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Abstract 
A time-harmonic plane acoustic wave is scattered by a piecewise homogene-
ous obstacle with a penetrable or impenetrable core. We construct in the close 
form an integral representation for the far field pattern in which we have in-
corporated the physical and geometrical characteristics of the scatterer. 
Through this representation, we obtain the far field pattern for this scatterer. 
We prove scattering relations between the far field patterns of two scattering 
problems due to two distinct incident waves on the same scatterer. In partic-
ular, we prove reciprocity and general scattering theorems. The optical theo-
rem, connecting the total power that the scatterer extracts from the incident 
plane wave either by radiation or by absorption with the corresponding far 
field pattern of an incident plane wave, is recovered as a corollary of the gen-
eral scattering theorem. Moreover, if we consider incident waves to be both a 
plane and a spherical, we derive a mixed reciprocity theorem. We define the 
corresponding far field operators and using these relations, we prove some 
properties that can be used for solving inverse scattering problems. 
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1. Introduction 

We consider a scattering problem of time-harmonic acoustic waves by a piece-
wise homogeneous scatterer in two dimensions. This type of scatterer arises 
when a layered infinitely long cylinder, which is oriented parallel to the 3x -axis, 
is intersected by the 1 2x x -plane (for more details, see [1]). We define the far 

How to cite this paper: Athanasiadou, E.S. 
and Roupa, P. (2022) On the Far Field 
Pattern for Acoustic Scattering by a Piece-
wise Homogeneous Obstacle in Two Di-
mensions. Journal of Applied Mathematics 
and Physics, 10, 2951-2964. 
https://doi.org/10.4236/jamp.2022.1010198 
 
Received: July 30, 2022 
Accepted: October 15, 2022 
Published: October 18, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.1010198
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.1010198
http://creativecommons.org/licenses/by/4.0/


E. S. Athanasiadou, P. Roupa 
 

 

DOI: 10.4236/jamp.2022.1010198 2952 Journal of Applied Mathematics and Physics 
 

field pattern (or scattering amplitude) which is an analytic function defined on 
the unit disc (or unit sphere for 3D-scattering). This function plays an important 
role in studying inverse scattering problems. Given the far field pattern for one 
or several incident plane waves, we can define some geometrical and physical 
characteristics of the scatterer [2]. Specifically, we study properties of the far 
field pattern for a scatterer that is a piecewise homogeneous obstacle with a core 
that may be sound soft, hard, penetrable or impedance. 

Scattering theorems in three dimensions have been proved for various scat-
tering models in the case of acoustic [3], electromagnetic [4] and elastic [5] 
waves. Since 1954 Twersky has proved reciprocity, scattering and optical theo-
rems for acoustic in [6] and electromagnetic in [4] waves. Using these results 
and low-frequency expansions, he derived the leading-term approximation of 
the real part of the far field pattern. Moreover, at the same period of time, De 
Hoop proved a reciprocity theorem for electromagnetic waves in [7] and for lin-
er viscoelastic media in [8]. Reciprocity relations for acoustic and electromag-
netic far field patterns have been recorded by Colton and Kress in the books [2] 
[9]. Reciprocity, general and optical theorems have also been stated and proved 
by Dassios and Kleinman in their book [10]. In [11], it is proved a reciprocity 
theorem which corresponds to an impedance boundary value problem in two 
and three dimensions. In [5], Dassios, Kiriaki and Polyzos proved scattering re-
lations for elastic waves defining far field patterns in a spherical coordinate sys-
tem. In [12], Athanasiadis has studied far field patterns for electromagnetic scat-
tering by a chiral obstacle in a chiral environment. In [13], it is shown that the 
correlation-type reciprocity theorem for the scattered field is the progenitor of 
the generalized optical theorem. Gintides and Kiriaki in [14], using a dyadic re-
presentation for the displacement field constructed the longitudinal and trans-
verse parts of the dyadic far-field patterns for the Dirichlet and Neumann prob-
lem. A generalization of the optical theorem for the case of excitation of a local 
body by a multipole can be found in [15]. 

Moreover, three-dimensional scattering theorems for multi-layered scatterers 
have been proved in [3] for acoustic waves. Scattering relations for spherical 
acoustic and electromagnetic waves as well as a mixed reciprocity principle have 
been proved in [16]. Whereas in [17], corresponding relations for elastic waves 
are proved. In [18], the authors, using a mixed reciprocity theorem and the fac-
torization method, solved a two-layered background medium inverse scattering 
problem. In [19], the two-phase acoustic streaming characteristics and droplet 
properties generated by a dental ultrasonic scaler are investigated. 

Concerning the two-dimensional case, reciprocity and other scattering rela-
tions have been stated and proved in [1]. In [20], reciprocity, general and optical 
relations for chiral obstacles are established. 

The far field pattern is the most important function in scattering theory. 
Hence it is worth its study for a complicated scattering model. The novelty of the 
present work lies in the kind of scatterer. As it is shown from the references, the 
research has been done for simple scatterers and especially in three dimensions. 
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To our knowledge, there are no results for multi-layered scatterers in two di-
mensions. The derived formulae show the dependence of the far field pattern, 
the extinction cross-section and the far field operator of the scatterer’s structure. 
The reciprocity theorem that is proved for the far field pattern implies that the 
far field operator is injective, has a dense range and is normal. 

In Section 2, we formulate a two-dimensional scattering problem for a piece-
wise homogeneous obstacle with a core which may be sound soft, hard, penetra-
ble or impedance. In Section 3, we obtain far field patterns for this scatterer. Us-
ing plane incidence two-dimensional reciprocity, general and optical scattering 
theorems are proved in Section 4. Also, assuming that the scatterer is excited by 
a plane and a point-source wave, we derive mixed reciprocity theorems. In Sec-
tion 5, we define the far field operator and we prove various properties which are 
useful in solving inverse scattering problems. Finally, in Section 6, we discuss 
some special cases of the described scattering problems. 

2. Formulation of the Problem  

We consider scattering by a piecewise homogeneous obstacle in 2 . Let D be a 
bounded subset of 2  with a C2-boundary 0S D= ∂ . The exterior 2

0 \D D=   
of the obstacle is an infinite homogeneous isotropic medium with mass density 

0ρ  and mean compressibility 0γ . The interior of D is divided by means of 
closed and nonintersecting C2-curves jS , 1, 2, ,j N=  , into layers jD ,  

1,2, , 1j N= + , with 1 1j j jD D S− −∂ ∩∂ = . The curve 1jS −  surrounds jS  and 
there is one normal unit vector ( )ˆ xν  at each point x  of any curve jS  point-
ing into jD . The region 1ND + , within which lies the origin, is the core of the 
scatterer which may be sound soft, hard, penetrable or impedance, see Figure 1. 
The layer jD  is a homogeneous isotropic medium with mass density jρ  asso-
ciated with the velocity field and mean compressibility jγ  associated with the 
pressure field in jD . All the physical parameters jρ  and jγ  are positive con-
stants and the real wave numbers in jD  are given by 
 

 
Figure 1. The piecewise homogeneous scatterer. 
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,  0,1, , ,j j jk j Nω γ ρ= =                       (1) 

where ω  is the angular frequency. 
The total acoustic field in jD  satisfies the Helmholtz equation  

 2 0  in  ,  0,1, , ,j j j ju k u D j N∆ + = =                  (2) 

where 
2 2

2 2
1 2x x

∂ ∂
∆ = +

∂ ∂
 is the two-dimensional Laplace operator. In the core 

1ND +  it holds the same Equation (2) for 1j N= + . 

The total exterior acoustic field 0u  is given by 
inc sc 2

0   in  \ ,u u u D= +                      (3) 

where scu  is the scattered field which satisfies the Sommerfeld radiation condi-
tion: 

sc
sc

0lim 0.u ik u
ν→∞

 ∂
− = ∂ x

x                     (4) 

On the curve jS  the following transmission conditions are valid for  
0,1, , 1j N= − , 

1  on  ,j j ju u S+=                        (5) 

 1

1

  on  .j j j
j

j

u u
S

ρ
ν ρ ν

+

+

∂ ∂
=

∂ ∂
                   (6) 

On the curve NS  of the core, we consider either the Dirichlet boundary condi-
tion (soft core):  

 0  on  ,N Nu S=                        (7) 

or the Neumann boundary condition (hard core):  

 0  on  ,N
N

u
S

ν
∂

=
∂

                      (8) 

or the transmission boundary condition (penetrable core): 

1  on  ,N N Nu u S+=                      (9) 

 1

1

  on  ,N N N
N

N

u u
S

ρ
ν ρ ν

+

+

∂ ∂
=

∂ ∂
                (10) 

or the Robin boundary condition (impedance core): 

  on  ,N
N N

u
i u Sλ

ν
∂

= −
∂

                 (11) 

where 0λ >  is the surface impedance. 
Summarizing the above analysis, we formulate the following two-dimensional 

scattering problems. The first problem is defined by Equations (2)-(7) and is 
denoted by (PD); the second one is defined by Equations (2)-(6), (8) and is de-
noted by (PN); the third one is defined by Equations (2)-(6), (9), (10) and is de-
noted by (PT) and the last one is defined by Equations (2)-(6), (11) and is de-
noted by (PI). 
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3. The Far Field Patterns  

The scattered field scu  is a radiating solution of the Helmholtz equation in 
2 \ D  and it has the integral representation [1], 

( ) ( ) ( )
( ) ( ) ( ) ( )

0

sc
sc sc ,

, d ,
S

u
u u s

ν ν
 ∂Φ ∂

= −Φ  ∂ ∂ 
∫

x y y
x y x y y

y
    (12) 

where ( ) ( ) ( )1
0 0,

4
i H kΦ = −x y x y  is the two-dimensional fundamental solution  

of the Helmholtz equation in 0D . ( )1
0H  is the Hankel function of the first kind 

of order zero and 0k  is the wave number [1]. 
Using the asymptotic relations for 0− →x y , [1] 

( ) ( )1 1, log 1 ,
2π

Φ = +
−

x y
x y

                (13) 

 
( ) ( ) ( )1 1, log ,

2ν
∂

Φ = + − −
∂ −π

x y x y x y
y x y

         (14) 

and taking into account the radiation condition (4) we obtain 

( ) ( ) ( )
0

sc 3 2e ˆ ,   ,
ik

u u −∞= + → ∞
x

x x x x
x

            (15) 

where ( )ˆu∞ x  is the far field pattern which is defined in the unit disc in 2  
1S  and it is given by 

( ) ( ) ( ) ( ) ( )0 0

0

4
ˆ ˆsc sc

0

eˆ e e d .
8

i
ik ik

S
u u u s

k ν ν
− ⋅ − ⋅∞

π

π

 ∂ ∂
= − 

∂ ∂  
∫ x y x yx y y y

y
 (16) 

In (16) we substitute sc inc
0u u u= −  and we get 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0

0 0

0

4
ˆ ˆ

0 0
0

4
ˆ ˆinc inc

0

eˆ e e d
8

e e e d .
8

i
ik ik

S

i
ik ik

S

u u u s
k

u u s
k

ν ν

ν ν

− ⋅ − ⋅∞

− ⋅ − ⋅

π

π

 ∂ ∂
= − 

∂ ∂  
 ∂ ∂

− − 
∂ ∂  

π

π

∫

∫

x y x y

x y x y

x y y y
y

y y y
y

 (17) 

The last integral is equal to zero, since 0 ˆe ik− ⋅x y  and incu  are entire solutions 
of the Helmholtz Equation (2) for 0j = . For the first integral we use the trans-
mission conditions (5), (6), we apply successively Green’s first theorem on 

( )ju x  and 0 ˆe ik− ⋅x y  in jD  and we get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

0

ˆ ˆ
0 0

1 2

e e d

ˆ ˆ ˆ ,
N N N

ik ik
S

D S S

u u s

I I I

ν ν
− ⋅ − ⋅ ∂ ∂

− 
∂ ∂  

= + +

∫ x y x yy y y
y

x x x

         (18) 

where  

( ) ( ) ( )

( ) ( )

0

0

ˆ2
0

1 0

ˆ0

1

ˆ 1 e d

1 e d

N j

j

N
j ik

D jD
j

N
ik

jD
j j

I k u V

grad u grad V

γ
γ

ρ
ρ

− ⋅

=

− ⋅

=

 
= − 

 
 

+ − ⋅  
 

∑ ∫

∑ ∫

x y

x y

x y y

y y
      (19) 
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 ( ) ( ) ( ) ( ) ( )
0 ˆ

1 eˆ d ,
N N

ik

NS S
I u s

ν

− ⋅∂
=

∂∫
x y

x y y
y

               (20) 

 ( ) ( ) ( ) ( )02 ˆ0ˆ e d .
N N

Nik
S S

N

u
I s

ρ
ρ ν

− ⋅ ∂
= −

∂∫ x y y
x y              (21) 

Now we apply the boundary and transmission conditions on the core, we take 
the following far field patterns: 

( ) ( ) ( ) ( )( )
4

2

0

eˆ ˆ ˆ ,
8 N N

i

D D Su I I
k

∞
π

π
= +x x x               (22) 

for Dirichlet condition on core, 

( ) ( ) ( ) ( )( )
4

1

0

eˆ ˆ ˆ ,
8 N N

i

N D Su I I
k

∞
π

π
= +x x x                (23) 

for Neumann condition on core, 

( ) ( )
1

4

0

eˆ ˆ ,
8 N

i

T Du I
k +

∞
π

π
=x x                     (24) 

for the transmission conditions on core, 

( ) ( ) ( ) ( ) ( ) ( )( )
4

1 3

0

eˆ ˆ ˆ ˆ ,
8 N N N

i

I D S Su I I I
k

∞
π

π
= + +x x x x             (25) 

for the impedance boundary condition on core, where 

( ) ( ) ( ) ( )03 ˆ0ˆ e d .
N N

ik
NS S

N

i
I u s

λρ
ρ

− ⋅= ∫ x yx y y               (26) 

4. Scattering Theorems  

In the sequel, as we have already mentioned before, we consider an incident 
plane electric wave ( ) 0 ˆinc ˆ, eiku ⋅= x dx d , 1ˆ S∈d . We write ( ),

ˆ,a ju x d , ( )sc ˆ,au x d , 

( )ˆˆ ,au∞ x d  for representing the dependence of the total field in jD , the scat-
tered field and the far field pattern on the incident direction d̂  for the scatter-
ing problem ( aP ), , , ,a D N T I= . 

The vectors x  and d̂  are expressed in terms of polar coordinates as  

( )cos , sinr rθ θ=x , r = x , ( )ˆ cos ,sinφ φ=d , where [ ], 0, 2θ φ ∈ π  are the 
polar angles of x  and d̂ , respectively. For convenient reasons we write for the 
far field pattern ( ) ( )ˆˆ , ,a au u θ φ∞ ∞=x d . The far field pattern ( ),au θ φ∞  (16) is 
given by [1], 

( ) ( )
( )

( )
( ) ( )0 0

0

sc4
cos cossc

0

e, e e d ,
8

y y y y
i

ik r ik ra
a aS

u
u u s

k
θ θ θ θθ φ

ν ν
− − −∞

π
− ∂∂

= − 
∂ ∂π  

∫ y
y y

(27) 

where ( ),y yr θ  are the polar coordinates of y . 
In the rest of the paper, we will use Twersky’s notation [6], 

{ }, d .S S

v uu v u v s
ν ν
∂ ∂ = − ∂ ∂ ∫                    (28) 
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As we can see the far field pattern is expressed through the Twersky’s notation as 

( ) ( ) ( ) ( ){ }
0

4
sc inc

0

eˆ ˆˆ ˆ, , , , , .
8

i

a a a
S

u u u u
k

θ φ
π

∞ ∞= = ⋅ ⋅ −
π

x d d x        (29) 

Next, we formulate and prove the classical reciprocity theorem in two dimen-
sions for a multi-layered scatterer. 

Theorem 1 (Reciprocity). Let ( )inc ˆ,u ⋅ d  and ( )inc ˆ,u ⋅ −x , with  
( )ˆ cos ,sinφ φ=d , ( )ˆ cos ,sinθ θ=x , be two incident plane waves. Then the far 

field pattern ( ),au θ φ∞  corresponding to the scattering problem ( aP ),  
, , ,a D N T I= , satisfies the reciprocity principle  

 ( ) ( ), , ,a au uθ φ φ θ∞ ∞ π+ + π=                     (30) 

for all [ ], 0, 2θ φ ∈ π .  
Proof. In view of (3) and the bilinearity of (28), we get 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

0 0 0

0 0

inc inc inc sc
,0 ,0

sc inc sc sc

ˆ ˆ ˆˆ ˆ ˆ, , , , , , , , ,

ˆ ˆˆ ˆ, , , , , , .

a a a
S S S

a a a
S S

u u u u u u

u u u u

⋅ ⋅ − = ⋅ ⋅ − + ⋅ ⋅ −

+ ⋅ ⋅ − + ⋅ ⋅ −

d x d x d x

d x d x
(31) 

We observe that 

( ) ( ) ( ) ( ), , , ,
ˆ ˆˆ ˆ, , , , d 0,

j
a j a j a j a jD

u u u u V ⋅ ∆ ⋅ − − ⋅ − ∆ ⋅ = ∫ d x x d          (32) 

since both ( ), ˆ,a ju ⋅ −x  and ( ),
ˆ,a ju ⋅ d  are solutions of (2) in jD . We apply 

successively the scalar Green’s second theorem on ( ), ˆ,a ju ⋅ −x  and ( ),
ˆ,a ju ⋅ d  

and by using the transmission conditions (5), (6) we conclude that 

( ) ( ){ }

( ) ( ) ( )
( )

0
,0 ,0

,,0
, ,

ˆ ˆ, , ,

ˆ,ˆ,ˆ ˆ, , d 0,
N

a a
S

a Na N
a N a NS

N

u u

uu
u u s

ρ
ρ ν ν

⋅ ⋅ −

 ∂ ⋅∂ ⋅ − = ⋅ − ⋅ − =
 ∂ ∂
 

∫

d x

dx
d x

    (33) 

due to the imposed boundary condition (7) for ( DP ), (8) for ( NP ) and (11) for 
( IP ) on the core. For the scattering problem ( TP ) we apply again the scalar 
Green’s second theorem in 1ND +  and we obtain 

( ) ( ){ }
0

,0 ,0
ˆ ˆ, , , 0.a a

S
u u⋅ ⋅ − =d x                     (34) 

For the first integral of the right-hand side of (31), we apply the scalar Green’s 
second theorem and since the incident waves are entire solutions of the Helm-
holtz equation (2) for 0j = , we get 

( ) ( ){ }
0

inc incˆ ˆ, , , 0.
S

u u⋅ ⋅ − =d x                    (35) 

For the evaluation of the last integral of (31), we consider a disc RS  centred at 
the origin with radius R large enough to include D  in its interior. We apply 
once more the scalar Green’s second theorem on ( )sc ˆ,au ⋅ d  and ( )sc ˆ,au ⋅ −x  in 
the region exterior to 0S  and interior to RS∂ . Hence, we get that the desired 
integral is equal to the line integral on RS∂ . By letting R →∞  and taking into 
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account the asymptotic behaviour (15), we have  

 ( ) ( ){ }
0

sc scˆ ˆ, , , 0.a a
S

u u⋅ ⋅ − =d x                    (36) 

From (29), we can write  

 ( ) ( ){ } ( )
0

sc inc 4
0

ˆ ˆˆ ˆ, , , 8 e , ,i
a a

S
u u k u− ∞π⋅ ⋅ − = πd x x d           (37) 

 ( ) ( ){ } ( )
0

inc sc 4
0

ˆ ˆˆ ˆ, , , 8 e , .i
a a

S
u u k u− ∞π⋅ ⋅ − = −π− −d x d x         (38) 

Therefore, we have 

( ) ( )ˆ ˆˆ ˆ, , ,a au u∞ ∞= − −x d d x                    (39) 

and the proof of the theorem is complete.                              □ 
Next, we state and prove a general scattering theorem which is useful for the 

study of the far field operator. In what follows, w  will denote the complex 
conjugate of w. 

Theorem 2 (General). Let ( )inc ˆ,u ⋅ d  and ( )inc ˆ,u ⋅ x , with ( )ˆ cos ,sinφ φ=d  
and ( )ˆ cos ,sinθ θ=x , be two incident plane waves. Then the far field pattern 

( ),au θ φ∞  corresponding to the scattering problem ( aP ), , , ,a D N T I= , satisfies  

( ) ( ) ( ) ( ) ( ) ( )24 4 0
0

e , e , ,  , d , ,
2

i i
a a a y a y y a

k
u u i u u sφ θ θ φ θ φ θ θ θ φ θ

ππ π− ∞ ∞ ∞ ∞

π
− − =∫  (40) 

for all [ ], 0, 2θ φ ∈ π , where ( ),a φ θ  depends on the scatterer. In particular, 

( ), 0,  for  , , ,a a D N Tφ θ = =                     (41) 

( ) ( ) ( ) ( )0
, ,

0

ˆ ˆ, ,  , d ,  for  .
2 N

a I N I NS
N

i
u u s a I

k
λρ

φ θ
ρ

−
π

= =∫ y d y x y     (42) 

Proof. This theorem is proved in a similar way as Theorem 1. In view of (3), 
we have 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

0 0 0

0 0

inc inc inc sc
,0 ,0

sc inc sc sc

ˆ ˆ ˆˆ ˆ ˆ, , , , , , , , ,

ˆ ˆˆ ˆ, , , , , , .

a a a
S S S

a a a
S S

u u u u u u

u u u u

⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅

d x d x d x

d x d x
 (43) 

As in Theorem 1, we get  

( ) ( ){ }
0

inc incˆ ˆ, , , 0,
S

u u⋅ ⋅ =d x                      (44) 

( ) ( ){ } ( )
0

inc sc 4
0

ˆ ˆˆ ˆ, , , 8 e , ,i
a a

S
u u k u− ∞π⋅ ⋅ = π−d x d x             (45) 

 ( ) ( ){ } ( )
0

sc inc 4
0

ˆ ˆˆ ˆ, , , 8 e , ,i
a a

S
u u k u∞π⋅ π⋅ =d x x d              (46) 

( ) ( ){ } ( ) ( ){ }
( ) ( ) ( )

0 0

sc sc sc sc

2
0 0

ˆ ˆˆ ˆ, , , , , ,

ˆˆ ˆ ˆ ˆ2 ,  , d ,

a a a a
S S

a a

u u u u

ik u u s
π ∞ ∞

⋅ ⋅ = ⋅ ⋅

= ∫

d x d x

y d y x y
        (47) 
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( ) ( ){ }

( ) ( ) ( )
( )

0
,0 ,0

,,0
, ,

ˆ ˆ, , ,

ˆ,ˆ,ˆ ˆ, , d .
N

a a
S

a Na N
a N a NS

N

u u

uu
u u s

ρ
ρ ν ν

⋅ ⋅

 ∂ ⋅∂ ⋅ = ⋅ − ⋅ ∂ ∂ 
 

∫

d x

dx
d x

        (48) 

This integral is equal to zero for , ,a D N T=  due to the boundary conditions 
(7), (8) and (9), (10), respectively. For a I= , by applying the boundary condi-
tion (11), we get that the integral of (48) is equal to 

( ) ( ){ } ( ) ( ) ( )
0

0
,0 ,0 , ,

2ˆ ˆˆ ˆ, , , ,  , d .
N

I I I N I NSS N

i
u u u u s

λρ
ρ

⋅ ⋅ = − ∫d x y d y x y     (49) 

From the above relations the theorem is proved.                        □ 
The scattering cross-section sc

aσ  constitutes a measure of the disturbance 
caused by the scatterer to the incident wave [10] and it is given by 

22sc
0

d .a auσ θ
π ∞= ∫                         (50) 

We also define the absorption cross-section abσ , given by 

( ) ( )
0

,0ab
,0

0

1 Im d ,a
a aS

u
u s

k
σ

ν
∂

=
∂∫

x
x                  (51) 

which expresses the total energy absorbed by the scatterer. In particular, the 
energy which is taken from the incident plane wave is adsorbed by the boundary 
of the core of the scatterer in the impedance case. 

( ) ( )2ab 0
,

0

d .
N

a a NS
N

u s
k
λρ

σ
ρ

= ∫ x x                   (52) 

Moreover, the extinction cross-section ex
aσ  is defined by 

ex sc ab ,a a aσ σ σ= +                          (53) 

and it describes the total power that the scatterer extracts from the incident 
plane wave either by radiation or by absorption [10]. 

In the sequel we formulate a two-dimensional optical theorem for the scatter-
ing problem ( aP ), , , ,a D N T I= . 

Theorem 3 (Optical). Let ( )inc ˆ,u ⋅ d  with ( )ˆ cos ,sinφ φ=d  be an incident 
wave and ( ),au φ∞ ⋅  be the corresponding far field pattern. Then the extinction 
cross-section ex

aσ  for the problem ( aP ), , , ,a D N T I= , satisfies  

 ( )ex 4

0

22 Im e , .i
a au

k
σ φ φ∞π−π =                    (54) 

Proof. We apply Theorem 2, for θ φ= , i.e. ˆˆ =x d , and we get 

( ) ( ) ( ) ( )
224 0

0
2 Im e , , d , .

2
i

a a y y a
k

i u i u sφ φ θ φ θ φ φ− ∞π ∞π

π
  = +  ∫     (55) 

Taking into account (42), (50) and (52), the relation (55) is written 

( ) ( )4 sc ab02 Im e , ,
2

i
a a a

k
i u iφ φ σ σ− ∞π  +

π
=                (56) 
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which proves the theorem.                                          □ 
Next, we prove a mixed reciprocity theorem which connects the far field pat-

tern of a point-source wave and the scattered field of a plane wave. This theorem 
can be used in studying inverse scattering problems, according to the Potthast 
point-source method [21] [22]. For this purpose, we have to define point-source 
waves with the position of the source to be outside the scatterer. A similarly 
mixed reciprocity theorem can be proved when the source is inside the scatterer. 
We consider for an incident point-source wave at 2 \ D∈z   the fundamental 
solution of the Helmholtz equation, i.e. 

( ) ( ) ( )1inc
0 0, .

4
i H kΦ = −x z x z                    (57) 

We denote by ( ), ,a jΦ x z , ( )sc ,aΦ x z  and ( )ˆ ,a
∞Φ x z  for representing the 

dependence of the total field in jD , 0,1, , 1j N= + , the scattered field and 
the far field pattern on the position of the source 2 \ D∈z  . 

Theorem 4 (Mixed Reciprocity). Let ( )inc ,Φ x z  be an incident point-source 
wave at 2 \ D∈z   and let ( )inc ˆ,u −x d  be an incident plane wave with propa-
gation direction ˆ−d . Then,  

 ( ) ( )
4

sc

0

eˆ ˆ, , .
8

i

a au
k

∞
π

Φ = −
π

d z z d                   (58) 

Proof. Taking into account that inc sc
,0a aΦ = Φ +Φ  and inc sc

,0a au u u= +  we get 
again the analysis (31) by replacing ( ),0 ˆ,au ⋅ x  by ( ),0 ,aΦ ⋅ z .  

Since ( )inc ,Φ ⋅ z  and ( )inc ˆ,u ⋅ −d  are regular solutions of the Helmholtz equ-
ation in D, the scalar Green’s second theorem gives  

 ( ) ( ){ }
0

inc inc ˆ, , , 0.
S

uΦ ⋅ ⋅ − =z d                   (59) 

For the integral ( ) ( ){ }
0

inc sc ˆ, , ,a
S

uΦ ⋅ ⋅ −z d , we consider a small disc ,S εz  centered  

at z  with radius ε  and a large disc ,O RS  centered at the origin with radius R 
surrounding the scatterer and the small disc ,S εz . Applying the scalar Green’s 
second theorem for ( )inc ,Φ x z , ≠x z  and ( )sc ˆ,au ⋅ −d  in the space between 
the curves ,O RS , ,S εz  and 0S , we get 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
0 , ,

inc sc inc sc inc scˆ ˆ ˆ, , , , , , , , , .
O R

a a a
S S S

u u u
ε

Φ ⋅ ⋅ − = Φ ⋅ ⋅ − − Φ ⋅ ⋅ −
z

z d z d z d (60) 

Letting R →∞  and taking into account that ( )inc ,Φ ⋅ z , ( )sc ˆ,au ⋅ −d  are radiat-

ing solutions of the Helmholtz equation we have that ( ) ( ){ }
,

inc sc ˆ, , ,
O R

a
S

uΦ ⋅ ⋅ −z d .  

Letting 0ε → , using the asymptotic relations (13) and (14) and applying the  

mean value theorem, we obtain that ( ) ( ){ } ( )
,

inc sc scˆ ˆ, , , ,a a
S

u u
ε

Φ ⋅ ⋅ − = −
z

z d z d . Hence, 

( ) ( ){ } ( )
0

inc sc scˆ ˆ, , , , .a a
S

u uΦ ⋅ ⋅ − = − −z d z d               (61) 

From the definition of the far field pattern (29) we have 
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( ) ( ){ } ( )
0

sc inc 4
0 0

ˆ ˆ, , , 8 e , .i
a a

S
u k π− ∞Φ ⋅ ⋅ − = Φπz d d z           (62) 

As in Theorem 1, we have:  

( ) ( ){ }
0

sc sc ˆ, , , 0,a a
S

uΦ ⋅ ⋅ − =z d                   (63) 

( ) ( ){ }
0

,0 ,0
ˆ, , , 0.a a

S
uΦ ⋅ ⋅ − =z d                  (64) 

Therefore, the above formulae prove the theorem.                       □ 

5. The Far Field Operator  

In this section, we prove some basic properties of the far field operator for the 
two-dimensional scattering problem ( aP ), , , ,a D N T I= . The far field operator 
plays a central role for the study of inverse scattering problems. We consider the 
Herglotz wave function: 

( ) ( ) ( )0
2 cos

0
e d ,ik r

gu g θ φθ φ φ
π −= ∫                    (65) 

with kernel [ ]2 0, 2g L∈ π . The Herglotz wave function gu  is an entire solution 
of the Helmholtz equation 2

0 0 0 0u k u∆ + = . 
We now consider as incident field inc

gu  a Herglotz wave function of the form 
(65). We denote the dependence of the total field in jD , the scattered field and 
the far field pattern on the kernel g by writing ,j gu , sc

,a gu  and ,a gu∞ , respective-
ly, and we prove the following results. 

Corollary 1. We consider two incident Herglotz waves inc
gu  and inc

hu . Let 
sc

,a gu , sc
,a hu  and ,a gu∞ , ,a hu∞  be the corresponding scattered fields and far field 

patterns, , , ,a D N T I= . Then it holds  

 { } ( ) ( )
0

2sc inc 4
, 0 ,0

, 8 e  d ,i
a g h a g

S
u u k h uφ φ φ

ππ− ∞= π ∫           (66) 

 { } ( ) ( )
0

2sc sc
, , 0 , ,0

, 2  d .a g a h a g a h
S

u u ik u uφ φ φ∞ ∞π
= ∫             (67) 

Proof. For ( )ˆ cos ,sinφ φ=d , ( )cos , sinr rθ θ=x  and taking into account 
the relations (65) and (29), we have 

{ } ( ){ }
( ) ( )

0

00

2 ˆsc inc sc
, ,0

24
0 ,0

,  , e d

8 e  d .

ik
a g h a g

SS

i
a g

u u h u

k h u

φ φ

φ φ φ

π

π

− ⋅

∞π−

=

= π

∫

∫

x d

          (68) 

The relation (67) is immediate consequence of (47).                      □ 
The far field operator [ ] [ ]2 2: 0, 2 0,2aF L L→π π  corresponding to the far 

field pattern au∞  is defined by 

( )( ) ( ) ( )2

0
: , d .a aF g u gθ θ φ φ φ

π ∞= ∫                (69) 

Let us now consider the inner product on [ ]2 0, 2L π  which is defined by 
2

0
, dg h gh s

π
= ∫ . 

Theorem 5. Let inc
gu , inc

hu  be two incident Herglotz waves, 0,1, , 1j N= + . 
Then the far field operator [ ] [ ]2 2: 0, 2 0,2aF L L→π π  corresponding to the 
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scattering problem ( aP ), , ,a D N T= , satisfies the relation  

 4 4 0e , e , , .
2

i i
a a a a

k
F g h g F h i F g F hπ π−

π
− =           (70) 

Proof. By using the relation (40) and taking into account that the far field op-
erator is superposition of far field patterns ([2], Lemma 3.20), we get the relation 
(70).                                                            □ 

If the core of the piecewise homogeneous scatterer is soft, hard or penetrable, 
then the far field operator is normal, i.e., * *

a a a aF F F F= , which is an important 
property and plays a crucial role in solving inverse scattering problems. 

In particular, based on Theorem 5, the following corollary can be proved in a 
similar way as Theorem 7.15 presented in ([1], p. 144). 

Corollary 2. The far field operator [ ] [ ]2 2: 0, 2 0,2aF L L→π π  corresponding 
to the scattering problem ( aP ), , ,a D N T= , is normal and its eigenvalues lie on  

the circle of radius 
0

2
k
π  with center at 3 4

0

2e i

k
π π .  

When the far field operator is normal, the factorization method ([1], Ch. 7) 
for solving inverse scattering problems can be applied. The reconstruction of a 
scatterer is described explicitly in Theorem 7.24 which is given in ([1], p. 150). 

6. Concluding Remarks  

In this work, we defined far field patterns for multi-layered scatterers with different 
imposed boundary conditions on the core. When 0 1 1N Nρ ρ ρ ρ += = = ≠  and 

0 1 1N Nγ γ γ γ += = = ≠ , then scattering occurs only on the core since the layers 
disappear. Hence, the generated scattering theorems imply simpler results for 
sound soft, hard, penetrable or impedance problems. Corresponding scattering 
theorems can be proved in the case of more general imposed boundary condi-
tions on the core, such as in [23] (resistive and conductive transmission condi-
tions) and in [24] (generalized impedance boundary condition). Applying the 
derived results, we aim to study inverse scattering problems for multi-layered 
obstacles in two dimensions. The appropriate adjustment of our results can lead 
to the following extensions:  
● the reciprocity theorem leads to the proof that the far field operator is injec-

tive, normal and has a dense range [1];  
● the general scattering theorem can be used in low-frequency theory for the rapid 

computation of the low-frequency coefficients of the far field pattern [22];  
● the optical theorem can be used for computing the total power that the scat-

terer extracts from the incident plane wave either by radiation or by absorp-
tion [22];  

● the mixed reciprocity theorem can be applied to computing the layers’ curves 
as well as the impedance constant [21].  
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