually, 
which also indirectly indicates that the appropriate temperature range is one of 
the key factors for algae and biological manipulation predator to form a stable 
coexistence mode, and the periodic oscillation coexistence mode is more favora-
ble to control the growth rate of algae population by biological manipulation. 
Based on the bifurcation dynamics evolution analysis of the model (2.2), it is 
worth pointing out that transcritical bifurcation can induce the appearance of 
the internal equilibrium point ( ),E x y∗ ∗ ∗ , which represents the coexistence of 
algae and biological manipulation predator in a periodic oscillation mode, and 
completely changes the dynamic coexistence nature of algae and biological ma-
nipulation predator. Furthermore, when the value of control parameter p de-
creases and falls below a critical threshold, the coexistence mode of algae and bi-
ological manipulation predator has changed fundamentally again, periodic os-
cillation coexistence mode will replace the constant steady-state coexistence mode 
through a Hopf bifurcation. These results directly show that the value of key pa-
rameter p plays an important role in the bifurcation dynamic behavior evolution 
of the model (2.2). In general, some theoretical and numerical results obtained 
in this paper can provide a certain theoretical basis for the formation of a healthy 
and stable aquatic ecosystem and also provide certain numerical support for the 
feasibility of biological manipulation technology. 

In the follow-up research works, firstly, we will introduce Arrhenius exponen-
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tial temperature function and partial normal distribution temperature function 
into ecological modeling and investigate the impact of different temperature 
function manifestations on the dynamic behavior of the model (2.1). Secondly, 
we will continue to deepen the environmental impact factors of such aquatic 
ecological models and then further explore the influence of various environ-
mental factors on the dynamic relationship between algae and biological mani-
pulation predators. Finally, we will further explore the dynamic pattern behavior 
of the model (2.1) with the help of these papers [25] [26] [27]. In a word, all 
these results are expected to be useful in studying the dynamic behavior of aqua-
tic ecosystems. 
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